Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 612(7939): 223-227, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477128

RESUMO

Gamma-ray bursts (GRBs) are divided into two populations1,2; long GRBs that derive from the core collapse of massive stars (for example, ref. 3) and short GRBs that form in the merger of two compact objects4,5. Although it is common to divide the two populations at a gamma-ray duration of 2 s, classification based on duration does not always map to the progenitor. Notably, GRBs with short (≲2 s) spikes of prompt gamma-ray emission followed by prolonged, spectrally softer extended emission (EE-SGRBs) have been suggested to arise from compact object mergers6-8. Compact object mergers are of great astrophysical importance as the only confirmed site of rapid neutron capture (r-process) nucleosynthesis, observed in the form of so-called kilonovae9-14. Here we report the discovery of a possible kilonova associated with the nearby (350 Mpc), minute-duration GRB 211211A. The kilonova implies that the progenitor is a compact object merger, suggesting that GRBs with long, complex light curves can be spawned from merger events. The kilonova of GRB 211211A has a similar luminosity, duration and colour to that which accompanied the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817 (ref. 4). Further searches for GW signals coincident with long GRBs are a promising route for future multi-messenger astronomy.


Assuntos
Nanismo , Osteocondrodisplasias , Astros Celestes , Humanos , Astronomia , Gravitação
2.
Nature ; 602(7898): 583-584, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197613
3.
Astrobiology ; 19(6): 825-830, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30481053

RESUMO

Considerable data and analysis support the detection of one or more supernovae (SNe) at a distance of about 50 pc, ∼2.6 million years ago. This is possibly related to the extinction event around that time and is a member of a series of explosions that formed the Local Bubble in the interstellar medium. We build on previous work, and propagate the muon flux from SN-initiated cosmic rays from the surface to the depths of the ocean. We find that the radiation dose from the muons will exceed the total present surface dose from all sources at depths up to 1 km and will persist for at least the lifetime of marine megafauna. It is reasonable to hypothesize that this increase in radiation load may have contributed to a newly documented marine megafaunal extinction at that time.


Assuntos
Biota/efeitos da radiação , Radiação Cósmica/efeitos adversos , Planeta Terra , Extinção Biológica , Mésons/efeitos adversos , Animais , Evolução Planetária , Oceanos e Mares , Doses de Radiação , Astros Celestes
4.
Astrobiology ; 19(1): 126-131, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30129784

RESUMO

The observed value Λobs of the cosmological constant Λ is extremely smaller than theoretical expectations, and the anthropic argument has been proposed as a solution to this problem because galaxies do not form when Λ â‰« Λobs. However, the contemporary galaxy formation theory predicts that stars form even with a high value of Λ/Λobs ∼ 50, which makes the anthropic argument less persuasive. Here we calculate the probability distribution of Λ using a model of cosmological galaxy formation, considering extinction of observers caused by radiation from nearby supernovae. The life survival probability decreases in a large Λ universe because of higher stellar density. Using a reasonable rate of lethal supernovae, we find that the mean expectation value of Λ can be close to Λobs; hence this effect may be essential to understand the small but nonzero value of Λ. It is predicted that we are located on the edge of habitable regions about stellar density in the Galaxy, which may be tested by future exoplanet studies.


Assuntos
Radiação Cósmica , Galáxias , Exobiologia , Astros Celestes
5.
Nature ; 552(7685): 304-307, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29293246
6.
Faraday Discuss ; 168: 485-516, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302395

RESUMO

We present conclusive evidence on the formation of glycolaldehyde (HOCH2CHO) synthesized within astrophysically relevant ices of methanol (CH3OH) and methanol-carbon monoxide (CH3OH-CO) upon exposure to ionizing radiation at 5.5 K. The radiation induced chemical processes of the ices were monitored on line and in situ via infrared spectroscopy which was complimented by temperature programmed desorption studies post irradiation, utilizing highly sensitive reflectron time-of-flight mass spectrometry coupled with single photon fragment free photoionization (ReTOF-PI) at 10.49 eV. Specifically, glycolaldehyde was observed via the v14 band and further enhanced with the associated frequency shifts of the carbonyl stretching mode observed in irradiated isotopologue ice mixtures. Furthermore, experiments conducted with mixed isotopic ices of methanol-carbon monoxide (13CH3OH-CO, CH3(18)OH-CO, CD3OD-13CO and CH3OH-C18O) provide solid evidence of at least three competing reaction pathways involved in the formation of glycolaldehyde via non-equilibrium chemistry, which were identified as follows: (i) radical-radical recombination of HCO and CH2OH formed via decomposition of methanol--the "two methanol pathway"; (ii) via the reaction of one methanol unit (CH2OH from the decomposition of CH3OH) with one carbon monoxide unit (HCO from the hydrogenation of CO)--the "one methanol, one carbon monoxide pathway"; and (iii) formation via hydrogenation of carbon monoxide resulting in radicals of HCO and CH2OH--the "two carbon monoxide pathway". In addition, temperature programmed desorption studies revealed an increase in the amount of glycolaldehyde formed, suggesting further thermal chemistry of trapped radicals within the ice matrix. Sublimation of glycolaldehyde during the warm up was also monitored via ReTOF-PI and validated via the mutual agreement of the associated isotopic frequency shifts within the infrared band positions and the identical sublimation profiles obtained from the ReTOF spectra and infrared spectroscopy of the corresponding isotopes. In addition, an isomer of glycolaldehyde (ethene-1,2-diol) was tentatively assigned. Confirmation of the identified pathways based on infrared spectroscopy was also obtained from the observed ion signals corresponding to isotopomers of glycolaldehyde. These coupled techniques provide clear, concise evidence of the formation of a complex and astrobiologically important organic, glycolaldehyde, relevant to the icy mantles observed in the interstellar medium.


Assuntos
Acetaldeído/análogos & derivados , Monóxido de Carbono/química , Hidrogênio/química , Gelo/análise , Metanol/química , Astros Celestes/química , Acetaldeído/síntese química , Espectrometria de Massas/métodos , Radiação Ionizante , Espectrofotometria Infravermelho , Temperatura
7.
Proc Natl Acad Sci U S A ; 110(45): 18081-6, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145444

RESUMO

Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous (22)Ne in ancient meteorites. That exotic (22)Ne is, in fact, the decay isotope of relatively short-lived (22)Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe "build-up" and formation of carbon stardust, and provide insight into fullerene astrochemistry.


Assuntos
Carbono/química , Fulerenos/química , Modelos Químicos , Compostos Organometálicos/química , Astros Celestes/química , Análise de Fourier , Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/química
8.
Astrobiology ; 11(9): 883-93, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22066498

RESUMO

Despite the extensive search for glycine (NH2CH2COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH2OH. Another possible reaction involves NH2CH2 and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH2CH or NH2CH2OH are the most favorable from the thermochemical point of view.


Assuntos
Ácidos Carboxílicos/química , Gases/química , Glicina/síntese química , Transição de Fase , Astros Celestes/química , Glicina/química , Íons , Modelos Químicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA