Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur J Histochem ; 68(2)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38619020

RESUMO

Aortic valve calcification (AVC) is a common cardiovascular disease and a risk factor for sudden death. However, the potential mechanisms and effective therapeutic drugs need to be explored. Atorvastatin is a statin that can effectively prevent cardiovascular events by lowering cholesterol levels. However, whether atorvastatin can inhibit AVC by reducing low-density lipoprotein (LDL) and its possible mechanism of action require further exploration. In the current study, we constructed an in vitro AVC model by inducing calcification of the valve interstitial cells. We found that atorvastatin significantly inhibited osteogenic differentiation, reduced the deposition of calcium nodules in valve interstitial cells, and enhanced autophagy in calcified valve interstitial cells, manifested by increased expression levels of the autophagy proteins Atg5 and LC3B-II/I and the formation of smooth autophagic flow. Atorvastatin inhibited the NF-κB signalling pathway and the expression of inflammatory factors mediated by NF-κB in calcified valve interstitial cells. The activation of the NF-κB signalling pathway led to the reversal of atorvastatin's effect on enhancing autophagy and alleviating valve interstitial cell calcification. In conclusion, atorvastatin inhibited the NF-κB signalling pathway by upregulating autophagy, thereby alleviating valve interstitial cell calcification, which was conducive to improving AVC.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , NF-kappa B , Osteogênese , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Autofagia
2.
Metabolism ; 153: 155794, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301843

RESUMO

BACKGROUND: Glioblastoma is one of the deadliest tumors, and limited improvement in managing glioblastoma has been achieved in the past decades. The unmethylated promoter area of 6-O-Methylguanine-DNA Methyltransferase (MGMT) is a significant biomarker for recognizing a subset of glioblastoma that is resistant to chemotherapy. Here we identified MGMT methylation can also work as a specific biomarker to classify the lipid metabolism patterns between methylated and unmethylated glioblastoma and verify the potential novel therapeutic strategy for unmethylated MGMT glioblastoma. METHODS: Liquid Chromatograph Mass Spectrometer has been applied for non-targeted metabolome and targeted lipidomic profiling to explore the metabolism pattern correlated with MGMT promoter methylation. Transcriptome has been performed to explore the biological differences and the potential mechanism of lipid metabolism in glioblastoma samples. In vivo and ex vivo assays were performed to verify the anti-tumor activity of atorvastatin in the administration of glioblastoma. RESULTS: Multi-omics assay has described a significant difference in lipid metabolism between MGMT methylated and unmethylated glioblastoma. Longer and unsaturated fatty acyls were found enriched in MGMT-UM tumors. Lipid droplets have been revealed remarkably decreased in MGMT unmethylated glioblastoma. In vivo and ex vivo assays revealed that atorvastatin and also together with temozolomide showed significant anti-tumor activity, and atorvastatin alone was able to achieve better survival and living conditions for tumor-hosting mice. CONCLUSIONS: MGMT promoter methylation status might be a well-performed biomarker of lipid metabolism in glioblastoma. The current study can be the basis of further mechanism studies and implementation of clinical trials, and the results provide preclinical evidence of atorvastatin administration in glioblastoma, especially for MGMT unmethylated tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Metabolismo dos Lipídeos/genética , Estudos de Viabilidade , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA , Biomarcadores
3.
Zhongguo Zhong Yao Za Zhi ; 49(1): 243-250, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403357

RESUMO

This article aims to investigate the effect of Zhuyu Pills on atherosclerosis and decipher the underlying mechanism. The mouse model of atherosclerosis was induced by a high-fat diet, and the total modeling period was 12 weeks. A total of 47 ApoE~(-/-) mice successfully modeled were randomized into 5 groups, including 10 in the model group, 9 in each of low-, medium-, and high-dose(130.54, 261.08 and 522.16 mg·kg~(-1)·d~(-1), respectively) Zhuyu Pills groups, and 10 in the atorvastatin calcium(10.40 mg·kg~(-1)·d~(-1)) group. In addition, 10 C57BL/6J mice were included as the normal group. The mice in the normal group and model group were administrated with an equal volume of sterile distilled water, and those in other groups with corresponding agents by gavage once a day for 12 weeks. At the end of drug intervention, the levels of total cholesterol(TC), triglyceride(TG), high-density lipoprotein cholesterol(HDL-C), and low-density lipoprotein cholesterol(LDL-C) were measured by the biochemical method. Hematoxylin-eosin(HE) staining was employed to observe the plaque distribution in the aortic region. The serum levels of pro-inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin(IL)-6 in M1 macrophages and anti-inflammatory cytokines IL-13 and IL-4 in M2 macrophages were determined by enzyme-linked immunosorbent assay(ELISA). The expression levels of inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1) were examined by immunofluorescence. Real-time fluorescence quantitative polymerase chain reaction(real-time PCR) was employed to measure the mRNA levels of peroxisome proliferator-activated receptor γ(PPARγ), nuclear factor-κB(NF-κB), Arg-1, and iNOS in the aorta. Western blot was employed to determine the protein levels of PPARγ and NF-κB in the aorta. The results showed that compared with the normal group, the modeling elevated the TC, TG, and LDL-C levels, lowered the HDL-C level, caused large area thickening of the aortic intima, elevated the TNF-α and IL-6 levels, lowered the IL-4 and IL-13 levels, down-regulated the mRNA and protein levels of PPARγ and Arg-1, and up-regulated the mRNA and protein levels of iNOS and NF-κB in the aorta(P<0.01). Compared with the model group, low-, medium-, and high-dose Zhuyu Pills and atorvastatin calcium lowered the TC, TG, and LDL-C levels, elevated the HDL-C level, reduced the plaque area in a concentration-dependent manner, lowered the TNF-α and IL-6 levels, elevated the IL-4 and IL-13 levels, up-regulated the mRNA and protein levels of PPARγ and Arg-1, and down-regulated the mRNA and protein levels of NF-κB and iNOS in the aorta(P<0.05 or P<0.01). In conclusion, Zhuyu Pills may play an anti-atherosclerosis role by regulating PPARγ/NF-κB signaling pathway, inhibiting the polarization of macrophages toward the M1 phenotype, promoting the polarization of macrophages toward the M2 phenotype, and improving the inflammatory microenvironment of macrophages.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , PPAR gama/genética , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-13/genética , LDL-Colesterol , Atorvastatina/farmacologia , Interleucina-4 , Camundongos Endogâmicos C57BL , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Transdução de Sinais , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/genética , Placa Aterosclerótica/prevenção & controle , Citocinas/metabolismo , Macrófagos/metabolismo , Fenótipo , RNA Mensageiro
4.
Mol Med Rep ; 29(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38299233

RESUMO

Metabolic dysfunction­associated steatotic liver disease (MASLD) is an increasingly significant global health burden for which there is currently no effective treatment. The present study aimed to explore the underlying mechanisms and investigate the effects of donafenib and atorvastatin in MASLD. The effects of donafenib and atorvastatin on the activity and lipid metabolism of HepG2 cells were analyzed in vitro. A rat model of MASLD was established induced by a high­fat diet in vivo. H&E and Oil red O staining were used to observe the improvement in MASLD, western blotting analysis was used to detect the expression of proteins related to fat metabolism and immunofluorescence was used to detect reactive oxygen species (ROS) levels. In vitro, donafenib and atorvastatin inhibited lipid accumulation in HepG2 cells. In vivo, donafenib and atorvastatin activated the AMP­activated protein kinase (AMPK) pathway, downregulated the expressions of proteins related to fatty acid synthesis (sterol regulatory element­binding protein­1, 3­hydroxy­3­methylglutaryl­CoA reductase and fatty acid synthase) and upregulated the expression of proteins related to fatty acid ß­oxidation (carnitine palmitoyl­transferase 1C and acyl­CoA oxidase). The levels of free fatty acids, cholesterol and triglycerides in the liver and serum decreased in all three treatment groups. Additionally, donafenib and atorvastatin reduced oxidative stress in the liver tissue and decreased ROS levels. Low­dose donafenib combined with atorvastatin improved MASLD by regulating fatty acid metabolism and reducing oxidative stress through activation of the AMPK signaling pathway.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Piridinas , Ratos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Proteínas Quinases Ativadas por AMP/metabolismo , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Metabolismo dos Lipídeos , Células Hep G2 , Doenças Metabólicas/complicações
5.
Fundam Clin Pharmacol ; 38(3): 550-560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258539

RESUMO

BACKGROUND: Due to the limited success in the treatment of lung adenocarcinomas, new treatment protocols are urgently needed to increase the curability rate and the survival of lung cancer patients. OBJECTIVES: Although statins, like atorvastatin (Ator), and metformin (Met) are widely accepted as hypolipidemic and hypoglycemic drugs, respectively, there are many predictions about their enhancing antitumor effect when they are combined with traditional chemotherapeutics. METHODS: The individual and combined antiproliferative potential of Ator and Met was tested by MTT-assay in non-small cell lung cancer (NSCLC) A549 cell line, compared to the corresponding effect of Gemcitabine (Gem) with implication on the mechanisms of action. RESULTS: Initially, both drugs demonstrated concentration-dependent cytotoxicity in A549 cells. Also, their combination index (CI) indicated their synergistic effect at equi-IC50 concentration (CI = 0.00984). Moreover, Ator and/or Met-treated cells revealed disrupted patterns of SOD, CAT, GSH, MDA, and TAC, developed apoptosis, and larger fractions of the cell population were arrested in G0/G1 phase, particularly in cells dually-treated both Ator and Met. These observations were accompanied by downregulation in the expression of iNOS, HO-1, and the angiogenic marker VEGF, meanwhile, an altered expression of MAPK and AMPK was observed. CONCLUSION: Conclusively, these data suggest that repurposing of Ator and Met demonstrates their individual and combined antiproliferative effect in non-small cell lung cancer and they may adopt a similar mechanism of action.


Assuntos
Apoptose , Atorvastatina , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Neoplasias Pulmonares , Metformina , Humanos , Metformina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Atorvastatina/farmacologia , Proliferação de Células/efeitos dos fármacos , Células A549 , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipoglicemiantes/farmacologia
6.
Cancer Sci ; 115(2): 477-489, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081591

RESUMO

Inhibition of cholesterol de novo synthesis (DNS) by statins has controversial effects on the treatment of hepatocellular carcinoma (HCC). High fatty acid conditions have been reported to limit the effect of statins on metabolism diseases. Whether high fatty acid conditions interfere with the effect of statins on HCC remains unclear. Here, we reported that inhibiting cholesterol DNS with atorvastatin promoted the oncogenic capabilities of diethylnitrosamine (DEN) in mice fed high fatty acid diets (HFD). The combined analysis of metabolomics and transcriptomics revealed that arachidonic acid (AA) metabolism was the most significant changed pathway between mice with and without atorvastatin treatment. In vitro, in the presence of AA precursor linoleic acid (LA), atorvastatin promoted the proliferation and migration ability of HCC cell lines. However, in the absence of LA, these phenomena disappeared. TCGA and tissue microarray examination revealed that prostaglandin e synthase 2 (PTGES2), a key enzyme in AA metabolism, was associated with the poor outcome of HCC patients. Overexpression of PTGES2 promoted the proliferation and migration of HCC cell lines, and knockdown of PTGES2 inhibited the proliferation and migration of cells. Additionally, atorvastatin upregulated PTGES2 expression by enhancing Sterol-regulatory element binding protein 2 (SREBP2)-mediated transcription. Knockdown of PTGES2 reversed the proliferation and migration ability enhanced by atorvastatin. Overall, our study reveals that a high fatty acid background is one of the possible conditions limiting the application of statins in HCC, under which statins promote the progression of HCC by enhancing SREBP2-mediated PTGES2 transcription.


Assuntos
Carcinoma Hepatocelular , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ácido Araquidônico/farmacologia , Prostaglandina-E Sintases/genética , Atorvastatina/farmacologia , Linhagem Celular Tumoral , Colesterol , Proliferação de Células
7.
Radiother Oncol ; 190: 110004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972738

RESUMO

PURPOSE: Despite technological advances in radiotherapy (RT), cardiotoxicity remains a common complication in patients with lung, oesophageal and breast cancers. Statin therapy has been shown to have pleiotropic properties beyond its lipid-lowering effects. Previous murine models have shown statin therapy can reduce short-term functional effects of whole-heart irradiation. In this study, we assessed the efficacy of atorvastatin in protecting against the late effects of radiation exposure on systolic function, cardiac conduction, and atrial natriuretic peptide (ANP) following a clinically relevant partial-heart radiation exposure. MATERIALS AND METHODS: Female, 12-week old, C57BL/6j mice received an image-guided 16 Gy X-ray field to the base of the heart using a small animal radiotherapy research platform (SARRP), with or without atorvastatin from 1 week prior to irradiation until the end of the experiment. The animals were followed for 50 weeks with longitudinal transthoracic echocardiography (TTE) and electrocardiography (ECG) every 10 weeks, and plasma ANP every 20 weeks. RESULTS: At 30-50 weeks, mild left ventricular systolic function impairment observed in the RT control group was less apparent in animals receiving atorvastatin. ECG analysis demonstrated prolongation of components of cardiac conduction related to the heart base at 10 and 30 weeks in the RT control group but not in animals treated with atorvastatin. In contrast to systolic function, conduction disturbances resolved at later time-points with radiation alone. ANP reductions were lower in irradiated animals receiving atorvastatin at 30 and 50 weeks. CONCLUSIONS: Atorvastatin prevents left ventricular systolic dysfunction, and the perturbation of cardiac conduction following partial heart irradiation. If confirmed in clinical studies, these data would support the use of statin therapy for cardioprotection during thoracic radiotherapy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Disfunção Ventricular Esquerda , Humanos , Feminino , Camundongos , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Camundongos Endogâmicos C57BL , Coração/efeitos da radiação , Modelos Animais de Doenças
8.
Comb Chem High Throughput Screen ; 27(1): 148-156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37282650

RESUMO

AIM: In this study, the protective effects of atorvastatin calcium (AC) on nerve cells and cognitive improvement in vivo and in vitro were investigated by establishing cell models and vascular dementia (VD) rat models. BACKGROUND: VD is a neurodegenerative disease characterized by cognitive deficits caused by chronic cerebral hypoperfusion. AC has been studied for its potential to cure VD but its efficacy and underlying mechanism are still unclear. OBJECTIVE: The mechanism of action of AC on cognitive deficits in the early stages of VD is unclear. Here, the 2-vessel occlusion (2-VO) model in vivo and the hypoxia/reoxygenation (H/R) cell model in vitro was established to investigate the function of AC in VD. METHODS: The spatial learning and memory abilities of rats were detected by the Morris method. The IL-6, tumour necrosis factor-α (TNF-α), malondialdehyde (MDA) and superoxide dismutase (SOD) in cell supernatant was tested by ELISA kits. After behavioural experiments, rats were anaesthetized and sacrificed, and their brains were extracted. One part was immediately fixed in 4% paraformaldehyde for H&E, Nissl, and immunohistochemical analyses, and the other was stored in liquid nitrogen. All data were shown as mean ± SD. Statistical comparison between the two groups was performed by Student's t-test. A two-way ANOVA test using GraphPad Prism 7 was applied for escape latency analysis and the swimming speed test. The difference was considered statistically significant at p < 0.05. RESULTS: AC decreased apoptosis, increased autophagy, and alleviated oxidative stress in primary hippocampal neurons. AC regulated autophagy-related proteins in vitro by western blotting. VD mice improved cognitively in the Morris water maze. Spatial probing tests showed that VD animals administered AC had considerably longer swimming times to the platform than VD rats. H&E and Nissl staining showed that AC reduces neuronal damage in VD rats. Western blot and qRT-PCR indicated that AC in VD rats inhibited Bax and promoted LC3-II, Beclin-1, and Bcl-2 in the hippocampus region. AC also improves cognition via the AMPK/mTOR pathway. CONCLUSION: This study found that AC may relieve learning and memory deficits as well as neuronal damage in VD rats by changing the expression of apoptosis/autophagy-related genes and activating the AMPK/mTOR signalling pathway in neurons.


Assuntos
Demência Vascular , Doenças Neurodegenerativas , Ratos , Animais , Camundongos , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Demência Vascular/patologia , Ratos Sprague-Dawley , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Proteínas Quinases Ativadas por AMP , Cognição , Serina-Treonina Quinases TOR
9.
Vet Comp Oncol ; 22(1): 156-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044042

RESUMO

Canine oral melanoma is a highly malignant cancer with a poor prognosis. Statins, commonly used drugs for treating dyslipidemia, exhibit pleiotropic anticancer effects and marked anti-proliferative effects against melanoma cells. The anticancer effects among statins vary; in human cancers, lipophilic statins have shown stronger anticancer effects compared with hydrophilic statins. However, data on the differences in the effects of various statins on canine cancer cells are lacking, hence the optimal statins for treating canine melanoma remain unknown. Therefore, this study aimed to clarify the most effective statin by comparing the anticancer effects of hydrophilic rosuvastatin and lipophilic atorvastatin, simvastatin, fluvastatin and pitavastatin on three canine oral melanoma cell lines. Time-dependent measurement of cell confluence showed that lipophilic statins had a stronger anti-proliferative effect on all cell lines than hydrophilic rosuvastatin. Quantification of lactate dehydrogenase release, an indicator of cytotoxicity, showed that lipophilic statins more effectively induced cell death than hydrophilic rosuvastatin. Lipophilic statins affected both inhibition of cell proliferation and induction of cell death. The anticancer effects of statins on canine oral melanoma cells differed in the following ascending order of IC50 values: pitavastatin < fluvastatin = simvastatin < atorvastatin < rosuvastatin. The required concentration of pitavastatin was approximately 1/20th that of rosuvastatin. Among the statins used in this study, pitavastatin had the highest anticancer effect. Our results suggest lipophilic pitavastatin as the optimal statin for treating canine oral melanoma.


Assuntos
Doenças do Cão , Inibidores de Hidroximetilglutaril-CoA Redutases , Melanoma , Neoplasias Bucais , Animais , Cães , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Rosuvastatina Cálcica , Melanoma/tratamento farmacológico , Melanoma/veterinária , Fluvastatina/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/veterinária , Doenças do Cão/tratamento farmacológico , Sinvastatina/farmacologia
10.
J Microencapsul ; 41(1): 27-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37982590

RESUMO

AIM: Our aim was to repurpose atorvastatin for melanoma by encapsulating in a nanostructured lipid carrier matrix to promote tumour cell internalisation and skin permeation. pH-responsive chitosan gel was employed to restrict At-NLCs in upper dermal layers. METHODS: We utilised a quality by design approach for encapsulating At within the NLC matrix. Further, cellular uptake and cytotoxicity was evaluated along with pH-responsive release and ex vivo skin permeation. RESULTS: Cytotoxicity assay showed 3.13-fold enhanced cytotoxicity on melanoma cells compared to plain drug with nuclear staining showing apoptotic markers. In vitro, release studies showed 5.9-fold rapid release in chitosan gel matrix at pH 5.5 compared to neutral pH. CONCLUSIONS: At-NLCs prevented precipitation, promoted skin permeation, and SK-MEL 28 cell internalisation. The localisation of NLCs on the upper dermal layer due to electrostatic interactions of skin with chitosan gel diminished the incidence of untoward systemic effects.


Assuntos
Quitosana , Melanoma , Nanoestruturas , Humanos , Portadores de Fármacos/farmacologia , Atorvastatina/farmacologia , Melanoma/tratamento farmacológico , Quitosana/farmacologia , Pele , Tamanho da Partícula
11.
Eur J Pharmacol ; 964: 176261, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141938

RESUMO

Endometriosis is a frequent, chronic, estrogen-dependent and inflammatory gynecological disease leading to pain and infertility. Clinical and metabolic studies reveal that patients with endometriosis are susceptible to hyperlipemia and lipid dysfunction, putting them at ascending risk of cardiovascular diseases. Statins constitute a group of cholesterol-lowering drugs with pleiotropic effects. A plethora of researches have proved their ability to inhibit the growth of ectopic lesions in endometriosis. However, concerns exist about their possible adverse effects on ovarian function. This study aimed to investigate the possible effect of atorvastatin on the ovarian endocrine function and fertility capacity in the prevention and treatment of endometriosis. Here, 5 mg/kg atorvastatin was intraperitoneally injected to the endometriosis mice once a day for consecutive fourteen days during and after the development of endometriotic implants. The results indicated that atorvastatin not only led to regression of the ectopic lesions, but also caused no discernible harm to the ovary for both the preventive and the therapeutic models. In addition, it elicited a protective effect on the ovarian reserve and fertility possibly by reducing inflammation in the ovary. Hence, atorvastatin could be a promising drug for endometriosis prevention and treatment.


Assuntos
Endometriose , Humanos , Feminino , Camundongos , Animais , Endometriose/tratamento farmacológico , Endometriose/prevenção & controle , Endometriose/metabolismo , Ovário , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Fertilidade , Estrogênios/farmacologia
12.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 235-240, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158660

RESUMO

Stroke is the top priority pathogenesis of disability and death globally, affecting people worldwide. The presence of high levels of lipids in the blood has been confirmed as a vital factor of ischemic stroke. We aim to examine the effectiveness of Huatanmaitong tablet in hyperlipidemia rats that have experienced an ischemic stroke. We created a rat model of middle cerebral artery occlusion (MCAO) with hyperlipidemia as a basis. Following 8 weeks of high-fat diet, the model rats underwent MCAO surgery. Subsequently, the rats were administered huatanmaitong tablets and lipitor tablets as treatments. Therefore there are five groups, CONTROL, MCAO, hyperlipidemia (HLP), Huatanmaitong tablet (HTMTT) and Lipitor (LIPITOR) groups respective ly. To assess the efficacy of the medication, the serum lipid levels of rats were measured both prior to and following administration. Hematoxylin eosin staining was used to observe the alterations in the brain and liver structures within each group. VEGF and OATPs related factors were detected in brain, liver by using immunohistochemistry, Western blotting, and Quantitative PCR. After the model was established successfully, the infarct volume and behavioral scores of the model group, hyperlipidemia group, Huatan Maitong tablet group and Lipitor group had statistical differences (P<0.05). Blood lipid levels of rats were measured before and after treatment, and it was found that Huatanmaitong tablets effectively reduced these levels. Hematoxylin and eosin staining of the brain and liver showed that huatanmaitong tablets maintained the microstructure stability. Western blotting and real-time PCR revealed that Huatanmaitong tablets improved the expression level of organic anion transport (OATP1B1, OATP2B1) in rat tissues with ischemic stroke, enhancing the transmembrane transport of exogenous substances and maintaining homeostatic balance. Additionally, it down-regulated the expression of VEGF in various organs such as the brain, and liver, demonstrating the ability of Huatanmaitong tablets to remove phlegm, blood stasis, and promote circulation by regulating serum lipid levels, organic anion transport peptide, and VEGF in rats. The behavioral score of ischemic stroke rats can be improved and the neurological impairment symptoms of rats can be alleviated by Huatanmaitong tablet through the regulation of OATPS/VEGF axis.


Assuntos
Medicamentos de Ervas Chinesas , Hiperlipidemias , AVC Isquêmico , Traumatismo por Reperfusão , Animais , Ratos , Ânions , Atorvastatina/farmacologia , Hiperlipidemias/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
13.
Parasitol Res ; 123(1): 57, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105357

RESUMO

Trichinellosis is one of the global food-borne parasitic diseases that can cause severe tissue damage. The traditionally used drugs for the treatment of trichinellosis have limited efficacy against the encysted larvae in the muscular phase of the disease. Therefore, this study aimed to evaluate the role of atorvastatin and mesenchymal stem cells combined with ivermectin against different phases of Trichinella in experimentally infected mice. A total of 120 male Swiss albino mice were divided into two major groups (n = 60 of each), intestinal and muscular phases. Then, each group was subdivided into 10 subgroups (n = 6); non-infected control, infected non-treated control, infected ivermectin treated, infected atorvastatin treated, infected mesenchymal stem cells treated, infected combined ivermectin and atorvastatin treated, infected combined mesenchymal stem cells and ivermectin treated, infected combined mesenchymal stem cells and atorvastatin treated, infected combined mesenchymal stem cells and a full dose of (ivermectin and atorvastatin) treated, and infected combined mesenchymal stem cells and half dose of (ivermectin and atorvastatin) treated. Mice were sacrificed at days 5 and 35 post-infection for the intestinal and muscular phases, respectively. The assessment was performed through many parameters, including counting the adult intestinal worms and muscular encysted larvae, besides histopathological examination of the underlying tissues. Moreover, a biochemical assay for the inflammatory and oxidative stress marker levels was conducted. In addition, levels of immunohistochemical CD31 and VEGF gene expression as markers of angiogenesis during the muscular phase were investigated. The combined mesenchymal stem cells and atorvastatin added to ivermectin showed the highest significant reduction in adult worms and encysted larvae counts, the most noticeable improvement of the histopathological changes, the most potent anti-inflammatory (lowest level of IL-17) and anti-angiogenic (lowest expression of CD31 and VEGF) activities, and also revealed the highly effective one to relieve the oxidative stress (lowest level of SOD, GSH, and lipid peroxidase enzymes). These observed outcomes indicate that adding mesenchymal stem cells and atorvastatin to ivermectin synergistically potentiates its therapeutic efficacy and provides a promising candidate against trichinellosis.


Assuntos
Trichinella spiralis , Triquinelose , Camundongos , Masculino , Animais , Triquinelose/tratamento farmacológico , Triquinelose/parasitologia , Ivermectina/uso terapêutico , Ivermectina/farmacologia , Atorvastatina/uso terapêutico , Atorvastatina/farmacologia , Fator A de Crescimento do Endotélio Vascular , Larva
14.
J Avian Med Surg ; 37(3): 199-208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37962313

RESUMO

Statin drugs are the most effective class of hypolipidemic and antiatherosclerotic drugs, with atorvastatin and rosuvastatin being the most effective. While the use of statins would be a tremendous asset in the treatment of dyslipidemia and lipid-accumulation disorders in birds, there are only limited data available regarding their use and effectiveness in psittacine species. Two consecutive randomized crossover trials on Quaker parrots (Myiopsitta monachus) were performed to study the effect of atorvastatin and rosuvastatin. Ten birds were used in an initial balanced crossover experiment with 5 oral treatments (control; atorvastatin 10 mg/kg q12h and q24h; rosuvastatin 10 mg/kg q12h and q24h) for 2 weeks each. Plasma lipidomics and lipoprotein profiling were performed after each treatment. Twelve birds were used in a second experiment consisting of 2 parallel crossover studies, each with 6 birds either fed their regular diet or a 0.3% cholesterol diet. In the 2 parallel crossover studies, the treatment group was administered atorvastatin 20 mg/kg orally q12h and the control group a placebo suspension orally q12h. Plasma lipidomics, lipoprotein profiles, and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity were subsequently measured. Results were analyzed with serial linear mixed models and trends were assessed graphically. No statistically significant effect of any statin treatment was detected on plasma lipids, lipoproteins, creatinine kinase, or HMG-CoA reductase activity. In the first trial, all the rosuvastatin treatments led to some nonsignificant decreases in several triacylglycerol species, while in the second trial this was only observed in the birds on atorvastatin 20 mg/kg q12h being fed their regular diet. Quaker parrots may require much higher doses of statin drugs to show significant and clinically useful lipid-lowering effects.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Papagaios , Animais , Atorvastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipídeos , Lipoproteínas , Oxirredutases , Rosuvastatina Cálcica , Estudos Cross-Over
15.
J Am Heart Assoc ; 12(23): e031241, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37996988

RESUMO

BACKGROUND: Patients with nonalcoholic fatty liver disease are at increased risk to develop atherosclerotic cardiovascular diseases. FXR and GPBAR1 are 2 bile acid-activated receptors exploited in the treatment of nonalcoholic fatty liver disease: whether dual GPBAR1/FXR agonists synergize with statins in the treatment of the liver and cardiovascular components of nonalcoholic fatty liver disease is unknown. METHODS AND RESULTS: Investigations of human aortic samples obtained from patients who underwent surgery for aortic aneurysms and Gpbar1-/-, Fxr-/-, and dual Gpbar1-/-Fxr-/- mice demonstrated that GPBAR1 and FXR are expressed in the aortic wall and regulate endothelial cell/macrophage interactions. The expression of GPBAR1 in the human endothelium correlated with the expression of inflammatory biomarkers. Mice lacking Fxr and Gpbar1-/-/Fxr-/- display hypotension and aortic inflammation, along with altered intestinal permeability that deteriorates with age, and severe dysbiosis, along with dysregulated bile acid synthesis. Vasomotor activities of aortic rings were altered by Gpbar1 and Fxr gene ablation. In apolipoprotein E-/- and wild-type mice, BAR502, a dual GPBAR1/FXR agonist, alone or in combination with atorvastatin, reduced cholesterol and low-density lipoprotein plasma levels, mitigated the development of liver steatosis and aortic plaque formation, and shifted the polarization of circulating leukocytes toward an anti-inflammatory phenotype. BAR502/atorvastatin reversed intestinal dysbiosis and dysregulated bile acid synthesis, promoting a shift of bile acid pool composition toward FXR antagonists and GPBAR1 agonists. CONCLUSIONS: FXR and GPBAR1 maintain intestinal, liver, and cardiovascular homeostasis, and their therapeutic targeting with a dual GPBAR1/FXR ligand and atorvastatin holds potential in the treatment of liver and cardiovascular components of nonalcoholic fatty liver disease.


Assuntos
Ácidos e Sais Biliares , Inibidores de Hidroximetilglutaril-CoA Redutases , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Ácidos e Sais Biliares/metabolismo , Disbiose/complicações , Disbiose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Receptores Acoplados a Proteínas G/metabolismo
16.
Biomed Pharmacother ; 169: 115885, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984301

RESUMO

Statins are highly prevalent in patients with coronary artery disease. Statins exert their anti-inflammatory effects on the vascular wall and circulating levels of pro-inflammatory cytokines. However, increasing attention revealed the exacerbation of macrophage inflammation induced by statins, and a clear mechanistic explanation of whether the detrimental effects of statins on macrophage inflammatory phenotypes outweigh the beneficial effects is has not yet been established. Here, RNA-sequencing and RT-qPCR analyses demonstrated that statins significantly upregulated EphA2, Nlrp3, IL-1ß and TNF-α expression in macrophages. Mechanistically, we found that atorvastatin reduced KLF4 binding to the EphA2 promoter using KLF4-chromatin immunoprecipitation, suppressed HDAC11-mediated deacetylation and subsequently led to enhanced EphA2 transcription. The 4D-label-free proteomics analysis further confirmed the upregulated EphA2 and inflammatory signals. Furthermore, the proinflammatory effect of atorvastatin was neutralized by an addition of recombinant Fc-ephrinA1, a selective Eph receptor tyrosine kinase inhibitor (ALW-II-41-27) or EphA2-silencing adenovirus (siEphA2). In vivo, EphA2 was identified a proatherogenic factor and apoE-/- mice placed on a high-fat diet following gastric gavage with atorvastatin exhibited a consistent elevation in EphA2 expression. We further observed that the transfection with siEphA2 in atorvastatin-treated mice significantly attenuated atherosclerotic plaque formation and abrogated statin-orchestrated macrophages proinflammatory genes expression as compared to that in atorvastatin alone. Increased plaque stability index was also observed following the addition of siEphA2, as evidenced by increased collagen and smooth muscle content and diminished lipid accumulation and macrophage infiltration. The data suggest that blockage of EphA2 provides an additional therapeutic benefit for further improving the anti-atherogenic effects of statins.


Assuntos
Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Placa Aterosclerótica , Humanos , Camundongos , Animais , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/genética , Macrófagos/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Inflamação/tratamento farmacológico
17.
BMC Complement Med Ther ; 23(1): 415, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978381

RESUMO

BACKGROUND: Cardiovascular disease and cancer are the main causes of morbidity and mortality worldwide. Studies have shown that these two diseases may have some common risk factors. Atorvastatin is mainly used for the treatment of atherosclerosis in clinic. A large number of studies show that atorvastatin may produce anti-tumor activities. This study aimed to predict the common targets of atorvastatin against atherosclerosis and non-small cell lung cancer (NSCLC) based on network pharmacology. METHODS: The target genes of atherosclerosis and NSCLC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The disease-target-component model map and the core network were obtained using Cytoscape 3.7.1. The MTS and wound healing assay were used to detect the effect of atorvastatin on cell viability and migration of A549 cells. The expression of potential common target genes of atorvastatin against atherosclerosis and NSCLC were confirmed in A549 cells and lung cancer tissues of patients. RESULTS: We identified 15 identical pathogenic genes, and four of which (MMP9, MMP12, CD36, and FABP4) were considered as the key target genes of atorvastatin in anti-atherosclerosis and NSCLC. The MTS and wound healing assays revealed that atorvastatin decreased A549 cells migration significantly. Atorvastatin markedly decreased the expression of MMP9, MMP12, CD36, and FABP4 in A549 cells and patients were treated with atorvastatin. CONCLUSIONS: This study demonstrated 15 common pathogenic genes in both atherosclerosis and NSCLC. And verified that MMP 9, MMP 12, CD 36 and FABP 4 might be the common target genes of atorvastatin in anti-atherosclerosis and NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Metaloproteinase 12 da Matriz/uso terapêutico
18.
Int Immunopharmacol ; 124(Pt B): 111061, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844467

RESUMO

BACKGROUND: Cancer chemotherapy is associated with various tissue toxicities that limit its use. Cyclophosphamide (CYC) is one of the most commonly used antineoplastic and immunosuppressive agent. Thyroid dysfunction is a critical side effect of anticancer drugs. Atorvastatin (ATV) is antihyperlipedemic drug with different tissue protective activities. The aim of this study was to determine the potential protective effect of ATV against CYC-induced thyroid injury in rats. METHODS: ATV was administered in the presence and absence of CYC. Thirty-two adult Wistar rats were randomly divided into four groups: control group, ATV group (20 mg/kg/day, p.o. for 14 day), CYC group (200 mg/kg, i.p. on day 9) and ATV/CYC group. Triiodothyronine (T3), thyroxine (T4), reduced glutathione (GSH), malondialdehyde (MDA), total nitrite/nitrate (NOx), p38 mitogen-activated protein kinase (P38MAPK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) were measured. In addition, thyroid histopathology and caspase 3 immunohistochemistry were performed. RESULTS: CYC significantly increased thyroid MDA, NOx, P38MAPK, ERK and JNK with decrease in GSH, T3 and T4 levels. Histopathological features of thyroid lesions and increased caspase 3 immune expression were appeared. ATV significantly normalized distributed oxidative, inflammatory and apoptotic indicators, resulting in an improvement of histopathological features and reduction of caspase 3 immunoexpression. CONCLUSION: These findings suggest that ATV protects against CYC-induced thyroid injury by regulating the JNK/ERK/p38-MAPK signaling pathway.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Transdução de Sinais , Ratos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Atorvastatina/uso terapêutico , Atorvastatina/farmacologia , Caspase 3/metabolismo , Glândula Tireoide/metabolismo , Ratos Wistar , Sistema de Sinalização das MAP Quinases , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ciclofosfamida/toxicidade
19.
Acta Biomater ; 171: 466-481, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793601

RESUMO

Currently, glutaraldehyde (GA)-crosslinked bioprosthetic heart valves (BHVs) still do not guarantee good biocompatibility and long-term effective durability for clinical application due to their subacute thrombus, inflammation, calcification, tearing and limited durability. In this study, double-modified xanthan gum (oxidized/vinylated xanthan gum (O2CXG)) was acquired from xanthan gum for subsequent double crosslinking and modification platform construction. Sulfonic acid groups with anticoagulant properties were also introduced through the free radical polymerization of vinyl sulfonate (VS) and vinyl on O2CXG. Taking advantage of the drug-loading function of xanthan gum, the treated pericardium was further loaded with inflammation-triggered dual drug-loaded nanogel (heparin (Hep) and atorvastatin (Ator)). Mechanical properties of O2CXG-crosslinked porcine pericardium (O2CXG-PP) were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Due to the presence of sulfonic acid groups as well as the dual drug release from nanogels under the stimulation of H2O2, the hemocompatibility, anti-inflammatory, pro-endothelialization and anti-calcification properties of the crosslinked pericardium modified with nanogels loaded with Hep and Ator (O2CXG+VS+(Hep+Ator) nanogel-PP) was significantly better than that of GA-crosslinked PP (GA-PP). The collaborative strategy of double crosslinking and sequential release of anticoagulant/endothelium-promoting drugs triggered by inflammation could effectively meet the requirement of enhanced multiple performance and long-term durability of bioprosthetic heart valves and provide a valuable pattern for multi-functionalization of blood contacting materials. STATEMENT OF SIGNIFICANCE: Currently, glutaraldehyde-crosslinked bioprosthetic heart valves (BHVs) are subject to subacute thrombus, inflammation, calcification and tearing, which would not guarantee good biocompatibility and long-term effective durability. We developed a cooperative strategy of double crosslinking and surface modification in which double-modified xanthan gum plays a cornerstone. The mechanical properties of this BHV were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Inflammation-triggered combination delivery of heparin and atorvastatin has been demonstrated to enhance anticoagulation, anti-inflammatory and pro-endothelialization of BHVs by utilizing local inflammatory response. The collaborative strategy could effectively meet the requirement of enhanced multiple performance and long-term durability of BHVs and provide a valuable pattern for the multi-functionalization of blood-contacting materials.


Assuntos
Bioprótese , Calcinose , Próteses Valvulares Cardíacas , Trombose , Animais , Suínos , Nanogéis , Glutaral/química , Peróxido de Hidrogênio/química , Atorvastatina/farmacologia , Bases de Schiff , Valvas Cardíacas , Heparina , Inflamação , Anti-Inflamatórios , Anticoagulantes , Ácidos Sulfônicos
20.
J Pharmacol Sci ; 153(3): 104-112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770151

RESUMO

Statins, which are cholesterol synthesis inhibitors, are well-known therapeutics for dyslipidemia; however, some studies have anticipated their use as anticancer agents. However, epithelial cancer cells show strong resistance to statins through an increased expression of HMG-CoA reductase (HMGCR), an inhibitory target of statins. Castration-resistant prostate cancer (CRPC) cells synthesize androgens from cholesterol on their own. We performed suppression of CYP11A1, a rate-limiting enzyme in androgen synthesis from cholesterol, using siRNA or inhibitors, to examine the effect of steroidogenesis inhibition on statin sensitivity in CRPC cells. Here, we suggested that CYP11A1 silencing sensitized the statin-resistant CRPC cell line DU-145 to atorvastatin via HMGCR downregulation by an increase in intracellular free cholesterol. We further demonstrated that CYP11A1 silencing induced epithelial-mesenchymal transition, which converted DU-145 cells into a statin-sensitive phenotype. This suggests that concomitant use of CYP11A1 inhibitors could be an effective approach for overcoming statin resistance in CRPC. Moreover, we showed that ketoconazole, a CYP11A1 inhibitor, sensitized DU-145 cells to atorvastatin, although not all the molecular events observed in CYP11A1 silencing were reproducible. Although further studies are necessary to clarify the detailed mechanisms, ketoconazole may be effective as a concomitant drug that potentiates the anticancer effect of atorvastatin.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Atorvastatina/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Cetoconazol , Colesterol , Linhagem Celular Tumoral , Hidroximetilglutaril-CoA Redutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA