Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673939

RESUMO

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Assuntos
Ataxina-7 , Dependovirus , Modelos Animais de Doenças , Peptídeos , Fenótipo , RNA Interferente Pequeno , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/metabolismo , Peptídeos/genética , Dependovirus/genética , Camundongos , Ataxina-7/genética , Ataxina-7/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , RNA Interferente Pequeno/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Camundongos Transgênicos , Cerebelo/metabolismo , Cerebelo/patologia , Humanos , Terapia Genética/métodos , Alelos
2.
Mol Neurobiol ; 59(8): 5236-5251, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689166

RESUMO

Spinocerebellar ataxia type 7 (SCA7) and other polyglutamine (polyQ) diseases are caused by expansions of polyQ repeats in disease-specific proteins. Aggregation of the polyQ proteins resulting in various forms of cellular stress, that could induce the stress granule (SG) response, is believed to be a common pathological mechanism in these disorders. SGs can contribute to cell survival but have also been suggested to exacerbate disease pathology by seeding protein aggregation. In this study, we show that two SG-related proteins, TDP-43 and TIA1, are sequestered into the aggregates formed by polyQ-expanded ATXN7 in SCA7 cells. Interestingly, mutant ATXN7 also localises to induced SGs, and this association altered the shape of the SGs. In spite of this, neither the ability to induce nor to disassemble SGs, in response to arsenite stress induction or relief, was affected in SCA7 cells. Moreover, we could not observe any change in the number of ATXN7 aggregates per cell following SG induction, although a small, non-significant, increase in total aggregated ATXN7 material could be detected using filter trap. However, mutant ATXN7 expression in itself increased the speckling of the SG-nucleating protein G3BP1 and the SG response. Taken together, our results indicate that the SG response is induced, and although some key modulators of SGs show altered behaviour, the dynamics of SGs appear normal in the presence of mutant ATXN7.


Assuntos
DNA Helicases , Ataxias Espinocerebelares , Ataxina-7/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ataxias Espinocerebelares/genética , Grânulos de Estresse , Antígeno-1 Intracelular de Células T/metabolismo
3.
Thorac Cancer ; 13(11): 1597-1610, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445786

RESUMO

BACKGROUND: Circular RNAs (circRNAs) participate in the occurrence and progression of many cancers. CircRNA ataxin 7 (circATXN7) (circBase ID: hsa_circ_0066436) plays a promoting influence on gastric cancer progression. However, the biological role of circATXN7 in non-small cell lung cancer (NSCLC) is indistinct. METHODS: Levels of circATXN7, microRNA (miR)-7-5p, and profilin 2 (PFN2) mRNA were detected using quantitative real-time polymerase chain reaction (RT-qPCR). Proliferation, apoptosis, metastasis, and invasion were analyzed using cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays. Protein levels were analyzed using western blotting (WB) and immunohistochemistry (IHC). The relationship between circATXN7 or PFN2 and miR-7-5p was analyzed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The biological function of circATXN7 was verified by xenograft assay. RESULTS: CircATXN7 and PFN2 were highly expressed in NSCLC, whereas miR-7-5p expression had the opposite trend. CircATXN7 overexpression constrained apoptosis and promoted proliferation, metastasis, invasion, and epithelial-mesenchymal transition of NSCLC cells, but circATXN7 silencing played the opposing influence and repressed xenograft tumor growth in vivo. CircATXN7 served as a miR-7-5p sponge, and circATXN7 regulated malignant behaviors of NSCLC cells through sponging miR-7-5p. PFN2 acted as a miR-7-5p target. PFN2 silencing overturned the promoting effect of miR-7-5p inhibitor on NSCLC cell malignancy, while PFN2 overexpression reversed the inhibitory impact of miR-7-5p mimic on NSCLC cell malignancy. CONCLUSION: CircATXN7 accelerated the malignancy of NSCLC cells through adsorbing miR-7-5p and upregulating PFN2, offering evidence to support circATXN7 as a target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Ataxina-7/genética , Ataxina-7/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/genética , Regulação para Baixo , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Profilinas/genética , Profilinas/metabolismo , RNA Circular/genética
4.
Cell Rep ; 37(9): 110062, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34852229

RESUMO

A common mechanism in inherited ataxia is a vulnerability of DNA damage. Spinocerebellar ataxia type 7 (SCA7) is a CAG-polyglutamine-repeat disorder characterized by cerebellar and retinal degeneration. Polyglutamine-expanded ataxin-7 protein incorporates into STAGA co-activator complex and interferes with transcription by altering histone acetylation. We performed chromatic immunoprecipitation sequencing ChIP-seq on cerebellum from SCA7 mice and observed increased H3K9-promoter acetylation in DNA repair genes, resulting in increased expression. After detecting increased DNA damage in SCA7 cells, mouse primary cerebellar neurons, and patient stem-cell-derived neurons, we documented reduced homology-directed repair (HDR) and single-strand annealing (SSA). To evaluate repair at endogenous DNA in native chromosome context, we modified linear amplification-mediated high-throughput genome-wide translocation sequencing and found that DNA translocations are less frequent in SCA7 models, consistent with decreased HDR and SSA. Altered DNA repair function in SCA7 may predispose the subject to excessive DNA damage, leading to neuron demise and highlights DNA repair as a therapy target.


Assuntos
Ataxina-7/metabolismo , Doenças Cerebelares/patologia , Reparo do DNA , Histonas/metabolismo , Neurônios/patologia , Peptídeos/genética , Ataxias Espinocerebelares/complicações , Acetilação , Animais , Ataxina-7/genética , Doenças Cerebelares/etiologia , Doenças Cerebelares/metabolismo , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Neurônios/metabolismo
5.
Mol Cell Neurosci ; 110: 103584, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338633

RESUMO

Polyglutamine (polyQ) diseases, such as Spinocerebellar ataxia type 7 (SCA7), are caused by expansions of polyQ repeats in disease specific proteins. The sequestration of vital proteins into aggregates formed by polyQ proteins is believed to be a common pathological mechanism in these disorders. The RNA-binding protein FUS has been observed in polyQ aggregates, though if disruption of this protein plays a role in the neuronal dysfunction in SCA7 or other polyQ diseases remains unclear. We therefore analysed FUS localisation and function in a stable inducible PC12 cell model expressing the SCA7 polyQ protein ATXN7. We found that there was a high degree of FUS sequestration, which was associated with a more cytoplasmic FUS localisation, as well as a decreased expression of FUS regulated mRNAs. In contrast, the role of FUS in the formation of γH2AX positive DNA damage foci was unaffected. In fact, a statistical increase in the number of γH2AX foci, as well as an increased trend of single and double strand DNA breaks, detected by comet assay, could be observed in mutant ATXN7 cells. These results were further corroborated by a clear trend towards increased DNA damage in SCA7 patient fibroblasts. Our findings suggest that both alterations in the RNA regulatory functions of FUS, and increased DNA damage, may contribute to the pathology of SCA7.


Assuntos
Ataxina-7/genética , Dano ao DNA , Proteína FUS de Ligação a RNA/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Ataxina-7/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Células PC12 , Peptídeos/química , Peptídeos/genética , Transporte Proteico , Ratos , Ataxias Espinocerebelares/genética
6.
Neurotherapeutics ; 16(4): 1074-1096, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31432449

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder characterized by progressive neuronal loss in the cerebellum, brainstem, and retina, leading to cerebellar ataxia and blindness as major symptoms. SCA7 is due to the expansion of a CAG triplet repeat that is translated into a polyglutamine tract in ATXN7. Larger SCA7 expansions are associated with earlier onset of symptoms and more severe and rapid disease progression. Here, we summarize the pathological and genetic aspects of SCA7, compile the current knowledge about ATXN7 functions, and then focus on recent advances in understanding the pathogenesis and in developing biomarkers and therapeutic strategies. ATXN7 is a bona fide subunit of the multiprotein SAGA complex, a transcriptional coactivator harboring chromatin remodeling activities, and plays a role in the differentiation of photoreceptors and Purkinje neurons, two highly vulnerable neuronal cell types in SCA7. Polyglutamine expansion in ATXN7 causes its misfolding and intranuclear accumulation, leading to changes in interactions with native partners and/or partners sequestration in insoluble nuclear inclusions. Studies of cellular and animal models of SCA7 have been crucial to unveil pathomechanistic aspects of the disease, including gene deregulation, mitochondrial and metabolic dysfunctions, cell and non-cell autonomous protein toxicity, loss of neuronal identity, and cell death mechanisms. However, a better understanding of the principal molecular mechanisms by which mutant ATXN7 elicits neurotoxicity, and how interconnected pathogenic cascades lead to neurodegeneration is needed for the development of effective therapies. At present, therapeutic strategies using nucleic acid-based molecules to silence mutant ATXN7 gene expression are under development for SCA7.


Assuntos
Ataxina-7/genética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/tendências , Marcação de Genes/tendências , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Animais , Ataxina-7/metabolismo , Autofagia/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Sistemas de Liberação de Medicamentos/métodos , Marcação de Genes/métodos , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/genética , Peptídeos/metabolismo , Ataxias Espinocerebelares/metabolismo
7.
Sci Rep ; 9(1): 7481, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097749

RESUMO

Ataxin-7 (Atx7) is a disease-related protein associated with the pathogenesis of spinocerebellar ataxia 7, while its polyglutamine (polyQ) tract in N-terminus is the causative source of aggregation and proteinopathy. We investigated the structure, dynamics and aggregation properties of the N-terminal 62-residue fragment of Atx7 (Atx7-N) by biochemical and biophysical approaches. The results showed that the normal Atx7-N with a tract of 10 glutamines (10Q) overall adopts a flexible and disordered structure, but it may contain a short or small population of helical structure in solution. PolyQ expansion increases the α-helical propensity of the polyQ tract and consequently enhances its transformation into ß-sheet structures during amyloid aggregation. An alanine-rich region (ARR) just ahead of the polyQ tract forms a local and relatively stable α-helix. The ARR α-helix can initiate and stabilize helical formation of the following polyQ tract, but it may suppress aggregation of the polyQ-expanded Atx7-N both in vitro and in cell. Thus, the preceding ARR segment in Atx7-N may influence the dynamic structure and aggregation property of the polyQ tract and even determine the threshold of the pathogenic polyQ lengths. This study may gain structural and dynamic insights into amyloid aggregation of Atx7 and help us further understand the Atx7 proteinopathy based on polyQ expansion.


Assuntos
Amiloide/química , Ataxina-7/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Amiloide/metabolismo , Ataxina-7/metabolismo , Células HEK293 , Humanos , Peptídeos/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
8.
Neuroscience ; 400: 72-84, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30625334

RESUMO

Spino-cerebellar ataxia type 7 (SCA7) is a polyglutamine (polyQ) disorder characterized by neurodegeneration of the brain, cerebellum, and retina caused by a polyglutamine expansion in ataxin7. The presence of an expanded polyQ tract in a mutant protein is known to induce protein aggregation, cellular stress, toxicity, and finally cell death. However, the consequences of the presence of mutant ataxin7 in the retina and the mechanisms underlying photoreceptor degeneration remain poorly understood. In this study, we show that in a retinal SCA7 mouse model, polyQ ataxin7 induces stress within the retina and activates Muller cells. Moreover, unfolded protein response and autophagy are activated in SCA7 photoreceptors. We have also shown that the photoreceptor death does not involve a caspase-dependent apoptosis but instead involves apoptosis inducing factor (AIF) and Leukocyte Elastase Inhibitor (LEI/L-DNase II). When these two cell death effectors are downregulated by their siRNA, a significant reduction in photoreceptor death is observed. These results highlight the consequences of polyQ protein expression in the retina and the role of caspase-independent pathways involved in photoreceptor cell death.


Assuntos
Ataxina-7/metabolismo , Morte Celular , Peptídeos/metabolismo , Degeneração Retiniana/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Fator de Indução de Apoptose/metabolismo , Ataxina-7/genética , Calpaína/metabolismo , Caspases/metabolismo , Catepsinas/metabolismo , Modelos Animais de Doenças , Endodesoxirribonucleases/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/etiologia , Transdução de Sinais , Ataxias Espinocerebelares/complicações , Estresse Fisiológico
9.
Dis Model Mech ; 12(1)2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30559154

RESUMO

Perturbation of protein homeostasis and aggregation of misfolded proteins is a major cause of many human diseases. A hallmark of the neurodegenerative disease spinocerebellar ataxia type 7 (SCA7) is the intranuclear accumulation of mutant, misfolded ataxin-7 (polyQ-ATXN7). Here, we show that endogenous ATXN7 is modified by SUMO proteins, thus also suggesting a physiological role for this modification under conditions of proteotoxic stress caused by the accumulation of polyQ-ATXN7. Co-immunoprecipitation experiments, immunofluorescence microscopy and proximity ligation assays confirmed the colocalization and interaction of polyQ-ATXN7 with SUMO2 in cells. Moreover, upon inhibition of the proteasome, both endogenous SUMO2/3 and the RNF4 ubiquitin ligase surround large polyQ-ATXN7 intranuclear inclusions. Overexpression of RNF4 and/or SUMO2 significantly decreased levels of polyQ-ATXN7 and, upon proteasomal inhibition, led to a marked increase in the polyubiquitination of polyQ-ATXN7. This provides a mechanism for the clearance of polyQ-ATXN7 from affected cells that involves the recruitment of RNF4 by SUMO2/3-modified polyQ-ATXN7, thus leading to its ubiquitination and proteasomal degradation. In a SCA7 knock-in mouse model, we similarly observed colocalization of SUMO2/3 with polyQ-ATXN7 inclusions in the cerebellum and retina. Furthermore, we detected accumulation of SUMO2/3 high-molecular-mass species in the cerebellum of SCA7 knock-in mice, compared with their wild-type littermates, and changes in SUMO-related transcripts. Immunohistochemical analysis showed the accumulation of SUMO proteins and RNF4 in the cerebellum of SCA7 patients. Taken together, our results show that the SUMO pathway contributes to the clearance of aggregated ATXN7 and suggest that its deregulation might be associated with SCA7 disease progression.


Assuntos
Ataxina-7/metabolismo , Proteínas Nucleares/metabolismo , Dobramento de Proteína , Proteólise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ataxias Espinocerebelares/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , Animais , Cerebelo/metabolismo , Criança , Modelos Animais de Doenças , Células HEK293 , Células HeLa , Humanos , Corpos de Inclusão/metabolismo , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Proteína da Leucemia Promielocítica/metabolismo , Inibidores de Proteassoma/farmacologia , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ataxias Espinocerebelares/patologia , Sumoilação/efeitos dos fármacos , Ubiquitina/metabolismo
10.
Sci Transl Med ; 10(465)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381411

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurodegenerative disorder characterized by cerebellar and retinal degeneration, and is caused by a CAG-polyglutamine repeat expansion in the ATAXIN-7 gene. Patients with SCA7 develop progressive cone-rod dystrophy, typically resulting in blindness. Antisense oligonucleotides (ASOs) are single-stranded chemically modified nucleic acids designed to mediate the destruction, prevent the translation, or modify the processing of targeted RNAs. Here, we evaluated ASOs as treatments for SCA7 retinal degeneration in representative mouse models of the disease after injection into the vitreous humor of the eye. Using Ataxin-7 aggregation, visual function, retinal histopathology, gene expression, and epigenetic dysregulation as outcome measures, we found that ASO-mediated Ataxin-7 knockdown yielded improvements in treated SCA7 mice. In SCA7 mice with retinal disease, intravitreal injection of Ataxin-7 ASOs also improved visual function despite initiating treatment after symptom onset. Using color fundus photography and autofluorescence imaging, we also determined the nature of retinal degeneration in human SCA7 patients. We observed variable disease severity and cataloged rapidly progressive retinal degeneration. Given the accessibility of neural retina, availability of objective, quantitative readouts for monitoring therapeutic response, and the rapid disease progression in SCA7, ASOs targeting ATAXIN-7 might represent a viable treatment for SCA7 retinal degeneration.


Assuntos
Ataxina-7/metabolismo , Proteínas Mutantes/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Ataxias Espinocerebelares/fisiopatologia , Visão Ocular/efeitos dos fármacos , Animais , Ataxina-7/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Injeções Intravítreas , Camundongos , Oligonucleotídeos Antissenso/administração & dosagem , Peptídeos/metabolismo , Fenótipo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Agregados Proteicos/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/metabolismo , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/patologia
11.
Cell Rep ; 21(5): 1240-1252, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29091763

RESUMO

Myotonic dystrophy types 1 (DM1) and 2 (DM2) are dominantly inherited neuromuscular disorders caused by a toxic gain of function of expanded CUG and CCUG repeats, respectively. Although both disorders are clinically similar, congenital myotonic dystrophy (CDM), a severe DM form, is found only in DM1. CDM is also characterized by muscle fiber immaturity not observed in adult DM, suggesting specific pathological mechanisms. Here, we revealed upregulation of the interleukin-6 (IL-6) myokine signaling pathway in CDM muscles. We also found a correlation between muscle immaturity and not only IL-6 expression but also expanded CTG repeat length and CpG methylation status upstream of the repeats. Aberrant CpG methylation was associated with transcriptional dysregulation at the repeat locus, increasing the toxic RNA burden that upregulates IL-6. Because the IL-6 pathway is involved in myocyte maturation and muscle atrophy, our results indicate that enhanced RNA toxicity contributes to severe CDM phenotypes through aberrant IL-6 signaling.


Assuntos
Distrofia Miotônica/patologia , Transdução de Sinais/fisiologia , Processamento Alternativo , Ataxina-7/genética , Ataxina-7/metabolismo , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Ilhas de CpG , Metilação de DNA , Humanos , Lactente , Interleucina-6/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica , Expansão das Repetições de Trinucleotídeos , Regulação para Cima
12.
Cell Physiol Biochem ; 39(6): 2427-2438, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27855399

RESUMO

BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is a lethal disease with nearly equal morbidity and mortality. Thus, the discovery and application of more useful predictive biomarkers for improving therapeutic effects and prediction of clinical outcomes is of crucial significance. METHODS: A total of 475 HBV-related HCC patients were enrolled. Ataxin 7 (ATXN7) single nucleotide polymorphisms (SNPs) were genotyped by Sanger DNA sequencing after PCR amplification. The associations between ATXN7 SNPs and mRNA expression with the prognosis of HBV-related HCC were analyzed. RESULTS: In all, rs3774729 was significantly associated with overall survival (OS) of HBV-related HCC (P = 0.013, HR = 0.66, 95% CI: 0.48-0.94). And patients with the AA genotype and a high level of serum alpha fetoprotein (AFP) had significantly worse OS when compared to patients with AG/GG genotypes and a low level of AFP (adjusted P = 0.007, adjusted HR = 1.83, 95% CI = 1.18-2.82). Furthermore, low expression of ATXN7 was significantly associated with poor recurrence-free survival (RFS) and OS (P = 0.007, HR = 2.38, 95% CI = 1.27-4.45 and P = 0.025, HR = 1.75, 95% CI = 1.18-2.62). CONCLUSION: ATXN7 may be a potential predictor of post-operative prognosis of HBV-related HCC.


Assuntos
Ataxina-7/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único/genética , Ataxina-7/metabolismo , Carcinoma Hepatocelular/sangue , Feminino , Estudos de Associação Genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resultado do Tratamento , alfa-Fetoproteínas/metabolismo
13.
Mol Cancer ; 15(1): 47, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296891

RESUMO

BACKGROUND: Fusion proteins have unique oncogenic properties and their identification can be useful either as diagnostic or therapeutic targets. Next generation sequencing data have previously shown a fusion gene formed between Rad51C and ATXN7 genes in the MCF7 breast cancer cell line. However, the existence of this fusion gene in colorectal patient tumor tissues is largely still unknown. METHODS: We evaluated for the presence of Rad51C-ATXN7 fusion gene in colorectal tumors and cells by RT-PCR, PCR, Topo TA cloning, Real time PCR, immunoprecipitation and immunoblotting techniques. RESULTS: We identified two forms of fusion mRNAs between Rad51C and ATXN7 in the colorectal tumors, including a Variant 1 (fusion transcript between Rad51C exons 1-7 and ATXN7 exons 6-13), and a Variant 2 (between Rad51C exons 1-6 and ATXN7 exons 6-13). In silico analysis showed that the Variant 1 produces a truncated protein, whereas the Variant 2 was predicted to produce a fusion protein with molecular weight of 110 KDa. Immunoprecipitation and Western blot analysis further showed a 110 KDa protein in colorectal tumors. 5-Azacytidine treatment of LS-174 T cells caused a 3.51-fold increase in expression of the fusion gene (Variant 2) as compared to no treatment controls evaluated by real time PCR. CONCLUSION: In conclusion we found a fusion gene between DNA repair gene Rad51C and neuro-cerebral ataxia Ataxin-7 gene in colorectal tumors. The in-frame fusion transcript of Variant 2 results in a fusion protein with molecular weight of 110 KDa. In addition, we found that expression of fusion gene is associated with functional impairment of Fanconi Anemia (FA) DNA repair pathway in colorectal tumors. The expression of Rad51C-ATXN7 in tumors warrants further investigation, as it suggests the potential of the fusion gene in treatment and predictive value in colorectal cancers.


Assuntos
Ataxina-7/genética , Clonagem Molecular/métodos , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fusão Oncogênica/genética , Ataxina-7/metabolismo , Azacitidina/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Simulação por Computador , Metilação de DNA/efeitos dos fármacos , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Variação Genética , Humanos , Peso Molecular , Proteínas de Fusão Oncogênica/efeitos dos fármacos , Proteínas de Fusão Oncogênica/metabolismo
14.
J Biol Chem ; 290(36): 21996-2004, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195632

RESUMO

Human ataxin 7 (Atx7) is a component of the deubiquitination module (DUBm) in the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex for transcriptional regulation, and expansion of its polyglutamine (polyQ) tract leads to spinocerebellar ataxia type 7. However, how polyQ expansion of Atx7 affects DUBm function remains elusive. We investigated the effects of polyQ-expanded Atx7 on ubiquitin-specific protease (USP22), an interacting partner of Atx7 functioning in deubiquitination of histone H2B. The results showed that the inclusions or aggregates formed by polyQ-expanded Atx7 specifically sequester USP22 through their interactions mediated by the N-terminal zinc finger domain of Atx7. The mutation of the zinc finger domain in Atx7 that disrupts its interaction with USP22 dramatically abolishes sequestration of USP22. Moreover, polyQ expansion of Atx7 decreases the deubiquitinating activity of USP22 and, consequently, increases the level of monoubiquitinated H2B. Therefore, we propose that polyQ-expanded Atx7 forms insoluble aggregates that sequester USP22 into a catalytically inactive state, and then the impaired DUBm loses the function to deubiquitinate monoubiquitinated histone H2B or H2A. This may result in dysfunction of the SAGA complex and transcriptional dysregulation in spinocerebellar ataxia type 7 disease.


Assuntos
Ataxina-7/metabolismo , Histona Acetiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Tioléster Hidrolases/metabolismo , Ataxina-7/genética , Sítios de Ligação/genética , Western Blotting , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Microscopia de Fluorescência , Mutação , Peptídeos/genética , Agregados Proteicos , Ligação Proteica , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Tioléster Hidrolases/genética , Expansão das Repetições de Trinucleotídeos/genética , Ubiquitina Tiolesterase , Ubiquitinação , Dedos de Zinco/genética
15.
Biochem Biophys Res Commun ; 464(4): 1060-1065, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26210447

RESUMO

Polyglutamine diseases are nine dominantly inherited neurodegenerative pathologies caused by the expansion of a polyglutamine domain in a protein responsible for the disease. This expansion leads to protein aggregation, inclusion formation and toxicity. Despite numerous studies focusing on the subject, whether soluble polyglutamine proteins are responsible for toxicity or not remains debated. To focus on this matter, we evaluated the level of soluble and insoluble truncated pathological Ataxin-3 in vivo in Drosophila, in presence or absence of two suppressors (i.e. Hsp70 and non-pathological Ataxin-3) and along aging. Suppressing truncated Ataxin-3-induced toxicity resulted in a lowered level of aggregated polyglutamine protein. Interestingly, aggregates accumulated as flies aged and reached a maximum level when cell death was detected. Our results were similar with two other pathological polyglutamine proteins, namely truncated Ataxin-7 and full-length Ataxin-3. Our data suggest that accumulation of insoluble aggregates beyond a critical threshold could be responsible for toxicity.


Assuntos
Ataxina-3/química , Ataxina-3/metabolismo , Ataxina-7/química , Ataxina-7/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Animais Geneticamente Modificados , Ataxina-3/genética , Ataxina-7/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Masculino , Modelos Neurológicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Solubilidade
16.
Hum Mol Genet ; 24(14): 3908-17, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25859008

RESUMO

The neurodegenerative disorder spinocerebellar ataxia type 7 (SCA7) is caused by a polyglutamine (polyQ) expansion in the ataxin-7 protein, categorizing SCA7 as one member of a large class of heritable neurodegenerative proteinopathies. Cleavage of ataxin-7 by the protease caspase-7 has been demonstrated in vitro, and the accumulation of proteolytic cleavage products in SCA7 patients and mouse models has been identified as an early pathological change. However, it remains unknown whether a causal relationship exists between ataxin-7 proteolysis and in vivo SCA7 disease progression. To determine whether caspase cleavage is a critical event in SCA7 disease pathogenesis, we generated transgenic mice expressing polyQ-expanded ataxin-7 with a second-site mutation (D266N) to prevent caspase-7 proteolysis. When we compared SCA7-D266N mice with SCA7 mice lacking the D266N mutation, we found that SCA7-D266N mice exhibited improved motor performance, reduced neurodegeneration and substantial lifespan extension. Our findings indicate that proteolysis at the D266 caspase-7 cleavage site is an important mediator of ataxin-7 neurotoxicity, suggesting that inhibition of caspase-7 cleavage of polyQ-ataxin-7 may be a promising therapeutic strategy for this untreatable disorder.


Assuntos
Ataxina-7/metabolismo , Doenças Neurodegenerativas/genética , Peptídeos/metabolismo , Regiões Promotoras Genéticas , Proteólise , Degeneração Retiniana/genética , Animais , Ácido Aspártico/metabolismo , Ataxina-7/genética , Caspase 7/genética , Caspase 7/metabolismo , Modelos Animais de Doenças , Terapia Genética , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/terapia , Fenótipo , Células de Purkinje/metabolismo , Degeneração Retiniana/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA