Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673939

RESUMO

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Assuntos
Ataxina-7 , Dependovirus , Modelos Animais de Doenças , Peptídeos , Fenótipo , RNA Interferente Pequeno , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/metabolismo , Peptídeos/genética , Dependovirus/genética , Camundongos , Ataxina-7/genética , Ataxina-7/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , RNA Interferente Pequeno/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Camundongos Transgênicos , Cerebelo/metabolismo , Cerebelo/patologia , Humanos , Terapia Genética/métodos , Alelos
2.
Cerebellum ; 23(2): 401-417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36943575

RESUMO

Spinocerebellar ataxias (SCAs) are a large and diverse group of autosomal-dominant neurodegenerative diseases. No drugs have been approved for these relentlessly progressive and fatal SCAs. Our previous studies indicate that oxidative stress, neuroinflammation, and neuronal apoptosis are elevated in the SCA17 mice, which are the main therapeutic targets of hyperbaric oxygen treatment (HBOT). HBOT is considered to be an alternative and less invasive therapy for SCAs. In this study, we evaluated the HBOT (2.2 ATA for 14 days) effect and the persistence for the management of SCA17 mice and their wild-type littermates. We found HBOT attenuated the motor coordination and cognitive impairment of SCA17 mice and which persisted for about 1 month after the treatment. The results of several biochemistry and liver/kidney hematoxylin and eosin staining show the HBOT condition has no obvious toxicity in the mice. Immunostaining analyses show that the neuroprotective effect of HBOT could be through the promotion of BDNF production and the amelioration of neuroinflammation. Surprisingly, HBOT executes different effects on the male and female SCA17 mice, including the reduction of neuroinflammation and activation of CaMKII and ERK. This study suggests HBOT is a potential alternative therapeutic treatment for SCA17. Accumulated findings have revealed the similarity in disease pathomechanisms and possible therapeutic strategies in polyQ diseases; therefore, HBOT could be an optional treatment as well as the other polyQ diseases.


Assuntos
Disfunção Cognitiva , Oxigenoterapia Hiperbárica , Peptídeos , Ataxias Espinocerebelares , Camundongos , Masculino , Feminino , Animais , Oxigenoterapia Hiperbárica/métodos , Doenças Neuroinflamatórias , Disfunção Cognitiva/terapia , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/tratamento farmacológico
3.
Neurochem Int ; 157: 105357, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525394

RESUMO

Polyglutamine (PolyQ) diseases are a group of inherited neurodegenerative diseases including Huntington's disease and several types of spinocerebellar ataxias, which are caused by aggregation and accumulation of the disease-causative proteins with an abnormally expanded PolyQ stretch. Extracellular vesicles (EVs) are membrane particles that are released from cells, including exosomes, microvesicles, and other extracellular particles. Recent studies have suggested that the PolyQ proteins, which are the disease-causative proteins of PolyQ diseases, and its aggregates are secreted via EVs, similar to the aggregation-prone proteins associated with other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The PolyQ proteins that are secreted from cells can transmit intercellularly, which may contribute to pathological propagation of the PolyQ protein aggregates in patient brain, and therefore, the pathological roles of EVs in the onset and progression of PolyQ diseases has attracted much attention. EVs may also mediate intercellular transfer of heat shock proteins and other neuroprotective factors, which are beneficial for protein homeostasis and cell survival, and thus, have therapeutic potential for the neurodegenerative diseases including PolyQ diseases. Furthermore, because EVs contain not only the disease-associated proteins, but also various proteins, miRNAs and other components, and changes in the levels of these contents might reflect pathological changes, EVs derived from blood, cerebrospinal fluid, and urine would be a potential source of minimally invasive diagnostic biomarkers that report disease-associated changes in PolyQ diseases. In this review, we summarize the current understanding of the pathological roles of EVs in PolyQ diseases, and therapeutic and diagnostic potential of EVs for these diseases. Elucidation of the pathological and physiological roles of EVs would lead to identification of a proper therapeutic target that would not interfere the protective roles of EVs for cell survival but suppress pathological propagation of the disease-causative proteins in PolyQ disease.


Assuntos
Vesículas Extracelulares , Ataxias Espinocerebelares , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
4.
Elife ; 112022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170431

RESUMO

Endurance exercise is a potent intervention with widespread benefits proven to reduce disease incidence and impact across species. While endurance exercise supports neural plasticity, enhanced memory, and reduced neurodegeneration, less is known about the effect of chronic exercise on the progression of movement disorders such as ataxias. Here, we focused on three different types of ataxias, spinocerebellar ataxias type (SCAs) 2, 3, and 6, belonging to the polyglutamine (polyQ) family of neurodegenerative disorders. In Drosophila models of these SCAs, flies progressively lose motor function. In this study, we observe marked protection of speed and endurance in exercised SCA2 flies and modest protection in exercised SCA6 models, with no benefit to SCA3 flies. Causative protein levels are reduced in SCA2 flies after chronic exercise, but not in SCA3 models, linking protein levels to exercise-based benefits. Further mechanistic investigation indicates that the exercise-inducible protein, Sestrin (Sesn), suppresses mobility decline and improves early death in SCA2 flies, even without exercise, coincident with disease protein level reduction and increased autophagic flux. These improvements partially depend on previously established functions of Sesn that reduce oxidative damage and modulate mTOR activity. Our study suggests differential responses of polyQ SCAs to exercise, highlighting the potential for more extensive application of exercise-based therapies in the prevention of polyQ neurodegeneration. Defining the mechanisms by which endurance exercise suppresses polyQ SCAs will open the door for more effective treatment for these diseases.


Assuntos
Drosophila , Treino Aeróbico/métodos , Ataxias Espinocerebelares/terapia , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Exercício Físico , Humanos , Oxirredução , Oxirredutases/metabolismo , Peptídeos/metabolismo , Fenótipo , Serina-Treonina Quinases TOR/metabolismo , Expansão das Repetições de Trinucleotídeos
5.
Nat Med ; 27(11): 1982-1989, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663988

RESUMO

RNA interference (RNAi) for spinocerebellar ataxia type 1 can prevent and reverse behavioral deficits and neuropathological readouts in mouse models, with safety and benefit lasting over many months. The RNAi trigger, expressed from adeno-associated virus vectors (AAV.miS1), also corrected misregulated microRNAs (miRNA) such as miR150. Subsequently, we showed that the delivery method was scalable, and that AAV.miS1 was safe in short-term pilot nonhuman primate (NHP) studies. To advance the technology to patients, investigational new drug (IND)-enabling studies in NHPs were initiated. After AAV.miS1 delivery to deep cerebellar nuclei, we unexpectedly observed cerebellar toxicity. Both small-RNA-seq and studies using AAVs devoid of miRNAs showed that this was not a result of saturation of the endogenous miRNA processing machinery. RNA-seq together with sequencing of the AAV product showed that, despite limited amounts of cross-packaged material, there was substantial inverted terminal repeat (ITR) promoter activity that correlated with neuropathologies. ITR promoter activity was reduced by altering the miS1 expression context. The surprising contrast between our rodent and NHP findings highlight the need for extended safety studies in multiple species when assessing new therapeutics for human application.


Assuntos
Dependovirus/genética , Portadores de Fármacos/administração & dosagem , Terapia Genética/métodos , MicroRNAs/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Animais , Animais Geneticamente Modificados , Tronco Encefálico/patologia , Cerebelo/patologia , Feminino , Macaca mulatta , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA-Seq , Sequências Repetidas Terminais/genética
6.
Mov Disord ; 36(12): 2731-2744, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628681

RESUMO

Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine-adenine-guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Ataxias Espinocerebelares , Animais , Terapia Genética , Peptídeos/genética , Peptídeos/uso terapêutico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
7.
Neurotherapeutics ; 18(3): 1710-1728, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160773

RESUMO

CAG repeat expansion is the genetic cause of nine incurable polyglutamine (polyQ) diseases with neurodegenerative features. Silencing repeat RNA holds great therapeutic value. Here, we developed a repeat-based RNA-cleaving DNAzyme that catalyzes the destruction of expanded CAG repeat RNA of six polyQ diseases with high potency. DNAzyme preferentially cleaved the expanded allele in spinocerebellar ataxia type 1 (SCA1) cells. While cleavage was non-allele-specific for spinocerebellar ataxia type 3 (SCA3) cells, treatment of DNAzyme leads to improved cell viability without affecting mitochondrial metabolism or p62-dependent aggresome formation. DNAzyme appears to be stable in mouse brain for at least 1 month, and an intermediate dosage of DNAzyme in a SCA3 mouse model leads to a significant reduction of high molecular weight ATXN3 proteins. Our data suggest that DNAzyme is an effective RNA silencing molecule for potential treatment of multiple polyQ diseases.


Assuntos
DNA Catalítico/administração & dosagem , DNA Catalítico/genética , Doença de Machado-Joseph/genética , Peptídeos/genética , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Ataxina-3/genética , Linhagem Celular Tumoral , Inativação Gênica/fisiologia , Células HEK293 , Humanos , Doença de Machado-Joseph/terapia , Camundongos , Peptídeos/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Técnicas Estereotáxicas
8.
Curr Opin Neurol ; 34(4): 578-588, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010218

RESUMO

PURPOSE OF REVIEW: To provide an update on the role of Ataxin-2 gene (ATXN2) in health and neurological diseases. RECENT FINDINGS: There is a growing complexity emerging on the role of ATXN2 and its variants in association with SCA2 and several other neurological diseases. Polymorphisms and intermediate alleles in ATXN2 establish this gene as a powerful modulator of neurological diseases including lethal neurodegenerative conditions such as motor neuron disease, spinocerebellar ataxia 3 (SCA3), and peripheral nerve disease such as familial amyloidosis polyneuropathy. This role is in fact far wider than the previously described for polymorphism in the prion protein (PRNP) gene. Positive data from antisense oligo therapy in a murine model of SCA2 suggest that similar approaches may be feasible in humans SCA2 patients. SUMMARY: ATXN2 is one of the few genes where a single gene causes several diseases and/or modifies several and disparate neurological disorders. Hence, understanding mutagenesis, genetic variants, and biological functions will help managing SCA2, and several human diseases connected with dysfunctional pathways in the brain, innate immunity, autophagy, cellular, lipid, and RNA metabolism.


Assuntos
Doenças do Sistema Nervoso , Ataxias Espinocerebelares , Animais , Ataxina-2/genética , Ataxina-2/metabolismo , Encéfalo/metabolismo , Humanos , Camundongos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapia , Proteínas , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia
9.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921915

RESUMO

Polyglutamine spinocerebellar ataxias (PolyQ SCAs) are a group of 6 rare autosomal dominant diseases, which arise from an abnormal CAG repeat expansion in the coding region of their causative gene. These neurodegenerative ataxic disorders are characterized by progressive cerebellar degeneration, which translates into progressive ataxia, the main clinical feature, often accompanied by oculomotor deficits and dysarthria. Currently, PolyQ SCAs treatment is limited only to symptomatic mitigation, and no therapy is available to stop or delay the disease progression, which culminates with death. Over the last years, many promising gene therapy approaches were investigated in preclinical studies and could lead to a future treatment to stop or delay the disease development. Here, we summed up the most promising of these therapies, categorizing them in gene augmentation therapy, gene silencing strategies, and gene edition approaches. While several of the reviewed strategies are promising, there is still a gap from the preclinical results obtained and their translation to clinical studies. However, there is an increase in the number of approved gene therapies, as well as a constant development in their safety and efficacy profiles. Thus, it is expected that in a near future some of the promising strategies reviewed here could be tested in a clinical setting and if successful provide hope for SCAs patients.


Assuntos
Terapia Genética/métodos , Peptídeos/metabolismo , Ataxias Espinocerebelares/terapia , Edição de Genes , Inativação Gênica/fisiologia , Humanos , Ataxias Espinocerebelares/genética
10.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33554954

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disorder characterized by motor incoordination, mild cognitive decline, respiratory dysfunction, and early lethality. It is caused by the expansion of the polyglutamine (polyQ) tract in Ataxin-1 (ATXN1), which stabilizes the protein, leading to its toxic accumulation in neurons. Previously, we showed that serine 776 (S776) phosphorylation is critical for ATXN1 stability and contributes to its toxicity in cerebellar Purkinje cells. Still, the therapeutic potential of disrupting S776 phosphorylation on noncerebellar SCA1 phenotypes remains unstudied. Here, we report that abolishing S776 phosphorylation specifically on the polyQ-expanded ATXN1 of SCA1-knockin mice reduces ATXN1 throughout the brain and not only rescues the cerebellar motor incoordination but also improves respiratory function and extends survival while not affecting the hippocampal learning and memory deficits. As therapeutic approaches are likely to decrease S776 phosphorylation on polyQ-expanded and WT ATXN1, we further disrupted S776 phosphorylation on both alleles and observed an attenuated rescue, demonstrating a potential protective role of WT allele. This study not only highlights the role of S776 phosphorylation to regulate ATXN1 levels throughout the brain but also suggests distinct brain region-specific disease mechanisms and demonstrates the importance of developing allele-specific therapies for maximal benefits in SCA1.


Assuntos
Ataxina-1/química , Ataxina-1/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Alelos , Animais , Ataxina-1/genética , Comportamento Animal , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Modelos Neurológicos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Estabilidade Proteica , Células de Purkinje/metabolismo , Serina/química , Ataxias Espinocerebelares/terapia , Expansão das Repetições de Trinucleotídeos
11.
Neurotherapeutics ; 16(4): 1074-1096, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31432449

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder characterized by progressive neuronal loss in the cerebellum, brainstem, and retina, leading to cerebellar ataxia and blindness as major symptoms. SCA7 is due to the expansion of a CAG triplet repeat that is translated into a polyglutamine tract in ATXN7. Larger SCA7 expansions are associated with earlier onset of symptoms and more severe and rapid disease progression. Here, we summarize the pathological and genetic aspects of SCA7, compile the current knowledge about ATXN7 functions, and then focus on recent advances in understanding the pathogenesis and in developing biomarkers and therapeutic strategies. ATXN7 is a bona fide subunit of the multiprotein SAGA complex, a transcriptional coactivator harboring chromatin remodeling activities, and plays a role in the differentiation of photoreceptors and Purkinje neurons, two highly vulnerable neuronal cell types in SCA7. Polyglutamine expansion in ATXN7 causes its misfolding and intranuclear accumulation, leading to changes in interactions with native partners and/or partners sequestration in insoluble nuclear inclusions. Studies of cellular and animal models of SCA7 have been crucial to unveil pathomechanistic aspects of the disease, including gene deregulation, mitochondrial and metabolic dysfunctions, cell and non-cell autonomous protein toxicity, loss of neuronal identity, and cell death mechanisms. However, a better understanding of the principal molecular mechanisms by which mutant ATXN7 elicits neurotoxicity, and how interconnected pathogenic cascades lead to neurodegeneration is needed for the development of effective therapies. At present, therapeutic strategies using nucleic acid-based molecules to silence mutant ATXN7 gene expression are under development for SCA7.


Assuntos
Ataxina-7/genética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/tendências , Marcação de Genes/tendências , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Animais , Ataxina-7/metabolismo , Autofagia/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Sistemas de Liberação de Medicamentos/métodos , Marcação de Genes/métodos , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/genética , Peptídeos/metabolismo , Ataxias Espinocerebelares/metabolismo
12.
Neurotherapeutics ; 16(4): 1050-1073, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31435879

RESUMO

The effective therapeutic treatment and the disease-modifying therapy for spinocerebellar ataxia type 2 (SCA2) (a progressive hereditary disease caused by an expansion of polyglutamine in the ataxin-2 protein) is not available yet. At present, only symptomatic treatment and methods of palliative care are prescribed to the patients. Many attempts were made to study the physiological, molecular, and biochemical changes in SCA2 patients and in a variety of the model systems to find new therapeutic targets for SCA2 treatment. A better understanding of the uncovered molecular mechanisms of the disease allowed the scientific community to develop strategies of potential therapy and helped to create some promising therapeutic approaches for SCA2 treatment. Recent progress in this field will be discussed in this review article.


Assuntos
Ataxina-2/genética , Peptídeos/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Animais , Ataxina-2/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Mutação/fisiologia , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Estresse Oxidativo/fisiologia , Peptídeos/metabolismo , Ataxias Espinocerebelares/metabolismo , Transplante de Células-Tronco
13.
Nat Rev Dis Primers ; 5(1): 24, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975995

RESUMO

The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.


Assuntos
Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/terapia , Fatores Etários , Progressão da Doença , Humanos , Programas de Rastreamento/métodos , Fármacos Neuroprotetores/uso terapêutico , Equilíbrio Postural/fisiologia , Riluzol/uso terapêutico , Distúrbios da Fala/etiologia , Ataxias Espinocerebelares/epidemiologia
14.
Arq. neuropsiquiatr ; 76(8): 555-562, Aug. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-950577

RESUMO

ABSTRACT Spinocerebellar ataxias (SCA) are a clinically and genetically heterogeneous group of monogenic diseases that share ataxia and autosomal dominant inheritance as the core features. An important proportion of SCAs are caused by CAG trinucleotide repeat expansions in the coding region of different genes. In addition to genetic heterogeneity, clinical features transcend motor symptoms, including cognitive, electrophysiological and imaging aspects. Despite all the progress in the past 25 years, the mechanisms that determine how neuronal death is mediated by these unstable expansions are still unclear. The aim of this article is to review, from an historical point of view, the first CAG-related ataxia to be genetically described: SCA 1.


RESUMO As ataxias espinocerebelares (SCA) são um grupo clínico e geneticamente heterogêneo de doenças monogênicas que compartilham ataxia e herança autossômica dominante como características principais. Uma proporção importante de SCAs é causada por expansões de repetição de trinucleotídeos CAG na região de codificação de diferentes genes. Além da heterogeneidade genética, os aspectos clínicos transcendem os sintomas motores, incluindo aspectos cognitivos, eletrofisiológicos e de imagem. Apesar de todo o progresso feito nos últimos 25 anos, os mecanismos que determinam como se dá a morte neuronal mediada por essas expansões instáveis ainda não estão claros. O objetivo deste artigo é revisar, de um ponto de vista histórico, a primeira ataxia geneticamente relacionada com o CAG descrita: SCA 1.


Assuntos
Humanos , História do Século XX , Ataxias Espinocerebelares/genética , Ataxina-1/genética , Transtornos do Sono-Vigília/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Expansão das Repetições de Trinucleotídeos/genética , Ataxias Espinocerebelares/história , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/diagnóstico por imagem , Depressão/fisiopatologia , Neuroimagem/métodos , Disfunção Cognitiva/fisiopatologia , Ataxina-1/história
15.
Adv Exp Med Biol ; 1049: 197-218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29427104

RESUMO

Spinocerebellar Ataxia type 7 (SCA7, OMIM # 164500) is an autosomal dominant neurodegenerative disorder characterized by adult onset of progressive cerebellar ataxia and blindness. SCA7 is part of the large family of autosomal dominant cerebellar ataxias (ADCAs), and was estimated to account for 1-11.7% of ADCAs in diverse populations. The frequency of SCA7 is higher where local founder effects were observed as in Scandinavia, Korea, South Africa and Mexico. SCA7 is pathomechanistically related to the group of CAG/polyglutamine (polyQ) expansion disorders, which includes other SCAs (1-3, 6 and 17), Huntington's disease, spinal bulbar muscular atrophy and dentatorubro pallidoluysian atrophy. Two distinctive characteristics of SCA7 are the strong anticipation by which earlier onset and more severe symptoms are observed in successive generations of affected families, and the loss of visual acuity due to cone-rod dystrophy of the retina. The pathology is caused by an unstable CAG repeat expansion coding for a polyQ stretch in Ataxin-7 (ATXN7). PolyQ expansion in ATXN7 confers toxic properties and leads to selective neuronal degeneration in the cerebellum, the brain stem and the retina. Herein, we summarize the genetic, clinical and pathological features of SCA7 and review our current knowledge of pathomechanisms and preclinical studies.


Assuntos
Tronco Encefálico , Cerebelo , Peptídeos , Retina , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Efeito Fundador , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Retina/metabolismo , Retina/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/terapia
16.
RNA ; 24(4): 486-498, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29295891

RESUMO

Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.


Assuntos
Doença de Huntington/terapia , Peptídeos/farmacologia , Deficiências na Proteostase/genética , Ataxias Espinocerebelares/terapia , Repetições de Trinucleotídeos/genética , Animais , Morte Celular/efeitos dos fármacos , Drosophila/genética , Células HEK293 , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Peptídeos/metabolismo , Fosfoproteínas/genética , Dobramento de Proteína , Deficiências na Proteostase/patologia , Deficiências na Proteostase/terapia , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Transcrição Gênica/genética , Repetições de Trinucleotídeos/efeitos dos fármacos , Nucleolina
17.
J Neurosci ; 37(38): 9101-9115, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28821675

RESUMO

Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA-binding protein (TBP) and is among a family of neurodegenerative diseases in which polyQ expansion leads to preferential neuronal loss in the brain. Although previous studies have demonstrated that expression of polyQ-expanded proteins in glial cells can cause neuronal injury via noncell-autonomous mechanisms, these studies investigated animal models that overexpress transgenic mutant proteins. Since glial cells are particularly reactive to overexpressed mutant proteins, it is important to investigate the in vivo role of glial dysfunction in neurodegeneration when mutant polyQ proteins are endogenously expressed. In the current study, we generated two conditional TBP-105Q knock-in mouse models that specifically express mutant TBP at the endogenous level in neurons or in astrocytes. We found that mutant TBP expression in neuronal cells or astrocytes alone only caused mild neurodegeneration, whereas severe neuronal toxicity requires the expression of mutant TBP in both neuronal and glial cells. Coculture of neurons and astrocytes further validated that mutant TBP in astrocytes promoted neuronal injury. We identified activated inflammatory signaling pathways in mutant TBP-expressing astrocytes, and blocking nuclear factor κB (NF-κB) signaling in astrocytes ameliorated neurodegeneration. Our results indicate that the synergistic toxicity of mutant TBP in neuronal and glial cells plays a critical role in SCA17 pathogenesis and that targeting glial inflammation could be a potential therapeutic approach for SCA17 treatment.SIGNIFICANCE STATEMENT Mutant TBP with polyglutamine expansion preferentially affects neuronal viability in SCA17 patients. Whether glia, the cells that support and protect neurons, contribute to neurodegeneration in SCA17 remains mostly unexplored. In this study, we provide both in vivo and in vitro evidence arguing that endogenous expression of mutant TBP in neurons and glia synergistically impacts neuronal survival. Hyperactivated inflammatory signaling pathways, particularly the NF-κB pathway, underlie glia-mediated neurotoxicity. Moreover, blocking NF-κB activity with small chemical inhibitors alleviated such neurotoxicity. Our study establishes glial dysfunction as an important component of SCA17 pathogenesis and suggests targeting glial inflammation as a potential therapeutic approach for SCA17 treatment.


Assuntos
Sobrevivência Celular/imunologia , Neuroglia/imunologia , Neurônios/imunologia , Peptídeos/imunologia , Ataxias Espinocerebelares/imunologia , Proteína de Ligação a TATA-Box/imunologia , Animais , Células Cultivadas , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/patologia , Neurônios/patologia , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/terapia , Expansão das Repetições de Trinucleotídeos/imunologia
18.
Cell Transplant ; 26(3): 503-512, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28195034

RESUMO

Ataxia is one of the most devastating symptoms of many neurodegenerative disorders. As of today, there is not any effective treatment to retard its progression. Mesenchymal stem cells (MSCs) have shown promise in treating neurodegenerative diseases. We hereby report the results of a phase I/IIa clinical study conducted in Taiwan to primarily evaluate the safety, tolerability, and, secondarily, the possible efficacy of intravenous administration of allogeneic adipose tissue-derived MSCs from healthy donors. Six patients with spinocerebellar ataxia type 3 and one with multiple system atrophy-cerebellar type were included in this open-label study with intravenous administration of 106 cells/kg body weight. The subjects were closely monitored for 1 year for safety (vital signs, complete blood counts, serum biochemical profiles, and urinalysis) and possible efficacy (scale for assessment and rating of ataxia and sensory organization testing scores, metabolite ratios on the brain magnetic resonance spectroscopy, and brain glucose metabolism of 18-fluorodeoxyglucose using positron emission tomography). No adverse events related to the injection of MSCs during the 1-year follow-up were observed. The intravenous administration of allogeneic MSCs seemed well tolerated. Upon study completion, all patients wished to continue treatment with the allogeneic MSCs. We conclude that allogeneic MSCs given by intravenous injection seems to be safe and tolerable in patients with spinocerebellar ataxia type 3, thus supporting advancement of the clinical development of allogeneic MSCs for the treatment of spinocerebellar ataxias (SCAs) in a randomized, double-blind, placebo-controlled phase II trials.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Ataxias Espinocerebelares/terapia , Transplante Homólogo/métodos , Adulto , Idoso , Encéfalo/patologia , Células Cultivadas , Método Duplo-Cego , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Ann Neurol ; 80(5): 754-765, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27686464

RESUMO

OBJECTIVE: Spinocerebellar ataxia type 1 is an autosomal dominant fatal neurodegenerative disease caused by a polyglutamine expansion in the coding region of ATXN1. We showed previously that partial suppression of mutant ataxin-1 (ATXN1) expression, using virally expressed RNAi triggers, could prevent disease symptoms in a transgenic mouse model and a knockin mouse model of the disease, using a single dose of virus. Here, we set out to test whether RNAi triggers targeting ATXN1 could not only prevent, but also reverse disease readouts when delivered after symptom onset. METHODS: We administered recombinant adeno-associated virus (rAAV) expressing miS1, an artificial miRNA targeting human ATXN1 mRNA (rAAV.miS1), to a mouse model of spinocerebellar ataxia type 1 (SCA1; B05 mice). Viruses were delivered prior to or after symptom onset at multiple doses. Control B05 mice were treated with rAAVs expressing a control artificial miRNA, or with saline. Animal behavior, molecular phenotypes, neuropathology, and magnetic resonance spectroscopy were done on all groups, and data were compared to wild-type littermates. RESULTS: We found that SCA1 phenotypes could be reversed by partial suppression of human mutant ATXN1 mRNA by rAAV.miS1 when delivered after symptom onset. We also identified the therapeutic range of rAAV.miS1 that could prevent or reverse disease readouts. INTERPRETATION: SCA1 disease may be reversible by RNAi therapy, and the doses required for advancing this therapy to humans are delineated. Ann Neurol 2016;80:754-765.


Assuntos
Ataxina-1/metabolismo , Terapia Genética/métodos , Vetores Genéticos , Interferência de RNA , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/terapia , Animais , Comportamento Animal , Dependovirus , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , RNA Mensageiro , Ataxias Espinocerebelares/prevenção & controle
20.
Sci Transl Med ; 8(347): 347ra94, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27412786

RESUMO

Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by slowly progressive ataxia and Purkinje cell degeneration. SCA6 is caused by a polyglutamine repeat expansion within a second CACNA1A gene product, α1ACT. α1ACT expression is under the control of an internal ribosomal entry site (IRES) present within the CACNA1A coding region. Whereas SCA6 allele knock-in mice show indistinguishable phenotypes from wild-type littermates, expression of SCA6-associated α1ACT (α1ACTSCA6) driven by a Purkinje cell-specific promoter in mice produces slowly progressive ataxia and cerebellar atrophy. We developed an early-onset SCA6 mouse model using an adeno-associated virus (AAV)-based gene delivery system to ectopically express CACNA1A IRES-driven α1ACTSCA6 to test the potential of CACNA1A IRES-targeting therapies. Mice expressing AAV9-mediated CACNA1A IRES-driven α1ACTSCA6 exhibited early-onset ataxia, motor deficits, and Purkinje cell degeneration. We identified miR-3191-5p as a microRNA (miRNA) that targeted CACNA1A IRES and preferentially inhibited the CACNA1A IRES-driven translation of α1ACT in an Argonaute 4 (Ago4)-dependent manner. We found that eukaryotic initiation factors (eIFs), eIF4AII and eIF4GII, interacted with the CACNA1A IRES to enhance α1ACT translation. Ago4-bound miR-3191-5p blocked the interaction of eIF4AII and eIF4GII with the CACNA1A IRES, attenuating IRES-driven α1ACT translation. Furthermore, AAV9-mediated delivery of miR-3191-5p protected mice from the ataxia, motor deficits, and Purkinje cell degeneration caused by CACNA1A IRES-driven α1ACTSCA6 We have established proof of principle that viral delivery of an miRNA can rescue a disease phenotype through modulation of cellular IRES activity in a mouse model.


Assuntos
Canais de Cálcio/metabolismo , Sítios Internos de Entrada Ribossomal/genética , MicroRNAs/metabolismo , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/terapia , Animais , Western Blotting , Canais de Cálcio/genética , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Imunofluorescência , Genes/genética , Células HEK293 , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células de Purkinje/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Ataxias Espinocerebelares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA