RESUMO
In this study, the purpose was to screen novel angiotensin converting enzyme inhibitory peptides (ACEIPs) from tuna muscle taking two-steps enzymatic hydrolysis (Neutrase and Alkaline). Following isolation and purification by ultrafiltration, the Sephadex G-15 gel chromatography and reversed-phase high-performance liquid chromatography based on active-guide, the amino acid sequence was identified using Q-Orbitrap-MS/MS. Five peptides were chose synthesized based on the in silico screening methods. Among these, the two novel ACEIPs LTGCP and YPKP showed better inhibitory ability, and their corresponding IC50 values were 64.3 µM and 139.6 µM. Subsequently, the interaction mechanism of the best active peptide (LTGCP) against ACE was investigated by inhibitory pattern, molecular docking and molecular dynamic simulation. The result displayed that LTGCP was a mix-type inhibitor against ACE from the Lineweaver-Burk plots. LTGCP formed seven hydrogen bonds based on the molecular docking and the binding energy was -7.29 kcal/mol. LTGCP formed a stability complex with ACE based on the molecular dynamic simulation. Besides, LTGCP exhibited good stability in various temperature, pH and gastrointestinal digestion. Finally, the 0.125 mM â¼ 1.0 mM LTGCP exhibited no-toxic for Caco-2 cell. In summary, these findings showed that tuna was a good material to prepare ACEIPs and LTGCP may be the good potential antihypertensive drug or nutraceuticals.
Assuntos
Inibidores da Enzima Conversora de Angiotensina , Simulação de Acoplamento Molecular , Peptídeos , Atum , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Peptídeos/química , Peptídeos/farmacologia , Humanos , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Simulação de Dinâmica Molecular , Músculos/efeitos dos fármacos , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Células CACO-2 , Estabilidade ProteicaRESUMO
In this study, the enzymatic hydrolysates of skipjack tuna, Katsuwonus pelamis, were purified by ultrafiltration and further identified through micro-ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (micro-UPLC-QTOF-MS). The potential umami peptides were identified using both conventional collision-induced dissociation (CID) and novel electron-activated dissociation (EAD) fragmentation techniques. Nine novel umami peptides with iUmami-SCM > 588 were screened. Sensory evaluation and electronic tongue analysis were performed to confirm the taste characteristics of the umami peptides, indicating that these umami peptides all exhibited varying degrees of umami taste. Molecular docking and molecular dynamics simulation were utilized to investigate the interaction with T1R1/T1R3 taste receptors. The docking results revealed that Asp234, Ser23, Glu231, and Ile237 appeared most frequently in all docking sites and formed stable complexes through hydrogen bonding and electrostatic interactions. Furthermore, molecular dynamics simulation allowed for a more comprehensive analysis of their interactions within a dynamic environment, providing a deeper understanding of the umami perception mechanism involving umami peptides and receptors.
Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos , Receptores Acoplados a Proteínas G , Atum , Animais , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/análise , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Paladar , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Hidrolisados de Proteína/química , Humanos , Proteínas de Peixes/química , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/metabolismo , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodosRESUMO
Docosahexaenoic acid (DHA) was concentrated successfully in the glyceride fractions from tuna oil via a two-step enzyme reaction involving hydrolysis and ethanolysis. In the first step, Candida rugosa lipase-catalyzed hydrolysis was carried out to concentrate DHA in the glyceride fractions. The DHA content in the glyceride fraction after hydrolysis increased from 30% in the initial tuna oil to 46%. In the second step, Lipozyme RM IM-catalyzed ethanolysis was conducted with the reaction mixture from the first step to further concentrate DHA in the glyceride fraction. In this step, the reaction mixture obtained from the first step was employed directly in Lipozyme RM IM-catalyzed ethanolysis without additional steps needed to remove free fatty acid. Finally, DHA was concentrated from an initial content of 30% in the tuna oil to 68.4% in the glyceride fractions via a novel two-step enzyme reaction strategy.
Assuntos
Biocatálise , Ácidos Docosa-Hexaenoicos , Óleos de Peixe , Lipase , Atum , Lipase/química , Lipase/metabolismo , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/análise , Animais , Óleos de Peixe/química , Hidrólise , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/química , Saccharomycetales/metabolismoRESUMO
Greening of tuna metmyoglobin (MetMb) by thermal treatment (TT) and free cysteine is associated with sulfmyoglobin (SulfMb) production. This greening reaction (GR) was once thought to occur only in tuna species. However, recent research has revealed that not all tuna species exhibit this behavior, and it can also occur in horse MetMb. Thus, the present study aimed to compare the GR-reactive (Katsuwonus pelamis and Equus caballus) and GR-unreactive (Sarda chiliensis and Euthynnus lineatus) MetMb using UV-vis spectrometry during TT (60 °C/30 min and free cysteine) to monitor the GR. We used molecular dynamics (MD) simulation to assess the stability of the heme group during TT. We discovered that using GR-unreactive MetMb resulted in an incomplete GR without producing SulfMb. Additionally, our MD simulations indicated that Met85 presence in the heme cavity from GR-unreactive is responsible for the heme group instability and displacement of distal His during TT.
Assuntos
Temperatura Alta , Simulação de Dinâmica Molecular , Mioglobina , Atum , Animais , Mioglobina/química , Cavalos , Proteínas de Peixes/química , Heme/químicaRESUMO
The present study evaluated the cadmium (Cd) levels and temporal variation of Cd in dark muscle, white muscle, and liver of juvenile Thunnus albacares. 72 individuals (Standard length: 50-67 cm; weight: 0.8-2.5 kg) were collected from Indian Oceanic water around Sri Lanka during the period between April 2021 to May 2022. Total Cd levels were analyzed using an Inductively Coupled Plasma Mass Spectrophotometer. The mean Cd levels (mean ± SD mg kg-1 dry weight) in different tissues varied with significantly higher levels in the liver (13.62 ± 0.98, p < 0.05), compared to dark muscle (0.52 ± 0.05), and white muscle (0.42 ± 0.04). Cd levels in liver tissues were positively correlated (p < 0.05) with the fish weight. The Cd levels reported in dark muscles, white muscles, and liver tissues were significantly higher (p < 0.05) during 2nd inter-monsoon than in the other monsoonal regimes and exceeded the maximum permissible level (0.1 mg kg-1 wet weight) set by the European Union (EU). However, the measured Cd levels in white and dark muscles were below the maximum permissible level (0.2 mg kg-1 wet weight) set by FAO/WHO. The Cd levels in all the liver tissues were above the levels set by the EU and FAO/WHO. Accordingly, people should avoid the consumption of liver tissues of T. albacares from the Indian Ocean. A human with a body weight of 60 kg can consume white muscles up to 4.667 kg per week without exceeding the Provisional Tolerable Weekly Intake.
Assuntos
Cádmio , Monitoramento Ambiental , Fígado , Músculos , Atum , Poluentes Químicos da Água , Animais , Fígado/metabolismo , Cádmio/metabolismo , Oceano Índico , Poluentes Químicos da Água/metabolismo , Músculos/metabolismo , Atum/metabolismo , Bioacumulação , Sri LankaRESUMO
The microencapsulation of polysaturated fatty acids by spray drying remains a challenge due to their susceptibility to oxidation. In this work, antioxidant Pickering emulsions were attempted as feeds to produce oxidation stable tuna oil microcapsules. The results indicated that the association between chitosan (CS) and ovalbumin (OVA) was a feasible way to fabricate antioxidant and wettable complexes and a high CS percentage favored these properties. The particles could yield tuna oil Pickering emulsions with enhanced oxidation stability through high-pressure homogenization, which were successfully spray dried to produce microcapsules with surface oil content of 8.84 % and microencapsulation efficiency of 76.65 %. The microcapsules exhibited significantly improved oxidation stability and their optimum peroxide values after storage at 50 °C, 85 % relative humidity, or natural light for 15 d were 48.67 %, 60.07 %, and 39.69 % respectively lower than the powder derived from the OVA-stabilized emulsion. Hence, Pickering emulsions stabilized by the CS/OVA polyelectrolyte complexes are potential in the production of oxidation stable polyunsaturated fatty acid microcapsules by spray drying.
Assuntos
Cápsulas , Quitosana , Emulsões , Ovalbumina , Oxirredução , Secagem por Atomização , Atum , Quitosana/química , Emulsões/química , Ovalbumina/química , Animais , Óleos de Peixe/química , Polieletrólitos/química , Antioxidantes/química , Tamanho da PartículaRESUMO
The development of food-derived antihyperuricemic substances is important for alleviating hyperuricemia (HUA) and associated inflammation. Here, novel peptides fromThunnus albacares (TAP) with strong antihyperuricemic activity were prepared. TAP was prepared by alkaline protease (molecular weight <1000 Da), with an IC50 value of xanthine oxidase inhibitory activity of 2.498 mg/mL, and 5 mg/mL TAP could reduce uric acid (UA) by 33.62% in human kidney-2 (HK-2) cells (P < 0.01). Mice were fed a high-purine diet and injected with potassium oxonate to induce HUA. Oral administration of TAP (600 mg/kg/d) reduced serum UA significantly by 42.22% and increased urine UA by 79.02% (P < 0.01) via regulating urate transporters GLUT9, organic anion transporter 1, and ATP-binding cassette subfamily G2. Meantime, TAP exhibited hepatoprotective and nephroprotective effects, according to histological analysis. Besides, HUA mice treated with TAP showed anti-inflammatory activity by decreasing the levels of toll-like receptor 4, nuclear factors-κB p65, NLRP3, ASC, and Caspase-1 in the kidneys (P < 0.01). According to serum non-targeted metabolomics, 91 differential metabolites between the MC and TAP groups were identified, and purine metabolism was considered to be the main pathway for TAP alleviating HUA. In a word, TAP exhibited strong antihyperuricemic activity both in vitro and in vivo.
Assuntos
Hiperuricemia , Peptídeos , Atum , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Camundongos , Humanos , Ácido Úrico/metabolismo , Ácido Úrico/sangue , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/farmacologia , Masculino , Proteínas de Peixes/química , Xantina Oxidase/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Linhagem Celular , Rim/efeitos dos fármacos , Rim/metabolismoRESUMO
The risk of tuna adulteration is high driven by economic benefits. The authenticity of tuna is required to protect both consumers and tuna stocks. Given this, the study is designed to identify species-specific peptides for distinguishing three commercial tropical tuna species. The peptides derived from trypsin digestion were separated and detected using ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) in data-dependent acquisition (DDA) mode. Venn analysis showed that there were differences in peptide composition among the three tested tuna species. The biological specificity screening through the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST) revealed that 93 peptides could serve as potential species-specific peptides. Finally, the detection specificity of species-specific peptides of raw meats and processed products was carried out by multiple reaction monitoring (MRM) mode based on a Q-Trap mass spectrometer. The results showed that three, one and two peptides of Katsuwonus pelamis, Thunnus obesus and Thunnus albacores, respectively could serve as species-specific peptides.
Assuntos
Peptídeos , Especificidade da Espécie , Atum , Animais , Peptídeos/análise , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Proteínas de Peixes/análiseRESUMO
Background: The tuna industry is one of the most essential sectors in global food production. Nevertheless, commercial meat known as "tuna loin" holds the utmost significance in producing and marketing its various products. Regrettably, fractions like tail and head meat have been overlooked and wasted due to their comparatively lower commercial value. Despite possessing notable technological value, this meat is typically reutilized into animal feed through flour production, missing the chance to create alternative high-value food products. Objective: This study aimed to develop and evaluate the sausages produced with the underutilized cuts of tuna (tail and head meat). Methods: The tuna utilized were Big-eye (Thunus obesus) and Skip-jack (Katsuwonus pelamis lineaus). Three (3) different types of sausages were formulated using 100% of Big-eye (BE), 100% of Skip-jack (SJ) tuna meat, and 100% of beef/pork meat (Control). The sausage pH changes during storage at 4 ± 1oC were analyzed and compared with the control. Proximal, microbiological, and sensory characteristics were evaluated. Results: The pH of sausages showed that the values tended to decrease in control, while this value increased in two types of tuna. The formulated tuna sausages yielded 72% moisture, 18% protein, 4.1% lipid, 0.4% ash, 0.4 % fiber, and 4.5% carbohydrates. Sensory attributes showed excellent acceptance regarding color, smell, flavor, and texture. Overall acceptability was qualified as "liked," and the acceptability index ranged from 76% to 86%. During the refrigeration storage, the microbiological analyses indicated that the total coliform count was < 3 CFU/g. Escherichia coli, Staphylococcus aureus, and mesophilic aerobic bacteria in tuna sausage showed absence during 24 days of storage. Conclusion: Using tuna tail and head meat enabled the development of gel-type emulsified products (sausages) that exhibited good nutritional, sensory, and microbiological quality
Antecedentes: La industria atunera se erige como uno de los sectores más importantes en la producción mundial de alimentos. Sin embargo, entre sus diversos productos, la carne comercial conocida como "lomo de atún" ostenta la mayor importancia tanto en su producción como en su comercialización. Lamentablemente, fracciones de carne provenientes de la cola y la cabeza se han desperdiciado debido a su reducido valor comercial. A pesar de poseer un notable valor tecnológico, esta carne normalmente es utilizada en la alimentación animal mediante la producción de harina, perdiendo la oportunidad de desarrollar productos alimenticios alternativos con alto valor nutricional. Objetivo: Este estudio tuvo como objetivo desarrollar y evaluar salchichas producidas con carne subutilizada de atún (carne de cola y cabeza). Métodos: Las especies de atún utilizadas fueron Big-eye (Thunus obesus) and Skip-jack (Katsuwonus pelamis lineaus). Se formularon tres (3) tipos diferentes de salchichas usando 100 % de carne de atún Big-eye (BE), 100 % de Skip-jack (SJ) y 100 % de carne de res/cerdo (Control). Se analizaron los cambios de pH en las salchichas durante el almacenamiento a 4 ± 1 oC y se compararon con el Control. También se evaluaron la composición proximal, calidad microbiológica y atributos sensoriales. Resultados: El pH mostró que los valores tendieron a disminuir en relación a la muestra Control, mientras que este valor aumentó en los dos tipos de salchicha con carne de atún. Las salchichas con carne de atún mostraron un 72 % de humedad, 18 % de proteína, 4,1 % de lípidos, 0,4 % de ceniza, 0,4 % de fibra, 4,5 % de carbohidratos. Los atributos sensoriales mostraron buena aceptabilidad de los parámetros de color, olor, sabor y textura. La aceptabilidad general se calificó como "me gusta" y el índice de aceptabilidad osciló entre el 76 % y el 86 %. Durante el periodo de almacenamiento en refrigeración, los análisis microbiológicos indicaron que el recuento de coliformes totales fue < 3 UFC/g. No se evidenció la presencia de Escherichia coli, Staphylococcus aureus y bacterias aerobias mesófilas durante 24 días de almacenamiento. Conclusión: El aprovechamiento de la carne de la cola y cabeza del atún permitió desarrollar productos emulsionados tipo gel (embutidos) que exhibieron buena calidad nutricional, sensorial y microbiológica.
Assuntos
Humanos , Atum , Indústria Alimentícia , Técnicas Microbiológicas , Valor NutritivoRESUMO
Cold smoking enhances the appeal of fish products, offering consumers a smooth texture and a delicate smoky flavor. This study aims to explore variations in the volatile profile from different exposure times during cold smoking processing (light, moderate, and full-cure) in tune samples. An innovative untargeted analytical approach, headspace solid-phase microextraction combined with gas chromatography and a hybrid quadrupole-orbitrap mass analyzer, was employed to identify 86 volatiles associated with the cold smoking process. Most of these compounds, including phenols, furan derivates, aldehydes, cyclic ketones, and different aromatic species, were found to contribute to the smoke odor. The development of a QuEChERS-based extraction and clean-up method facilitated the quantification of 25 relevant smoky markers across all smoking degrees, revealing significant concentration differences after 15 h of smoking. This research sheds light on the dynamics of cold smoking impact and its on the flavor profile and safety quality of processed fish products.
Assuntos
Produtos Pesqueiros , Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Atum , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Produtos Pesqueiros/análise , Aromatizantes/química , Fumaça/análise , Odorantes/análise , Paladar , Manipulação de AlimentosRESUMO
The presence of microplastics (MPs) in marine ecosystems is widespread and extensive. They have even reached the deepest parts of the ocean and polar regions. The number of articles on plastic pollution has increased in recent years, but few have investigated the MPs from oceanic islands which are biodiversity hotspots. We investigated the possible microplastic contamination their source and characteristics in surface waters off Kavaratti Island and in the gastrointestinal tract (GT) of skipjack tuna, Katsuwonus pelamis collected from Kavaratti Island of the Lakshadweep archipelago. A total of 424 MP particles were isolated from the surface water samples collected from off Kavaratti Island with an average abundance of 5 ± 1nos./L. A total of 117 MPs were recovered from the GT of skipjack tuna from 30 individual fishes. This points to a potential threat of MP contamination in seafood around the world since this species has a high value in local and international markets. Fiber and blue color were the most common microplastic morphotypes and colors encountered, respectively, both from surface water and GT of fish. Smaller MPs (0.01-1 mm) made up a greater portion of the recovered materials, and most of them were secondary MPs. Polyethylene and polypropylene were the most abundant polymers found in this study. The Pollution Load Index (1.3 ± 0.21) of the surface water and skipjack tuna (1 ± 0.7) indicates a minor ecological risk for the coral islands, while the Polymer Hazard Index highlights the ecological risk of polymers, even at low MP concentrations. This pioneer study sheds preliminary light on the abundance, properties, and environmental risks of MPs to this highly biodiverse ecosystem.
Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Atum , Ecossistema , Peixes , Água , Polímeros , Trato Gastrointestinal/química , Monitoramento Ambiental , Poluentes Químicos da Água/análiseRESUMO
Cadmium (Cd) and lead (Pb) levels in blood and tissues of Atlantic bluefin tuna were analysed to gather information regarding their distribution, accumulation and inter-relationships, as well as to examine how sex affects them. In the whole population, the concentration range was from below the detection limit (bone) to 8.512 µg g-1 (liver) for Cd, and from below detection limit (bone and gills) to 0.063 µg g-1 (kidney) for Pb. The median concentration in the muscles (0.008 and 0.029 µg g-1 for Cd and Pb, respectively) was 10 times less than the maximum permitted for consumption. Sex was shown to be an important variable affecting concentrations of Cd in both liver and kidneys, so taking into account sex when interpreting results is highly recommended. The importance of Cd and Pb bioaccumulation in fishery by-products, increasingly important in commercial circuits, is also highlighted.
Assuntos
Cádmio , Atum , Animais , Chumbo , Oceano AtlânticoRESUMO
Abstract The impact of fish oil concentration on the oxidative stability of microcapsules through the spray drying process using chitosan and maltodextrin as wall material was studied. Emulsions were prepared with different Tuna fish oil (TFO) content (TFO-10%, TFO20%, TF030% TF0-40%) while wall material concentration was kept constant. Microencapsulated powder resulting from emulsion prepared with high fish oil load have high moisture content, wettability, total oil and low encapsulation efficiency, hygroscopicity and bulk tapped density. Oxidative stability was evaluated periodically by placing microcapsules at room temperature. Microcapsules prepared with TFO-10% presented high oxidative stability in terms of peroxide value (2.94±0.04) and anisidine value (1.54±0.02) after 30 days of storage. It was concluded that optimal amounts of fish oil for microencapsulation are 10% and 20% using chitosan and maltodextrin that extended its shelf life during study period.
Resumo Foi estudado o impacto da concentração de óleo de peixe na estabilidade oxidativa de microcápsulas por meio do processo de secagem por atomização, utilizando quitosana e maltodextrina como material de parede. As emulsões foram preparadas com diferentes teores de óleo de atum (TFO) (TFO-10%, TFO20%, TF030% TF0-40%), enquanto a concentração de material de parede foi mantida constante. O pó microencapsulado resultante da emulsão preparada com alta carga de óleo de peixe tem alto teor de umidade, molhabilidade e óleo total e baixa eficiência de encapsulação, higroscopicidade e densidade extraída a granel. A estabilidade oxidativa foi avaliada periodicamente colocando microcápsulas à temperatura ambiente. As microcápsulas preparadas com TFO-10% apresentaram alta estabilidade oxidativa em termos de valor de peróxido (2,94 ± 0,04) e valor de anisidina (1,54 ± 0,02) após 30 dias de armazenamento. Concluiu-se que as quantidades ideais de óleo de peixe para microencapsulação são de 10% e 20% usando quitosana e maltodextrina que prolongaram sua vida útil durante o período de estudo.
Assuntos
Animais , Óleos de Peixe , Quitosana , Pós , Atum , Estresse OxidativoRESUMO
To produce peptides with high dipeptidyl peptidase IV (DPP-IV) inhibitory activity, neutrase was selected from five proteases (trypsin, neutrase, pepsin, alcalase and flavor protease) with the highest degree of hydrolysis (DH) (18.23 ± 1.08%) and DPP-IV inhibitory rate (53.35 ± 4.02%) to produce protein hydrolysate (NPH) from the dark muscles of skipjack tuna (Katsuwonus pelamis). Then, NPH-1 was isolated from NPH by gel permeation chromatography and found to possess the highest DPP-IV inhibitory rate (65.12 ± 7.94% at 0.5 mg ml-1) in the separated components (including NPH-1, NPH-2, NPH-3 and NPH-4). Subsequently, the available prediction models of tripeptides and tetrapeptides with the DPP-IV inhibitory rate were established using an artificial neural network (ANN). The RMSE (0.56 and 0.33 for the model established through collected tripeptides and tetrapeptides, respectively) and R2 (0.95 and 0.99 for the model established through collected tripeptides and tetrapeptides, respectively) of the ANN model's parameters were within acceptable limits, indicating that this model is available. Next, the ANN model was applied to predict tripeptides and tetrapeptides from the hydrolysate of skipjack tuna dark muscles, and five peptides (Ala-Pro-Pro (APP), Pro-Pro-Pro (PPP), Asp-Pro-Leu-Leu (DPLL), Glu-Ala-Val-Pro (EAVP) and Glu-Ala-Iie-Pro (EAIP)) possessing a noticeable DPP-IV inhibitory rate (with DPP-IV IC50 values of 42.46 ± 5.02, 37.71 ± 9.17, 58.85 ± 14.42, 49.94 ± 6.69 and 57.15 ± 6.13 µM, respectively) were screened from the protein hydrolysate. The above five peptides were proved to effectively promote glucose consumption in the insulin resistant-HepG2 (IR-HepG2) cell model considering that the glucose consumption rates of APP, PPP, DPLL, EAVP and EAIP treatment groups are all more than twice that of the dexamethasone group. Accordingly, mechanistic studies showed that these peptides interacted with PI3K/AKT and AMPK signaling pathways and promoted the phosphorylation of PI3K p110, AKT and AMPK (the protein expressions of PI3K p110, p-AKT and p-AMPK in APP, PPP, DPLL, EAVP and EAIP treatment groups are 1.64-2.22 fold compared with that in the dexamethasone group), thereby enhancing glucose uptake and further alleviating insulin resistance. These findings demonstrated that skipjack tuna dark muscle is a potential DPP-IV inhibitory peptide source, and five DPP-IV inhibitory peptides from its hydrolysate may exert potent anti-diabetic activity. In comparison, PPP may be the most potential active ingredient for healthy food against type 2 diabetes mellitus in the five screened peptides considering synthetically the DPP-IV inhibitory rate, bioavailability and synthesis cost.
Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Animais , Humanos , Atum/metabolismo , Hidrolisados de Proteína/química , Insulina/metabolismo , Dipeptidil Peptidase 4/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Células Hep G2 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peptídeos/química , Peptídeo Hidrolases/química , Músculos/metabolismo , Glucose/metabolismo , Dexametasona , Inibidores da Dipeptidil Peptidase IV/químicaRESUMO
Concentrations of heavy metals in Yellowfin and Skipjack tuna fishes from the Laccadive sea were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) to evaluate the human health hazards via their consumption. The samples were collected from different atolls of Maldives to ensure a good representation of sample distribution. The metal concentration in tuna fish is found to be below the maximum tolerable limit set by different international organisations. The target hazard quotient values for individual metals were well below the limiting value of 1, indicating an insignificant health risk via the dietary intake of fish. The maximum targeted cancer risk value was 10 -4, indicating low carcinogenic risk from the consumption of tuna fish from the Maldives. Hence, the consumption of tuna from the Laccadive Sea is safe for human health.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Humanos , Atum , Metais Pesados/análise , Peixes , Ingestão de Alimentos , Maldivas , Medição de Risco , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
This study proposes a strategy to manipulate the fatty acid (FA) content in slow-growing Korat chicken (KRC) meat using tuna oil (TO). To determine the optimal level and feeding period of TO supplementation, we conducted a study investigating the effects of dietary TO levels and feeding periods on meat quality, omega-3 polyunsaturated fatty acid (n-3 PUFA) composition, and gene expression related to FA metabolism in KRC breast meat. At 3 wk of age, 700 mixed-sex KRC were assigned to seven augmented factorial treatments with a completely randomized design, each consisting of four replicate pens containing 25 chickens per pen. The control group received a corn-soybean-based diet with 4.5% rice bran oil (RBO), while varying amounts of TO (1.5%, 3.0%, or 4.5%) replaced a portion of the RBO content in the experimental diets. The chickens were fed these diets for 3 and 6 wk, respectively, before being slaughtered at 9 wk. Our results indicated no significant interactions between TO levels and feeding periods on the growth performance or meat quality of KRC (Pâ >â 0.05). However, the liver fatty acid-binding protein gene (L-FABP, also known as FABP1), responsible for FA transport and accumulation, showed significantly higher expression in the chickens supplemented with 4.5% TO (Pâ <â 0.05). The chickens supplemented with 4.5% TO for a longer period (3 to 9 wk of age) exhibited the lowest levels of n-6 PUFA and n-6 to n-3 ratio, along with the highest levels of eicosapentaenoic acid, docosahexaenoic acid, and n-3 PUFA in the breast meat (Pâ <â 0.05). However, even a short period of supplementation with 4.5% TO (6 to 9 wk of age) was adequate to enrich slow-growing chicken meat with high levels of n-3 PUFA, as recommended previously. Our findings indicated that even a short period of tuna oil supplementation could lead to desirable levels of omega-3 enrichment in slow-growing chicken meat. This finding has practical implications for the poultry industry, providing insights into optimal supplementation strategies for achieving desired FA profiles without adversely affecting growth performance or meat quality.
This study investigated the effect of different levels and feeding periods of tuna oil (TO), a source of omega-3 polyunsaturated fatty acids (n-3 PUFA), was used to modify the fatty acid (FA) profile in slow-growing Korat chicken (KRC) meat. The interaction between TO supplementation levels and feeding periods did not influence growth performance or meat quality in KRC. However, higher level of TO supplementation led to increased expression of the liver fatty acid-binding protein gene, which is involved in FA transport and accumulation. The highest levels of eicosapentaenoic acid, docosahexaenoic acid, and n-3 PUFA were detected in the chickens that were fed 4.5% TO supplementation for a long period (3 to 9 wk of age). These chickens also had the lowest amounts of omega-6 polyunsaturated fatty acids (n-6 PUFA) and n-6 to n-3 ratio. Interestingly, even a short period of 4.5% TO supplementation (6 to 9 wk of age) in slow-growing chickens was sufficient to enrich the KRC meat with n-3 PUFA. These findings highlight the potential for improving the nutritional profile of chicken meat by regulating TO supplementation in the diet.
Assuntos
Galinhas , Ácidos Graxos Ômega-3 , Animais , Atum/genética , Atum/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos , Suplementos Nutricionais , Dieta/veterinária , Carne/análise , Ácidos Docosa-Hexaenoicos , Ração Animal/análiseRESUMO
Tunas (genus Thunnus) are one of the most ecologically and commercially important fish worldwide. To establish a biological basis for reproduction in this globally essential species, we have recently studied crucial reproductive aspects of the Pacific bluefin tuna (T. orientalis; PBT), as a model of tuna species, based on our closed-cycle aquaculture technology. In this study, we clarified the global expression profile of the genes regulating gonadal sex differentiation in PBT, as this developmental process is vital to sexual reproduction. Based on the results of our comparative (RNA-sequencing) and temporal (qRT-PCR) transcriptome analyses using the updated genome dataset, we propose the molecular mechanisms of gonadal sex differentiation in PBT. In female gonads, foxl2 and cyp19a1a (coding aromatase) are expressed at the onset of sex differentiation. Active aromatase-mediated estrogen biosynthesis, which includes positive regulation of cyp19a1a expression by Foxl2, induces ovarian differentiation. By contrast, dmrt1 and gsdf are upregulated in differentiating male gonads lacking active estrogen synthesis. Dmrt1 and Gsdf would mainly promote testicular differentiation. Furthermore, androgen biosynthesis is upregulated in differentiating male gonad. Endogenous androgens may also be vital to testicular differentiation. This study provides the first comprehensive data clarifying the molecular basis for gonadal sex differentiation in tunas.
Assuntos
Aromatase , Atum , Feminino , Masculino , Animais , Atum/genética , Aromatase/genética , Transcriptoma , Diferenciação Sexual/genética , Gônadas , EstrogêniosRESUMO
Active packaging films based on poly (lactic acid) (PLA) were developed by adding different concentrations (5 wt% and 10 wt%) of betel leaf (Piper betel) ethanolic extract (BLEE). The extract showed excellent antioxidant (80.2 %) and antimicrobial properties (18.05 and 16.05 mm against S. aureus and E. coli respectively). The films' structural, functional, and mechanical attributes were studied, along with their potential for extending the shelf life of tuna meat. The water solubility and water permeability were reduced with the incorporation of BLEE; while the tensile strength showed an inverse relationship with the concentration, 214.5 kg/cm2 (5 wt%), and to 307.6 kg/cm2 (10 wt%). The lipid oxidation in PLA-BLEE-packed tuna meat stored under refrigeration (7 days) showed a significant reduction, which could be attributed to the phenolic migration from the films. The new PLA-BLEE films with significant antibacterial and film attributes could be used in food packaging and to extend the shelf life of commodities that have been packaged.
Assuntos
Piper , Atum , Animais , Escherichia coli , Staphylococcus aureus , Embalagem de Alimentos , Poliésteres/química , Carne/microbiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ácido Láctico , Água , Expectativa de VidaRESUMO
Seafood consumption is the primary exposure route for trace metals like mercury. Accordingly, canned tuna meat has been focused on by researchers because of the potential bioaccumulation of high amounts of mercury. This study aimed to test a novel and reliable electroanalytical method employing a working electrode consisting of gold-nanoparticle-modified carbon microfibers to quantify total mercury in canned tuna samples. Determination was achieved via differential pulse anodic stripping voltammetry. The proposed method had a limit of detection of 3.9781 ± 0.0001 µg L-1 and a limit of quantification of 33.6634 ± 0.0001 µg L-1, with a sensitivity of 0.3275 nA µg L-1. The modified electrode was evaluated in samples taken from three canned tuna brands sold in the Sangolquí parish in Rumiñahui, Ecuador. These brands, coded A, B, and C, represent 47.92%, 27.08%, and 11.98% of all canned tuna sold in the Ecuadorian market, respectively. The resulting respective total mercury concentrations were 0.5999 ± 0.0001 mg kg-1; 0.9387 ± 0.0001 mg kg-1; and 0.3442 ± 0.0001 mg kg-1 for A, B, and C. Method accuracy was determined through the recovery percentages of ≥98%, which indicated acceptable accuracy for the final optimized method. Mean mercury concentrations for all samples did not represent a carcinogenic risk for consumers. However, the values obtained for potential no-carcinogenic risk and daily consumption rate suggest that consumers of tuna canned in water, particularly brand C, may be at risk.
Assuntos
Mercúrio , Nanopartículas , Animais , Mercúrio/análise , Atum , Ouro , Equador , Microeletrodos , Fibra de Carbono , Alimentos Marinhos/análise , Carcinógenos , Contaminação de Alimentos/análiseRESUMO
This study is aimed to investigate whether tuna protein hydrolysate (TPH) supplementation could alleviate cardiovascular complications induced by a high-fat diet (HFD) in rats. Rats were fed a HFD for 16 weeks and given TPH (100 mg/kg, 300 mg/kg, or 500 mg/kg) or metformin (100 mg/kg) (n = 8) for the last four weeks. TPH had the following effects: resolved their impaired glucose tolerance, hyperglycemia, dyslipidemia, obesity, and hypertension (p < 0.05); alleviated left ventricular dysfunction and hypertrophy (p < 0.05), and vascular dysfunction and hypertrophy (p < 0.05); adipocyte hypertrophy; increases in circulating leptin and tumor necrosis factor (TNF-α) were mitigated (p < 0.05); increased renin-angiotensin system (RAS), oxidative stress, and decreased nitric oxide metabolites were modulated (p < 0.05). TPH restored the expression of angiotensin II receptor type 1 (AT1R)/NADPH oxidase 2 (NOX2), endothelial nitric oxide synthase (eNOS), nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1), and peroxisome proliferator-activated receptor γ (PPARγ)/the nuclear factor kappa B (NF-κB) protein in cardiovascular tissue (p < 0.05). In metabolic syndrome (MS) rats, metformin and TPH had comparable effects. In conclusion, TPH alleviated cardiovascular complications related to MS. It suppressed RAS, oxidative stress, and inflammation that were associated with modulation of AT1R/NOX2, eNOS, Nrf2/HO-1, and PPARγ/NF-κB expression.