Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Vet Parasitol Reg Stud Reports ; 54: 101094, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39237235

RESUMO

Cystic echinococcosis (CE) remains a major human public health problem in Algeria. Surgical treatment is the gold standard. However, one of the most critical complications of surgery is a recurrence of the disease, which is attributed to the dissemination of protoscoleces during the operation. This study aimed to compare the scolicidal effect of two ethanolic and aqueous extracts of Atriplex halimus, a plant used by the Algerian population against CE. The comparison involved the assessment of the phytochemical content, making screening using GC-MS/MS, and the evaluation of the antioxidant activity using DPPH and the in vitro scolicidal effect of A. halimus extracts. The aqueous and ethanolic extracts of leaves contained 19.601 ± 0.016 and 15.406 ± 0.003 mg of gallic acid equivalent per g of extract (GAE/g extract) of total phenolic. However, the flavonoid content in ethanolic and aqueous extracts was 4.350 ± 0.023 and 1.995 ± 0.026 mg of quercetin equivalent per g (QE/g extract), respectively. Four compounds were identified by GC-MS/MS for the ethanolic extract, while twenty-three compounds were determined for the aqueous extract. The ethanolic and aqueous extracts of A. halimus demonstrated an antioxidant activity with IC50 = 0.850 ± 0.026 mg/ml and IC50 = 0.897 ± 0.060 mg/ml, respectively. The higher in vitro scolicidal effect was 100% after 90 min and 10 min at 100 and 150 mg/ml, respectively for the ethanolic extract and after 120 and 60 min at 100 and 150 mg/ml, respectively for the aqueous extract. Atriplex halimus could be used as a natural source for the production of a potential scolicidal agent for use during CE surgery and/or percutaneous interventions.


Assuntos
Anti-Helmínticos , Atriplex , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Argélia , Atriplex/química , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Anti-Helmínticos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Folhas de Planta/química , Etanol/química , Cromatografia Gasosa-Espectrometria de Massas , Equinococose/tratamento farmacológico , Echinococcus granulosus/efeitos dos fármacos
2.
Toxins (Basel) ; 16(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535801

RESUMO

Ribosome inactivating proteins (RIPs) are specific N-ß-glycosylases that are well-characterized in plants. Their enzymatic action is to damage ribosomes, thereby blocking protein translation. Recently, several research groups have been working on the screening for these toxins in edible plants to facilitate the use of RIPs as biotechnological tools and biopesticides and to overcome public prejudice. Here, four novel monomeric (type 1) RIPs have been isolated from the seeds of Atriplex hortensis L. var. rubra, which is commonly known as edible red mountain spinach. These enzymes, named hortensins 1, 2, 4, and 5, are able to release the ß-fragment and, like many other RIPs, adenines from salmon sperm DNA, thus, acting as polynucleotide:adenosine glycosidases. Structurally, hortensins have a different molecular weight and are purified with different yields (hortensin 1, ~29.5 kDa, 0.28 mg per 100 g; hortensin 2, ~29 kDa, 0.29 mg per 100 g; hortensin 4, ~28.5 kDa, 0.71 mg per 100 g; and hortensin 5, ~30 kDa, 0.65 mg per 100 g); only hortensins 2 and 4 are glycosylated. Furthermore, the major isoforms (hortensins 4 and 5) are cytotoxic toward human continuous glioblastoma U87MG cell line. In addition, the morphological change in U87MG cells in the presence of these toxins is indicative of cell death triggered by the apoptotic pathway, as revealed by nuclear DNA fragmentation (TUNEL assay).


Assuntos
Atriplex , Proteínas Inativadoras de Ribossomos Tipo 1 , Sementes , Humanos , Glioblastoma , Ribossomos , Proteínas de Plantas , Linhagem Celular Tumoral
3.
Inflammopharmacology ; 32(2): 1187-1201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367124

RESUMO

Atriplex crassifolia (A. crassifolia) is a locally occurring member of Chenopodiaceae family that has been used in folk medicine for the treatment of joint pain and inflammation. The present study was focused to determine the analgesic and anti-inflammatory potential of the plant. n-hexane (ACNH) and methanol (ACM) extracts of A. crassifolia were evaluated for in vitro anti-inflammatory potential using protein denaturation inhibition assay. In vivo anti-inflammatory potential was determined by oral administration of 250, 500, and 1000 mg/kg/day of extracts against carrageenan and formalin-induced paw edema models. Inflammatory mediators such as TNF-α, IL-10, IL-1ß, NF-kB, IL-4, and IL-6 were estimated in blood samples of animals subjected to formalin model of inflammation. Analgesic activity was determined using acetic acid-induced writhing and tail flick assay model. Phytochemical profiling was done by GC-mass spectrophotometer. The results of in vitro anti-inflammatory activity revealed that both ACNH and ACM displayed eminent inhibition of protein denaturation in concentration-dependent manner. In acute in vivo carrageenan-induced paw edema model, both extracts reduced inflammation at 5th and 6th hour of study (p < 0.05). A. crassifolia extracts exhibited significant inhibition against formalin-induced inflammation with maximum effect at 1000 mg/kg. ACNH and ACM significantly augmented the inflammatory mediators (p < 0.05). Levels of TNF-α, IL-6, IL-1ß, and NF-kB were reduced, while those of IL-4 and IL-10 were upregulated. ACNH displayed maximum analgesic effect at 1000 mg/kg, while ACM showed potent activity at 500 and 1000 mg/kg. The extracts restored the CBC, TLC and CRP toward normal. GC-MS analysis revealed the presence of compounds like n-hexadecanoic acid, Phytol, (9E,11E)-octadecadienoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, 1-hexacosene, vitamin E, campesterol, stigmasterol, gamma sitosterol in both extracts. These compounds have been reported to suppress inflammation by inhibiting inflammatory cytokines. The current study concludes that A. crassifolia possesses significant anti-nociceptive and anti-inflammatory potential owing to the presence of phytochemicals.


Assuntos
Atriplex , Interleucina-10 , Animais , Carragenina , Atriplex/metabolismo , Extratos Vegetais , Cromatografia Gasosa-Espectrometria de Massas , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-4 , Interleucina-6 , Anti-Inflamatórios , Analgésicos , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Dor/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Formaldeído , Mediadores da Inflamação/metabolismo
4.
Chem Biodivers ; 21(7): e202301941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38224199

RESUMO

Mediterranean saltbush Atriplex halimus L. (Amaranthaceae) from different bioclimatic arid zones (ten wild populations) were studied. Phenols contents, flavonoids, flavonols, tannins and anthocyanins were determined and then tested for their antioxidants, antidiabetic and anti-acetylcholinesterase (AChE) activities. Levels of total polyphenols including flavonoids and flavonols, tannins and anthocyanins were high and varied significantly among analyzed populations. Nine phenolic acids and four flavonoids were identified for the first time in the methanolic fraction and quantified by liquid high-performance chromatography system HPLC (DAD). All extracts showed a substantial antioxidant activity, as assessed by DPPH assay (1,1-diphenyl-2-picrylhydrazyl free radical) (IC50DPPH=147.3for population of Seliena), Ferric Reducing Antioxidant Power (FRAP; IC50FRAP=3.2 for populations of Sousse and Kairouan), and Chelation Fer test (IC50FerCh=1.5 µg/mL for populations of El-hamma and Mednine). Atriplex halimus possessed a high inhibitory effect against α-amylase activity (up to 2.6 mg ACE/gE), a moderate activity for α-glucosidase (up to 91.0 mg ACE/gE) and AChE (up to 147.2 µg/mL) compared to standard. The analyzed populations were isolated and subdivided into three distinct groups, without any bioclimatic structuration. Enzymatic activities seem to be associated with the presence, in plant extracts, of other classes of compounds then phenols such as terpenes, sterols, saponins, coumarins and carotenoids.


Assuntos
Acetilcolinesterase , Antioxidantes , Atriplex , Inibidores da Colinesterase , Hipoglicemiantes , Compostos Fitoquímicos , Extratos Vegetais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Acetilcolinesterase/metabolismo , Atriplex/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Compostos de Bifenilo/antagonistas & inibidores , Picratos/antagonistas & inibidores , alfa-Glucosidases/metabolismo
5.
J Agric Food Chem ; 71(41): 15017-15034, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791532

RESUMO

A comprehensive oxidation mechanism was investigated for amaranthin-type betacyanins with a specific glucuronosylglucosyl moiety isolated from Atriplex hortensis 'rubra' using liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI-MS/MS) and LC-Quadrupole-Orbitrap-MS (LC-Q-Orbitrap-MS). By employing one-dimensional (1D) and two-dimensional (2D) NMR, this study elucidates the chemical structures of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)-oxidized celosianins for the first time. These findings demonstrate alternative oxidation pathways for acylated betacyanins compared to well-known betanidin, betanin, and gomphrenin pigments. Contrary to previous research, we uncover the existence of 17-decarboxy-neo- and 2,17-bidecarboxy-xanneo-derivatives as the initial oxidation products without the expected 2-decarboxy-xan forms. These oxidized compounds demonstrated potent free radical scavenging properties. Celosianin (IC50 = 23 µg/mL) displayed slightly higher antioxidant activity compared to oxidized forms, 17-decarboxy-neocelosianin (IC50 = 34 µg/mL) and 2,17-bidecarboxy-xanneocelosianin (IC50 = 29 µg/mL). The oxidized compounds showed no cytotoxic effects on H9c2 rat cardiomyoblasts (0.1-100 µg/mL). Additionally, treatment of H9c2 cells with the oxidized compounds (0.1-10 µg/mL) elevated glutathione levels and exhibited protective effects against H2O2-induced cell death. These findings have significant implications for understanding the impact of oxidation processes on the structures and biological activities of acylated betalains, providing valuable insights for future studies of the bioavailability and biological mechanism of their action in vivo.


Assuntos
Atriplex , Betacianinas , Animais , Ratos , Betacianinas/farmacologia , Betacianinas/química , Antioxidantes/farmacologia , Antioxidantes/química , Spinacia oleracea , Espectrometria de Massas em Tandem , Peróxido de Hidrogênio , Cromatografia Líquida de Alta Pressão/métodos
6.
Int J Phytoremediation ; 25(12): 1558-1566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36740728

RESUMO

Quail bush [Atriplex lentiformis (Torr.) S. Wats] plants were used in removing 2, 4-dinitrophenol (DNP) from wastewater in a hydroponic experiment. The hydroponic system contained three doses of DNP, i.e., 0, 10, and 20 mg L-1. Quail bush plants were sprayed with 0.1 mM salicylic acid (SA) to study its role in resisting DNP toxicity. DNP significantly (p < 0.05) reduced plant growth. Exposure of A. lentiformis plants to 20 mg L-1 of DNP reduced the total chlorophyl and relative water content by 39 and 24%, respectively. SA improved the antioxidant defense in terms of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) activities. SA alleviated DNP toxicity by enhancing the production of osmoprotectants, e.g.,proline, phenols, and carbohydrates. SA enhanced the removal efficiency of DNP and the highest removal efficiency (96%) was recorded in the plants sprayed with SA and grown on 10 mg L-1 of DNP. A. lentiformis is a halophytic plant that has good physiological characteristics to resist 2, 4-dinitrophenol toxicity in wastewaters and is qualified to purify water from these harmful compounds. Exogenous application of 0.1 mM SA increased the defense system in A. lentiformis against 2, 4-dinitrophenol toxicity and enhanced the removal efficiency.


2, 4-dinitrophenol inhibited the synthesis of photosynthetic pigments.Salicylic acid protects the vital bio-compounds in plant cells.Atriplex plants are able to remove (96%) of 2, 4-dinitrophenol from the wastewater.Atriplex plants have a strong antioxidant defense enable them to survive in wastewater.


Assuntos
Atriplex , Águas Residuárias , Ácido Salicílico/farmacologia , Biodegradação Ambiental , Dinitrofenóis/farmacologia , Água , Antioxidantes/farmacologia
7.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770647

RESUMO

The genus Atriplex provides species that are used as food and natural remedies. In this work, the levels of soluble phenolic acids (free and conjugated) and flavonoids in extracts from roots, stems, leaves and flowers of the unexplored Atriplex sagittata Borkh were investigated by LC-ESI-MS/MS, together with their antioxidant and antihyaluronidase activity. Phenolic acids were present in all parts of A. sagittata; and were most abundant in the leaves (225.24 µg/g dw.), whereas the highest content of flavonoids were found in the flowers (242.71 µg/g dw.). The most common phenolics were 4-hydroxybenzoic and salicylic acids, kaempferol-3-glucoside-7-rhamnoside, kaempferol-3-rutinoside and the rare narcissoside, which was present in almost all morphotic parts. The stem extract had the highest antioxidant activity and total phenolic content (611.86 mg/100 g dw.), whereas flower extract exerted the most potent antihyaluronidase effect (IC50 = 84.67 µg/mL; control-quercetin: IC50 = 514.28 µg/mL). Phytochemical analysis of the flower extract led to the isolation of two triterpene saponins that were shown to be strong hyaluronidase inhibitors (IC50 = 33.77 and 168.15 µg/mL; control-escin: IC50 = 307.38 µg/mL). This is the first report on the presence of phenolics and saponins in A. sagittata. The results suggest that both groups of metabolites may contribute to the overall activity of this plant species.


Assuntos
Atriplex , Saponinas , Antioxidantes/química , Quempferóis , Extratos Vegetais/química , Saponinas/farmacologia , Espectrometria de Massas em Tandem/métodos , Hialuronoglucosaminidase , Fenóis/química , Flavonoides/química
8.
Food Chem ; 414: 135641, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36809729

RESUMO

Atriplex hortensis var. rubra L. extracts prepared from leaves, seeds with sheaths, and stems were characterized for betalainic profiles by spectrophotometry, LC-DAD-ESI-MS/MS and LC-Orbitrap-MS techniques. The presence of 12 betacyanins in the extracts was strongly correlated with high antioxidant activity measured by ABTS, FRAP, and ORAC assays. Comparative assessment between samples indicated the highest potential for celosianin and amaranthin (IC50 21.5 and 32.2 µg/ml, respectively). The chemical structure of celosianin was elucidated for the first time by complete 1D and 2D NMR analysis. Our findings also demonstrate that betalain-rich A. hortensis extracts and purified pigments (amaranthin and celosianin) do not induce cytotoxicity in a wide concentration range in rat cardiomyocytes model (up to 100 µg/ml for extracts and 1 mg/ml for pigments). Furthermore, tested samples effectively protect H9c2 cells from H2O2-induced cell death and prevent from apoptosis induced by Paclitaxel. The effects were observed at sample concentrations between 0.1 and 10 µg/ml.


Assuntos
Atriplex , Betalaínas , Animais , Ratos , Betalaínas/farmacologia , Betalaínas/química , Antioxidantes/química , Espectrometria de Massas em Tandem , Peróxido de Hidrogênio , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
J Nat Prod ; 85(11): 2667-2674, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346918

RESUMO

Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 µM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 µM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.


Assuntos
Alternaria , Anti-Inflamatórios , Antivirais , Atriplex , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Perileno , Plantas Medicinais , Quinonas , Humanos , Alternaria/química , Alternaria/isolamento & purificação , Atriplex/microbiologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/efeitos dos fármacos , Estrutura Molecular , Perileno/química , Perileno/isolamento & purificação , Perileno/farmacologia , Plantas Medicinais/microbiologia , Quinonas/química , Quinonas/isolamento & purificação , Quinonas/farmacologia , Ácido Tenuazônico/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia
10.
Exp Parasitol ; 229: 108155, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34480915

RESUMO

Cystic echinococcosis, an endemic zoonosis in Algeria, is caused by the development of the helminth Echinococcus granulosus. Surgery remains the main treatment despite inducing relapse and several adverse reactions. In this context, natural scolicidal agents seem to be promising tools to overcome these reactions. In our study, we evaluated the phytochemical contents, antioxidant activity and scolicidal effect of Atriplex halimus. In this context, the aqueous extract from AH leaves (AHE) was subjected to preliminary phytochemical screening by HPLC. The in vitro antioxidant activity was determined by DPPH test. The cytotoxicity of AHE was evaluated in murine peritoneal macrophages and cell viability was examined by MTT assay. Moreover, different concentrations of AHE (20, 40, 50, 60 and 100 mg/ml) were tested on E. granulosus protoscoleces (PSC) cultures, during different times of incubation (15, 30, 60, 90, 120 and 180 min). The viability was evaluated by eosin exclusion test. The morphological and ultrastructural damages were evaluated by SEM. Our results indicate that total phenolic and flavonoids contents were 37.93 µg of Gallic acid equivalent per mg of extract (GAE/mg E) and 18.86 µg of Quercetin equivalent per mg (QE/mg E) respectively. Furthermore, AHE has an antioxidant activity with an IC50 of 0.95 mg/ml. Interestingly, the extracts did not exhibit any cytotoxic effect against murine peritoneal macrophages. Moreover, our study indicated a significant scolicidal activity time- and dose-dependent. At 60 and 100 mg/ml; and after 120 min of incubation; the mortality rate was 99.36 and 100%, respectively. The parasite's tegument is one of the plant's targets as demonstrated by SEM. Our findings show the benefits of Atriplex halimus extract as a new promising scolicidal tool in hydatid cyst treatment.


Assuntos
Atriplex/química , Echinococcus granulosus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Echinococcus granulosus/crescimento & desenvolvimento , Echinococcus granulosus/ultraestrutura , Concentração Inibidora 50 , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Extratos Vegetais/análise , Folhas de Planta/química
11.
J Sep Sci ; 44(23): 4222-4236, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34586718

RESUMO

Betacyanins and their decarboxylated derivatives from fresh and dried edible leaves of Atriplex hortensis L. var. "Rubra" were fractionated for the first time by high-speed countercurrent chromatography. Pigments present in fresh leaf extract were separated in systems: ethanol - acetonitrile - n-propanol - ammonium sulphate - water (0.5:0.5:0.5:1.2:1.0, v/v/v/v/v) (tail-to-head mode) and tert-butyl methyl ether - n-butanol - acetonitrile - water with 0.7% heptafluorobutyric acid (2:2:1:5, v/v/v/v) (head-to-tail mode). The mobile phase flow rate was 2 mL/min and the retention of the stationary phase was 79.8 and 75.2%, respectively. Pigments from dried leaves were separated in a similar ion-pair system with heptafluorobutyric acid in different volume proportions 1:3:1:5 (head-to-tail mode) and the flow rate of the mobile phase 3 mL/min. The stationary phase retention was 64.0%. The application of the countercurrent chromatography for the fractionation of betacyanins from leaves of Atriplex hortensis enabled to isolate and pre-concentrate the pigments for further low- and high-resolution liquid chromatographic-tandem mass spectrometric detection. This study revealed the presence of 10 betacyanins in fresh and 16 in dried leaves of Atriplex hortensis. Two compounds were not previously identified in the whole Amaranthaceae family. Additionally, instead of (iso)amaranthin, celosianin and its epimer were dominant betacyanins in the Atriplex hortensis.


Assuntos
Atriplex/química , Betacianinas/isolamento & purificação , Folhas de Planta/química , Betacianinas/química , Distribuição Contracorrente , Estrutura Molecular
12.
Plant Physiol Biochem ; 166: 902-911, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34243017

RESUMO

This study aims to establish for the first time a comparison between the resistance to cadmium (Cd) stress of three halophyte species, Atriplex canescens, Atriplex halimus and Atriplex nummularia in addition to their already known tolerance for salt and drought. Plants were exposed to CdCl2 (20 and 50 µM) in the presence or in the absence of salt (50 mM NaCl) for one and two months. The amount of accumulated Cd was determined in the roots and leaves as well as the amount excreted on the surface of the leaves. Physiological parameters such as chlorophyll content and stress biomarkers, including malondialdehyde and enzymatic activities, were then analyzed. The results show that these plants are able to neutralize the excess of reactive oxygen species resulting from treatments by activating the antioxidant defense mechanisms in order to restore the homeostasis of cells. All three species are also able to accumulate high amounts of Cd in the leaves (several hundred mg of Cd/kg of dry leaves) and this phenomenon is amplified in the presence of salt. All together our results allow to consider the three Atriplex species as hyperaccumulators in the presence/absence of salt and as good candidates in a strategy of Cd phytoextraction in the presence of low concentrations of the pollutant. Nevertheless, both A. canescens and A. nummularia species seem to have a higher capacity to hyper-accumulate Cd when the concentration of Cd reaches higher level of contamination.


Assuntos
Atriplex , Cádmio , Folhas de Planta , Plantas Tolerantes a Sal , Cloreto de Sódio
13.
Nat Prod Res ; 35(24): 5757-5764, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33054376

RESUMO

Two new cycloartane glycosides, cycloatriosides A and B (1-2), and a new oleanolic acid glycoside, thaliatrioside A (3), along with 7 known triterpenoids (4-10) were isolated from Thalictrum atriplex. The structures of the new compounds were established as 3-O-ß-D-galactopyranosyl (20S, 24 R)-3ß,16ß,25,29-tetrahydroxy-20,24-epoxycycloartane-29-O-ß-D-glucopyranoside (1), 3-O-ß-D-glucopyranosyl-(1→2)-α-arabinopyranosyl-3ß,22ξ,30-trihydroxycycloart-24-en-21-oic acid α-L-arabinopyranosyl-(1→6)-ß-D-glucopyranoside (2) and 3-O-[α-L-rhamnopyranosyl-(1→3)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl]-oleanolic acid 28-O-ß-D-glucopyranosyl ester (3) on the basis of extensive NMR and HR-ESI-MS analyses, along with acid hydrolysis. Their cytotoxic activities against human lung cancer cells A549 and human breast cancer cells MDA-MB-231 were evaluated using MTT method. Compound 9 showed cytotoxicity against MDA-MB-231 cell line with the IC50 value of 72.53 ± 1.08 µM.


Assuntos
Atriplex , Saponinas , Thalictrum , Triterpenos , Glicosídeos , Humanos , Estrutura Molecular , Saponinas/farmacologia , Triterpenos/farmacologia
14.
Phytomedicine ; 71: 153225, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32464299

RESUMO

BACKGROUND: Impaired bone formation is one of the reasons behind osteoporosis. Alterations in the patterns of mesenchymal stromal cell differentiation towards adipocytes instead of osteoblasts contribute to osteoporosis progression. Natural anti-osteoporotic agents are effective and safe alternatives for osteoporosis treatment. PURPOSE: In this context, 3,5-dicaffeoyl­epi-quinic acid (DCEQA) which is a derivative of chlorogenic acid with reported bioactivities was studied for its osteogenic differentiation enhancing potential in vitro. METHODS: Anti-osteoporotic effects of DCEQA were investigated in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) which were induced to differentiate into osteoblasts or adipocytes with or without DCEQA treatment. Changes in the osteogenic and adipogenic markers such as ALP activity and lipid accumulation, respectively, were observed along with differentiation-specific activation of mitogen activated protein kinase (MAPK) pathways. RESULTS: At 10 µM concentration, DCEQA increased the proliferation of bone marrow-derived human mesenchymal stromal cells (hBM-MSCs) during osteoblast differentiation. The expression of osteogenic markers ALP, osteocalcin, Runx2, BMP2 and Wnt 10a was upregulated by DCEQA treatment. The ALP activity and extracellular mineralization were also increased. DCEQA elevated the phosphorylation levels of p38 and JNK MAPKs as well as the activation of ß-catenin and Smad1/5. DCEQA suppressed the lipid accumulation and downregulated expression of adipogenic markers PPARγ, C/EBPα and SREBP1c in adipo-induced hBM-MSCs. DCEQA also decreased the phosphorylation of p38 and ERK MAPKs and stimulated the activation of AMPK in hBM-MSC adipocytes. CONCLUSION: DCEQA was suggested to enhance osteoblast differentiation via stimulating Wnt/BMP signaling. The adipocyte differentiation inhibitory effect of DCEQA was suggested to arise from its ability to increase AMPK phosphorylation. Overall, DCEQA was shown to possess osteogenesis enhancing and adipogenesis inhibitory properties which might facilitate its use against osteoporotic conditions.


Assuntos
Adipócitos/citologia , Atriplex/química , Ácido Clorogênico/análogos & derivados , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Células da Medula Óssea , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ácido Clorogênico/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
15.
Z Naturforsch C J Biosci ; 75(3-4): 113-120, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32191627

RESUMO

Matrix metalloproteinases (MMPs), especially MMP-2 and MMP-9, are very important gelatinases that are overexpressed during tumor metastasis. Up to date, several MMP inhibitors have been developed from natural sources as well as organic synthesis. In the present study, the MMP-2 and MMP-9 inhibitory effects of 3,5-dicaffeoyl-epi-quinic acid (DCEQA), a caffeoylquinic acid derivative isolated from Atriplex gmelinii, were investigated in phorbol 12-myristate 13-acetate (PMA)-treated human HT1080 fibrosarcoma cells. Gelatin zymography and immunoblotting showed that DCEQA significantly inhibited the PMA-induced activation and expression of MMP-9 but was not able to show any effect against MMP-2. DCEQA treatment was also shown to upregulate the protein expression of tissue inhibitor of MMP-1 along with decreased MMP-9 protein levels. Moreover, the effect of DCEQA on phosphorylation of mitogen activated protein kinases (MAPKs), analyzed by immunoblotting, indicated the DCEQA inhibited the MMP-9 by downregulation of MAPK pathway. Collectively, current results suggested that DCEQA is a potent MMP-9 inhibitor and can be utilized as lead compound for treatment of pathological complications involving enhanced MMP activity such as cancer metastasis.


Assuntos
Atriplex/química , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Ésteres de Forbol/efeitos adversos , Ácido Quínico/análogos & derivados , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Estrutura Molecular , Extratos Vegetais/química , Ácido Quínico/química , Ácido Quínico/farmacologia
16.
Environ Toxicol Chem ; 39(3): 721-730, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900942

RESUMO

Unlike most other conventional petroleum products that are derived from crude oil, gas-to-liquids (GTLs) are petroleum products that are synthesized from natural gas (methane). This process results in GTL products having no sulfur and low aromatic content, so they should have less impact on human health and the environment compared with crude oil-derived products. The GTLs have been registered for use as nonaqueous base fluids (NABFs) in drilling muds, which aid in the process of drilling wells for oil and gas extraction; it is through these uses and others that they enter terrestrial environments. The primary objective of the present study was to determine whether GTLs were less toxic to terrestrial soil biota than conventional NABFs used for land-based drilling, such as diesel and low-toxicity mineral oil (LTMO). A second objective was to understand the fate and impact of these fluids under more realistic soil and aging conditions of a common west Texas (USA) oil-producing region (i.e., sandy loam soil with low organic matter and a hot arid climate). Acute terrestrial toxicity studies were conducted on the soft-bodied terrestrial invertebrate earthworm (Eisenia fetida) along with 3 plant species-alfalfa (Medicago stavia), thickspike wheatgrass (Elymus lanceolatus), and fourwing saltbrush (Atriplex canescens). We also assessed changes in microbial community structure of the soils following additions of NABF. Overall, the GTL NABFs had lower toxicity compared with conventional NABFs like diesel and LTMO, as measured by invertebrate toxicity, plant seed germination, and impact on the microbial community. Environ Toxicol Chem 2020;39:721-730. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Atriplex/efeitos dos fármacos , Elymus/efeitos dos fármacos , Medicago sativa/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Petróleo/efeitos adversos , Animais , Indústria de Petróleo e Gás , Microbiologia do Solo , Texas
17.
Arch Physiol Biochem ; 126(1): 49-60, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30269598

RESUMO

The objective of this study was to evaluate the potential protective effect of Atriplex halimus aqueous leaves extract (AHAE) against acute carbon tetrachloride (CCl4)-induced oxidative stress in rats. Rats were randomly divided into four groups: group (C) served as a control treated with 1 ml/(kg bw) of olive oil, and group (CCl4) was treated with 1 ml CCl4/(kg bw) dissolved in olive oil administered by intraperitoneal way. Rats of group (CCl4+AHAE) have received CCl4 and treated with 200 mg AHAE/(kg bw). Animals of group (AHAE) were treated with 200 mg/(kg bw) of AHAE. A significant increase in malondialdehyde levels in liver associated with a decrease in antioxidant enzyme activities and reduced glutathione content was observed in CCl4 group compared to controls. The administration of AHAE to CCl4+AHAE group improved all parameters studied. We conclude that CCl4 induces oxidative stress and modifies biochemical parameters and histological aspects of liver. Administration of AHAE alleviates the toxicity induced by this organic compound.


Assuntos
Antioxidantes/farmacologia , Atriplex/química , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Tetracloreto de Carbono/toxicidade , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Esquema de Medicação , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
18.
Plant Sci ; 274: 32-43, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080618

RESUMO

Ethylene-responsive factors (ERFs) comprise a large family of transcription factors in plants and play important roles in developmental processes and stress responses. Here, we characterized a novel AP2/ERF transcription factor, AcERF2, from the halophyte Atriplex canescens (four-wing saltbush, Chenopodiaceae). AcERF2 was proved to be a transcriptional activator in yeast and localized to the nucleus upon transient expression in Nicotiana benthamiana, indicating its potential role as a transcription factor. Overexpression of AcERF2 driven by a CaMV35S promoter led to decreased accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased antioxidant enzymatic activities, as well as rapid stomatal closure under osmotic treatment in Arabidopsis. Arabidopsis plants overexpressing AcERF2 were hypersensitive to abscisic acid (ABA) during germination, seedling establishment, and primary root elongation, and exhibited significant tolerance to osmotic stress. Furthermore, overexpression of AcERF2 induced transcript accumulation of plant defense-related genes (PR1, PR2, PR5, ERF1 and ERF3) and increased Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and the necrotrophic fungal pathogen Botrytis cinerea. These results suggest that AcERF2 may play a positive modulation role in response to osmotic stress and pathogen infection in plants.


Assuntos
Arabidopsis/fisiologia , Atriplex/fisiologia , Resistência à Doença , Pressão Osmótica , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Ácido Abscísico/metabolismo , Germinação , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia
19.
Ecotoxicol Environ Saf ; 139: 344-351, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28187398

RESUMO

Most arsenic in surface soil and water exists primarily in its oxidized form, as arsenate (As(V); AsO43-), which is an analog of phosphate (PO43-). Arsenate can be taken up by phosphate transporters. Atriplex atacamensis Phil. is native to northern Chile (Atacama Desert), and this species can cope with high As concentrations and low P availability in its natural environment. To determine the impact of P on As accumulation and tolerance in A. atacamensis, the plants were cultivated in a hydroponic system under four treatments: no As(V) addition with 323µM phosphate (control); 1000µM As(V) addition with 323µM phosphate; no As(V) and no phosphate; 1000µM As(V) addition and no phosphate. Phosphate starvation decreased shoot fresh weight, while As(V) addition reduced stem and root fresh weights. Arsenate addition decreased the P concentrations in both roots and leaves, but to a lesser extent than for P starvation. Phosphorus starvation increased the As concentrations in roots, but decreased it in shoots, which suggests that P deficiency reduced As translocation from roots to shoots. Arsenate addition increased total glutathione, but P deficiency decreased oxidized and reduced glutathione in As(V)-treated plants. Arsenate also induced an increase in S accumulation and nonprotein thiol and ethylene synthesis, and a decrease in K concentrations, effects that were similar for the P-supplied and P-starved plants. In contrast, in As(V)-treated plants, P starvation dramatically decreased total soluble protein content and increased lipid peroxidation, compared to plants supplied with P. Phosphorus nutrition thus appears to be an important component of A. atacamensis response to As toxicity.


Assuntos
Arseniatos/farmacocinética , Atriplex/efeitos dos fármacos , Atriplex/metabolismo , Fósforo/deficiência , Arseniatos/metabolismo , Arseniatos/farmacologia , Transporte Biológico/efeitos dos fármacos , Etilenos/biossíntese , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fósforo/metabolismo , Fósforo/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Potássio/metabolismo , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo
20.
Plant Sci ; 248: 64-74, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27181948

RESUMO

An ErbB-3-binding protein gene AcEBP1, also known as proliferation-associated 2G4 gene (PA2G4s) belonging to the M24 superfamily, was obtained from the saltbush Atriplex canescens. Subcellular localization imaging showed the fusion protein AcEBP1-eGFP was located in the nucleus of epidermal cells in Nicotiana benthamiana. The AcEBP1 gene expression levels were up-regulated under salt, osmotic stress, and hormones treatment as revealed by qRT-PCR. Overexpression of AcEBP1 in Arabidopsis demonstrated that AcEBP1 was involved in root cell growth and stress responses (NaCl, osmotic stress, ABA, low temperature, and drought). These phenotypic data were correlated with the expression patterns of stress responsive genes and PR genes. The AcEBP1 transgenic Arabidopsis plants also displayed increased sensitivity under low temperature and evaluated resistance to drought stress. Together, these results demonstrate that AcEBP1 negatively affects cell growth and is a regulator under stress conditions.


Assuntos
Arabidopsis/fisiologia , Atriplex/fisiologia , Proteínas de Plantas/fisiologia , Receptor ErbB-3/fisiologia , Plantas Tolerantes a Sal/fisiologia , Estresse Fisiológico/fisiologia , Arabidopsis/metabolismo , Atriplex/metabolismo , Clonagem Molecular , Indóis , Pressão Osmótica/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Plantas Tolerantes a Sal/metabolismo , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA