Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436085

RESUMO

P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.


Assuntos
Adenosina Trifosfatases , Simulação por Computador , Doenças Genéticas Inatas , Mutação , Proteínas de Transferência de Fosfolipídeos , Humanos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Ataxia Cerebelar/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/enzimologia , Complexo de Golgi/metabolismo , Células HEK293 , Deficiência Intelectual/genética , Mutação/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Estabilidade Proteica , Transporte Proteico
2.
Artigo em Chinês | MEDLINE | ID: mdl-38297853

RESUMO

CAPOS syndrome is an autosomal dominant neurological disorder caused by mutations in the ATP1A3 gene. Initial symptoms, often fever-induced, include recurrent acute ataxic encephalopathy in childhood, featuring cerebellar ataxia, optic atrophy, areflflexia, sensorineural hearing loss, and in some cases, pes cavus. This report details a case of CAPOS syndrome resulting from a maternal ATP1A3 gene mutation. Both the child and her mother exhibited symptoms post-febrile induction,including severe sensorineural hearing loss in both ears, ataxia, areflexia, and decreased vision. Additionally, the patient's mother presented with pes cavus. Genetic testing revealed a c. 2452G>A(Glu818Lys) heterozygous mutation in theATP1A3 gene in the patient . This article aims to enhance clinicians' understanding of CAPOS syndrome, emphasizing the case's clinical characteristics, diagnostic process, treatment, and its correlation with genotypeic findings.


Assuntos
Ataxia Cerebelar , Deformidades Congênitas do Pé , Perda Auditiva Neurossensorial , Atrofia Óptica , Reflexo Anormal , Pé Cavo , Humanos , Criança , Feminino , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/diagnóstico , Atrofia Óptica/genética , Atrofia Óptica/diagnóstico , Mutação , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética
3.
Cerebellum ; 23(2): 363-373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806980

RESUMO

Ataxia-telangiectasia (A-T) is a disease caused by mutations in the ATM gene (11q22.3-23.1) that induce neurodegeneration Sasihuseyinoglu AS et al.  Pediatr Allergy Immunol Pulmonol 31(1):9-14, 2018, Teive HAG et al. Parkinsonism Relat Disord 46:3-8, 2018. Clinically, A-T is characterized by ataxia, mucocutaneous telangiectasia, immunodeficiency, and malignancy. Movement disorders have been the most described and well-studied symptoms of A-T. Other studies have reported visuospatial processing disorders, executive function disorders and emotional regulation disorders, which are clinical manifestations that characterize cerebellar cognitive affective syndrome (CCAS) Choy KR et al. Dev Dyn 247(1):33-46, 2018. To describe the neurocognitive and emotional state of pediatric patients with ataxia-telangiectasia and to discuss whether they have cerebellar cognitive affective syndrome. This observational, cross-sectional, and descriptive study included 9 patients with A-T from May 2019 to May 2021. A complete medical history was retrieved, and tests were applied to assess executive functions, visual-motor integration and abilities, language, psychological disorders, and ataxia. Six girls and 3 boys agreed to participate. The age range was 6 to 14 years. The participants included five schoolchildren and four teenagers. Eight patients presented impaired executive functioning. All patients showed some type of error in copying and tracing (distortion) in the performance of visual perceptual abilities. Emotional disorders such as anxiety and depression were observed in six patients. Eight patients presented with dyslalia and impairments in word articulation, all patients presented with ataxia, and seven patients used a wheelchair. All patients presented symptoms consistent with CCAS and had variable cognitive performance.


Assuntos
Ataxia Telangiectasia , Ataxia Cerebelar , Doenças Cerebelares , Masculino , Feminino , Adolescente , Humanos , Criança , Ataxia Telangiectasia/complicações , Estudos Transversais , Ataxia Cerebelar/genética , Cognição/fisiologia
4.
Acta Neurol Belg ; 124(2): 475-484, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37898963

RESUMO

BACKGROUND: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), classically presenting as a triad of early-onset cerebellar ataxia, lower extremity spasticity and peripheral neuropathy, is caused by mutations in SACS gene which encodes the protein sacsin. OBJECTIVE: To provide new insight into the occurrence of SACS mutations in South India. METHODS: Patients with three cardinal features of ARSACS-peripheral neuropathy, cerebellar ataxia, and pyramidal tract signs were included. Nine patients were clinically identified and genetically evaluated. Mutation screening of SACS by targeted sequencing of 40 recessive ataxia genes panel by next-generation sequencing was conducted. Additional investigations included magnetic resonance imaging (MRI), fundoscopy, optical coherence tomography (OCT) and nerve conduction studies (NCS). Functional disability was assessed by the Spinocerebellar Degeneration Functional Score. RESULTS: Two hundred and fifteen cerebellar ataxia patients were screened, and 9 patients with cerebellar ataxia with spasticity, peripheral neuropathy and MRI brain characteristics, consistent with a clinical diagnosis of ARSACS were identified, of which 7 patients were identified to have mutation in the SACS gene and are detailed hereafter. Age of presentation ranged from 20 to 55 years (29.8 ± 11.9) with a mean disease duration of 12.7 years (SD-7.65, range 5-22 years). All except one had onset of symptoms in the form of an ataxic gait noticed before 20 years of age. Additional features were subnormal intelligence (4/7), slow and hypometric saccades (1/7), seizures (1/7), kyphoscoliosis (1/7) and dysmorphic facies (1/7). SDFS was 3 in 5/7 patients signifying moderate disability with independent ambulation. MRI showed cerebellar atrophy with predominant atrophy of the superior vermis (7/7), horizontal linear T2 hypointensities in the pons(7/7), hyperintensities where lateral pons merges with the middle cerebellar peduncle (MCP) (7/7) well seen in fluid-attenuated inversion recovery (FLAIR) images, thickening of MCP (3/7), symmetric lateral thalamic hyperintensities (6/7), posterior fossa arachnoid cyst (4/7),thinning of posterior mid-body of corpus callosum (7/7), marginal mineralisation of the basal ganglia (7/7), bilateral parietal atrophy (7/7) and thinning of corticospinal tract on diffusion tensor imaging (DTI) (7/7). We identified pathogenic homozygous frameshift mutations in the SACS gene in six patients (including two siblings), while one patient had a heterozygous pathogenic deletion. CONCLUSIONS: This is the largest series of genetically confirmed ARSACS patients from India highlighting the clinical, ophthalmological, imaging and genetic features of this cohort.


Assuntos
Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Ataxias Espinocerebelares/congênito , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Imagem de Tensor de Difusão , Mutação/genética , Espasticidade Muscular/diagnóstico por imagem , Espasticidade Muscular/genética , Atrofia
5.
Clin Genet ; 105(1): 92-98, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671596

RESUMO

Pathogenic variants in PNPLA8 have been described either with congenital onset displaying congenital microcephaly, early onset epileptic encephalopathy and early lethality or childhood neurodegeneration with progressive microcephaly. Moreover, a phenotype comprising adulthood onset cerebellar ataxia and peripheral neuropathy was also reported. To our knowledge, only six patients with biallelic variants in PNPLA8 have been reported so far. Here, we report the clinical and molecular characterizations of three additional patients in whom exome sequencing identified a loss of function variant (c.1231C>T, p.Arg411Ter) in Family I and a missense variant (c.1559T>A, p.Val520Asp) in Family II in PNPLA8. Patient 1 presented with the congenital form of the disease while Patients 2 and 3 showed progressive microcephaly, infantile onset seizures, progressive cortical atrophy, white matter loss, bilateral degeneration of basal ganglia, and cystic encephalomalacia. Therefore, our results add the infantile onset as a new distinct phenotype of the disease and suggest that the site of the variant rather than its type is strongly correlated with the disease onset. In addition, these conditions demonstrate some overlapping features representing a spectrum with clinical features always aligning with different age of onset.


Assuntos
Ataxia Cerebelar , Microcefalia , Humanos , Adulto , Criança , Microcefalia/genética , Fenótipo , Ataxia Cerebelar/genética , Mutação de Sentido Incorreto , Gânglios da Base
6.
Sci Rep ; 13(1): 17801, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853169

RESUMO

Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) has recently been attributed to biallelic repeat expansions in RFC1. More recently, the disease entity has expanded to atypical phenotypes, including chronic neuropathy without cerebellar ataxia or vestibular areflexia. Very recently, RFC1 expansions were found in patients with Sjögren syndrome who had neuropathy that did not respond to immunotherapy. In this study RFC1 was examined in 240 patients with acute or chronic neuropathies, including 105 with Guillain-Barré syndrome or Miller Fisher syndrome, 76 with chronic inflammatory demyelinating polyneuropathy, and 59 with other types of chronic neuropathy. Biallelic RFC1 mutations were found in three patients with immune-mediated neuropathies, including Guillain-Barré syndrome, idiopathic sensory ataxic neuropathy, or anti-myelin-associated glycoprotein (MAG) neuropathy, who responded to immunotherapies. In addition, a patient with chronic sensory autonomic neuropathy had biallelic mutations, and subclinical changes in Schwann cells on nerve biopsy. In summary, we found CANVAS-related RFC1 mutations in patients with treatable immune-mediated neuropathy or demyelinating neuropathy.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Síndrome de Guillain-Barré , Doenças do Sistema Nervoso Periférico , Doenças Vestibulares , Humanos , Ataxia Cerebelar/genética , Mutação , Doenças do Sistema Nervoso Periférico/genética
7.
Genet Med ; 25(12): 100971, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37675773

RESUMO

PURPOSE: ATP2B2 encodes the variant-constrained plasma-membrane calcium-transporting ATPase-2, expressed in sensory ear cells and specialized neurons. ATP2B2/Atp2b2 variants were previously linked to isolated hearing loss in patients and neurodevelopmental deficits with ataxia in mice. We aimed to establish the association between ATP2B2 and human neurological disorders. METHODS: Multinational case recruitment, scrutiny of trio-based genomics data, in silico analyses, and functional variant characterization were performed. RESULTS: We assembled 7 individuals harboring rare, predicted deleterious heterozygous ATP2B2 variants. The alleles comprised 5 missense substitutions that affected evolutionarily conserved sites and 2 frameshift variants in the penultimate exon. For 6 variants, a de novo status was confirmed. Unlike described patients with hearing loss, the individuals displayed a spectrum of neurological abnormalities, ranging from ataxia with dystonic features to complex neurodevelopmental manifestations with intellectual disability, autism, and seizures. Two cases with recurrent amino-acid variation showed distinctive overlap with cerebellar atrophy-associated ataxia and epilepsy. In cell-based studies, all variants caused significant alterations in cytosolic calcium handling with both loss- and gain-of-function effects. CONCLUSION: Presentations in our series recapitulate key phenotypic aspects of Atp2b2-mouse models and underline the importance of precise calcium regulation for neurodevelopment and cerebellar function. Our study documents a role for ATP2B2 variants in causing heterogeneous neurodevelopmental and movement-disorder syndromes.


Assuntos
Ataxia Cerebelar , Distonia , Perda Auditiva , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Sintomas Comportamentais , Cálcio , Ataxia Cerebelar/genética , Distonia/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática , Convulsões/genética
8.
Eur J Neurol ; 30(12): 3834-3841, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37531261

RESUMO

BACKGROUND AND PURPOSE: Biallelic mutation/expansion of the gene RFC1 has been described in association with a spectrum of manifestations ranging from isolated sensory neuro(no)pathy to a complex presentation as cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). Our aim was to define the frequency and characteristics of small fiber neuropathy (SFN) in RFC1 disease at different stages. METHODS: RFC1 cases were screened for SFN using the Neuropathic Pain Symptom Inventory and Composite Autonomic Symptom Score 31 questionnaires. Clinical data were retrospectively collected. If available, lower limb skin biopsy samples were evaluated for somatic epidermal and autonomic subepidermal structure innervation and compared to healthy controls (HCs). RESULTS: Forty patients, median age at onset 54 years (interquartile range [IQR] 49-61) and disease duration 10 years (IQR 6-16), were enrolled. Mild-to-moderate positive symptoms (median Neuropathic Pain Symptom Inventory score 12.1/50, IQR 5.5-22.3) and relevant autonomic disturbances (median Composite Autonomic Symptom Score 31 37.0/100, IQR 17.7-44.3) were frequently reported and showed scarce correlation with disease duration. A non-length-dependent impairment in nociception was evident in both clinical and paraclinical investigations. An extreme somatic denervation was observed in all patients at both proximal (fibers/mm, RFC1 cases 0.0 vs. HCs 20.5, p < 0.0001) and distal sites (fibers/mm, RFC1 cases 0.0 vs. HCs 13.1, p < 0.0001); instead only a slight decrease was observed in cholinergic and adrenergic innervation of autonomic structures. CONCLUSIONS: RFC1 disease is characterized by a severe and widespread somatic SFN. Skin denervation may potentially represent the earliest feature and drive towards the suspicion of this disorder.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Neuralgia , Neuropatia de Pequenas Fibras , Humanos , Pessoa de Meia-Idade , Ataxia Cerebelar/genética , Vestibulopatia Bilateral/complicações , Estudos Retrospectivos , Fibras Nervosas
9.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
10.
Brain ; 146(8): 3162-3171, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37043503

RESUMO

ATP1A3 encodes the α3 subunit of the sodium-potassium ATPase, one of two isoforms responsible for powering electrochemical gradients in neurons. Heterozygous pathogenic ATP1A3 variants produce several distinct neurological syndromes, yet the molecular basis for phenotypic variability is unclear. We report a novel recurrent variant, ATP1A3(NM_152296.5):c.2324C>T; p.(Pro775Leu), in nine individuals associated with the primary clinical features of progressive or non-progressive spasticity and developmental delay/intellectual disability. No patients fulfil diagnostic criteria for ATP1A3-associated syndromes, including alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism or cerebellar ataxia-areflexia-pes cavus-optic atrophy-sensorineural hearing loss (CAPOS), and none were suspected of having an ATP1A3-related disorder. Uniquely among known ATP1A3 variants, P775L causes leakage of sodium ions and protons into the cell, associated with impaired sodium binding/occlusion kinetics favouring states with fewer bound ions. These phenotypic and electrophysiologic studies demonstrate that ATP1A3:c.2324C>T; p.(Pro775Leu) results in mild ATP1A3-related phenotypes resembling complex hereditary spastic paraplegia or idiopathic spastic cerebral palsy. Cation leak provides a molecular explanation for this genotype-phenotype correlation, adding another mechanism to further explain phenotypic variability and highlighting the importance of biophysical properties beyond ion transport rate in ion transport diseases.


Assuntos
Ataxia Cerebelar , Deficiência Intelectual , Humanos , Mutação/genética , Síndrome , Deficiência Intelectual/genética , Ataxia Cerebelar/genética , Fenótipo , Espasticidade Muscular/genética , Cátions , ATPase Trocadora de Sódio-Potássio/genética
11.
Eur J Med Genet ; 66(2): 104692, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592689

RESUMO

Poretti-Boltshauser syndrome (PTBHS) is an autosomal recessive disorder characterized by cerebellar dysplasia with cysts and an abnormal shape of the fourth ventricle on neuroimaging, due to pathogenic variants in the LAMA1 gene. The clinical spectrum mainly consists of neurological and ophthalmological manifestations, including non-progressive cerebellar ataxia, oculomotor apraxia, language impairment, intellectual disability, high myopia, abnormal eye movements and retinal dystrophy. We report a patient presenting with ventriculomegaly on antenatal neuroimaging and a neonatal diagnosis of Type III esophageal atresia. She subsequently developed severe myopia and strabismus with retinal dystrophy, mild developmental delay, and cerebellar dysplasia. Genetic investigations confirmed PTBHS. This report confirms previous reports of antenatal ventriculomegaly in PTBHS patients and documents a so far unreported occurrence of esophageal atresia in PTBHS. We additionally gathered phenotype and genotype descriptions of published cases in an effort to better define the spectrum of PTBHS.


Assuntos
Anormalidades Múltiplas , Apraxias , Ataxia Cerebelar , Atresia Esofágica , Hidrocefalia , Deficiência Intelectual , Miopia , Distrofias Retinianas , Gravidez , Humanos , Feminino , Ataxia Cerebelar/genética , Deficiência Intelectual/genética , Atresia Esofágica/diagnóstico por imagem , Atresia Esofágica/genética , Anormalidades Múltiplas/genética , Fenótipo , Distrofias Retinianas/genética , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/genética , Apraxias/genética , Miopia/genética
12.
Hum Mol Genet ; 32(10): 1647-1659, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36621975

RESUMO

The shaker rat carries a naturally occurring mutation leading to progressive ataxia characterized by Purkinje cell (PC) loss. We previously reported on fine-mapping the shaker locus to the long arm of the rat X chromosome. In this work, we sought to identify the mutated gene underlying the shaker phenotype and confirm its identity by functional complementation. We fine-mapped the candidate region and analyzed cerebellar transcriptomes, identifying a XM_217630.9 (Slc9a6):c.[191_195delinsA] variant in the Slc9a6 gene that segregated with disease. We generated an adeno-associated virus (AAV) targeting Slc9a6 expression to PCs using the mouse L7-6 (L7) promoter. We administered the AAV prior to the onset of PC degeneration through intracerebroventricular injection and found that it reduced the shaker motor, molecular and cellular phenotypes. Therefore, Slc9a6 is mutated in shaker and AAV-based gene therapy may be a viable therapeutic strategy for Christianson syndrome, also caused by Slc9a6 mutation.


Assuntos
Ataxia Cerebelar , Deficiência Intelectual , Ratos , Camundongos , Animais , Células de Purkinje , Ataxia Cerebelar/genética , Ataxia/genética , Mutação , Deficiência Intelectual/genética
13.
Cerebellum ; 22(6): 1313-1319, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36447112

RESUMO

AFG3-like matrix AAA peptidase subunit 2 gene (AFG3L2, OMIM * 604,581) biallelic mutations lead to autosomal recessive spastic ataxia-5 SPAX5, OMIM # 614,487), a rare hereditary form of ataxia. The clinical spectrum includes early-onset cerebellar ataxia, spasticity, and progressive myoclonic epilepsy (PME). In Italy, the epidemiology of the disease is probably underestimated. The advent of next generation sequencing (NGS) technologies has speeded up the diagnosis of hereditary diseases and increased the percentage of diagnosis of rare disorders, such as the rare hereditary ataxia groups. Here, we describe two patients from two different villages in the province of Ferrara, who manifested a different clinical ataxia-plus history, although carrying the same biallelic mutation in AFG3L2 (p.Met625Ile) identified through NGS analysis.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , Degenerações Espinocerebelares/genética , Ataxia Cerebelar/genética , Mutação/genética , Itália , Proteases Dependentes de ATP/genética
14.
Eur J Pediatr ; 182(2): 825-836, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36484864

RESUMO

The aim of this research is to study the phenotype, genotype, treatment strategies, and short-term prognosis of Chinese children with ATP1A3 (Na+/K+-ATPase alpha 3 gene)-related disorders in Southwest China. Patients with pathogenic ATP1A3 variants identified using next-generation sequencing were registered at the Children's Hospital of Chongqing Medical University from December 2015 to May 2019. We followed them as a cohort and analyzed their clinical data. Eleven patients were identified with de novo pathogenic ATP1A3 heterozygous variants. One (c.2542 + 1G > T, splicing) has not been reported. Eight patients with alternating hemiplegia of childhood (AHC), one with cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS), and two with relapsing encephalopathy with cerebellar ataxia (RECA) were included. The initial manifestations of AHC included hemiplegia, oculomotor abnormalities, and seizures, and the most common trigger was an upper respiratory tract infection without fever. All patients had paroxysmal hemiplegic attacks during their disease course. The brain MRI showed no abnormalities. Six out of eight AHC cases reached a stable disease state after treatment. The initial symptom of the patient with CAPOS was ataxia followed by developmental regression, seizures, deafness, visual impairment, and dysarthria, and the brain MRI indicated mild cerebellar atrophy. No fluctuation was noted after using Acetazolamide. The initial manifestations of the two RECA cases were dystonia and encephalopathy, respectively. One manifested a rapid-onset course of dystonia triggered by a fever followed by dysarthria and action tremors, and independent walking was impossible. The brain MRI image was normal. The other one presented with disturbance of consciousness, seizures, sleep disturbance, tremor, and dyskinesias. The EEG revealed a slow background (δ activity), and the brain MRI result was normal. No response to Flunarizine was noted for them, and it took 61 and 60 months for them to reach a stable disease state, respectively. CONCLUSION: Pathogenic ATP1A3 variants play an essential role in the pathogenesis of Sodium-Potassium pump disorders, and AHC is the most common phenotype. The treatment strategies and prognosis depend on the phenotype categories caused by different variation sites and types. The correlation between the genotype and phenotype requires further exploration. WHAT IS KNOWN: • Pathogenic heterozygous ATP1A3 variants cause a spectrum of neurological phenotypes, and ATP1A3-disorders are viewed as a phenotypic continuum presenting with atypical and overlapping features. • The genotype-phenotype correlation of ATP1A3-disorders remains unclear. WHAT IS NEW: • In this study, the genotypes and phenotypes of ATP1A3-related disorders from Southwest of China were described. The splice-site variation c.2542+1G>T was detected for the first time in ATP1A3-related disorders. • The prognosis of twins with AHC p. Gly947Arg was more serious than AHC cases with other variants, which was inconsistent with previous reports. The phenomenon indicated the diversity of the correlation between the genotype and phenotype.


Assuntos
Encefalopatias , Ataxia Cerebelar , Distonia , Criança , Humanos , Hemiplegia/genética , Hemiplegia/diagnóstico , Hemiplegia/terapia , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , ATPase Trocadora de Sódio-Potássio/genética , Disartria , População do Leste Asiático , Mutação , Fenótipo , Convulsões
15.
J Neurol ; 270(1): 208-222, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152050

RESUMO

This narrative review aims at providing an update on the management of inherited cerebellar ataxias (ICAs), describing main clinical entities, genetic analysis strategies and recent therapeutic developments. Initial approach facing a patient with cerebellar ataxia requires family medical history, physical examination, exclusions of acquired causes and genetic analysis, including Next-Generation Sequencing (NGS). To guide diagnosis, several algorithms and a new genetic nomenclature for recessive cerebellar ataxias have been proposed. The challenge of NGS analysis is the identification of causative variant, trio analysis being usually the most appropriate option. Public genomic databases as well as pathogenicity prediction software facilitate the interpretation of NGS results. We also report on key clinical points for the diagnosis of the main ICAs, including Friedreich ataxia, CANVAS, polyglutamine spinocerebellar ataxias, Fragile X-associated tremor/ataxia syndrome. Rarer forms should not be neglected because of diagnostic biomarkers availability, disease-modifying treatments, or associated susceptibility to malignancy. Diagnostic difficulties arise from allelic and phenotypic heterogeneity as well as from the possibility for one gene to be associated with both dominant and recessive inheritance. To complicate the phenotype, cerebellar cognitive affective syndrome can be associated with some subtypes of cerebellar ataxia. Lastly, we describe new therapeutic leads: antisense oligonucleotides approach in polyglutamine SCAs and viral gene therapy in Friedreich ataxia. This review provides support for diagnosis, genetic counseling and therapeutic management of ICAs in clinical practice.


Assuntos
Ataxia Cerebelar , Ataxia de Friedreich , Ataxias Espinocerebelares , Humanos , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia , Mutação , Ataxia/genética , Ataxias Espinocerebelares/genética
16.
Continuum (Minneap Minn) ; 28(5): 1409-1434, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222772

RESUMO

PURPOSE OF REVIEW: Neurodegenerative cerebellar ataxia is a diverse collection of diseases that are unified by gait and balance abnormalities, appendicular incoordination, and abnormalities of eye movement and speech. The differential diagnosis is broad, ranging from paraneoplastic syndromes that progress quite rapidly to unidentified genetic disorders that progress slowly over the course of decades. This article highlights the diagnostic process, including the differential diagnosis, as well as treatment approaches and symptomatic management. The pillars of treatment are physical, occupational, and speech therapy as well as counseling and discussions of disease prognosis, genetics, and reproductive choices. There are many ways to help patients with neurodegenerative cerebellar ataxia and improve their quality of life. RECENT FINDINGS: Recent years have seen significant improvements in genetic testing, with reductions in cost of both Sanger sequencing and whole exome sequencing and increasing availability of the latter. These improvements increase clinicians' ability to identify the etiology of neurodegenerative cerebellar ataxia and suggest future treatments. Although no medication has been approved by the US Food and Drug Administration (FDA) for treatment of cerebellar ataxia, research and clinical trials for these diseases are increasing. SUMMARY: Neurodegenerative cerebellar ataxia is characterized by dysarthria, dysmetria, oculomotor abnormalities, and ataxic gait. It has a broad differential diagnosis, and numerous options exist for managing symptoms. Although no medications have been approved specifically for cerebellar ataxia, treatment options are available to improve patients' quality of life.


Assuntos
Ataxia Cerebelar , Ataxia/diagnóstico , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Diagnóstico Diferencial , Humanos , Qualidade de Vida , Fala
17.
Neurology ; 99(14): e1511-e1526, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192182

RESUMO

BACKGROUND AND OBJECTIVES: ATP1A3 is associated with a broad spectrum of predominantly neurologic disorders, which continues to expand beyond the initially defined phenotypes of alternating hemiplegia of childhood, rapid-onset dystonia parkinsonism, and cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss syndrome. This phenotypic variability makes it challenging to assess the pathogenicity of an ATP1A3 variant found in an undiagnosed patient. We describe the phenotypic features of individuals carrying a pathogenic/likely pathogenic ATP1A3 variant and perform a literature review of all ATP1A3 variants published thus far in association with human neurologic disease. Our aim is to demonstrate the heterogeneous clinical spectrum of the gene and look for phenotypic overlap between patients that will streamline the diagnostic process. METHODS: Undiagnosed individuals with ATP1A3 variants were identified within the cohort of the Deciphering Developmental Disorders study with additional cases contributed by collaborators internationally. Detailed clinical data were collected with consent through a questionnaire completed by the referring clinicians. PubMed was searched for publications containing the term "ATP1A3" from 2004 to 2021. RESULTS: Twenty-four individuals with a previously undiagnosed neurologic phenotype were found to carry 21 ATP1A3 variants. Eight variants have been previously published. Patients experienced on average 2-3 different types of paroxysmal events. Permanent neurologic features were common including microcephaly (7; 29%), ataxia (13; 54%), dystonia (10; 42%), and hypotonia (7; 29%). All patients had cognitive impairment. Neuropsychiatric diagnoses were reported in 16 (66.6%) individuals. Phenotypes were extremely varied, and most individuals did not fit clinical criteria for previously published phenotypes. On review of the literature, 1,108 individuals have been reported carrying 168 different ATP1A3 variants. The most common variants are associated with well-defined phenotypes, while more rare variants often result in very rare symptom correlations, such as are seen in our study. Combined Annotation-Dependent Depletion (CADD) scores of pathogenic and likely pathogenic variants were significantly higher and variants clustered within 6 regions of constraint. DISCUSSION: Our study shows that looking for a combination of paroxysmal events, hyperkinesia, neuropsychiatric symptoms, and cognitive impairment and evaluating the CADD score and variant location can help identify an ATP1A3-related condition, rather than applying diagnostic criteria alone.


Assuntos
Ataxia Cerebelar , Distúrbios Distônicos , Ataxia Cerebelar/genética , Distúrbios Distônicos/genética , Hemiplegia/genética , Humanos , Mutação/genética , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética
18.
Cell Death Dis ; 13(10): 855, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207321

RESUMO

Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.


Assuntos
Ataxia Cerebelar , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Aminoácidos , Ataxia/genética , Ataxia/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Membrana Celular/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Humanos , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
19.
Curr Opin Neurol ; 35(5): 553-561, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950727

RESUMO

PURPOSE OF REVIEW: To stress on the diagnostic strategy of sensory neuronopathies (SNN), including new genes and antibodies. RECENT FINDING: SNN involve paraneoplastic, dysimmune, toxic, viral and genetic mechanisms. About one-third remains idiopathic. Recently, new antibodies and genes have reduced this proportion. Anti-FGFR3 and anti-AGO antibodies are not specific of SNN, although SNN is predominant and may occur with systemic autoimmune diseases. These antibodies are the only marker of an underlying dysimmune context in two-thirds (anti-FGFR3 antibodies) and one-third of the cases (anti-AGO antibodies), respectively. Patients with anti-AGO antibodies may improve with treatment, which is less clear with anti-FGFR3 antibodies. A biallelic expansion in the RFC1 gene is responsible for the cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) in which SNN is a predominant manifestation. Most of the patients have an adult onset and are sporadic. The RFC1 mutation may represent one-third of idiopathic sensory neuropathies. Finally, the criteria for the diagnosis of paraneoplastic SNN have recently been updated. SUMMARY: The diagnostic of SNN relies on criteria distinguishing SNN from other neuropathies. The strategy in search of their cause now needs to include these recent findings.


Assuntos
Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Doenças Vestibulares , Adulto , Autoanticorpos , Ataxia Cerebelar/genética , Humanos , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/genética
20.
Ann Clin Transl Neurol ; 9(6): 888-892, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35482023

RESUMO

We present a patient who developed, after an early-onset, a stable course of spastic paraplegia and ataxia for 4 decades and eventually succumbed to two episodes of postinfectious lactic acidosis. Diagnostic workup including muscle biopsy and postmortem analysis, oxymetric analysis, spectrophotometric enzyme analysis, and MitoExome sequencing revealed a necrotizing leukoencephalomyelopathy due to the so far unreported biallelic variant of the NDUFV1 gene (p.(Pro122Leu)). This case extends our understanding of NDUFV1 variants with a 14-fold longer lifetime than so far reported cases, and will foster sensitivity toward respiratory chain disease also in adult patients with sudden deteriorating neurological deficits.


Assuntos
Ataxia Cerebelar , Paraplegia Espástica Hereditária , Adulto , Ataxia , Ataxia Cerebelar/genética , Complexo I de Transporte de Elétrons/genética , Humanos , Paraplegia/genética , Paraplegia Espástica Hereditária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA