Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 11(1): 17444, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465813

RESUMO

Glioblastoma multiforme (GBM) is the most frequent type of primary astrocytomas. We examined the association between single nucleotide polymorphisms (SNPs) in Aurora kinase A (AURKA), Aurora kinase B (AURKB), Aurora kinase C (AURKC) and Polo-like kinase 1 (PLK1) mitotic checkpoint genes and GBM risk by qPCR genotyping. In silico analysis was performed to evaluate effects of polymorphic biological sequences on protein binding motifs. Chi-square and Fisher statistics revealed a significant difference in genotypes frequencies between GBM patients and controls for AURKB rs2289590 variant (p = 0.038). Association with decreased GBM risk was demonstrated for AURKB rs2289590 AC genotype (OR = 0.54; 95% CI = 0.33-0.88; p = 0.015). Furthermore, AURKC rs11084490 CG genotype was associated with lower GBM risk (OR = 0.57; 95% CI = 0.34-0.95; p = 0.031). Bioinformatic analysis of rs2289590 polymorphic region identified additional binding site for the Yin-Yang 1 (YY1) transcription factor in the presence of C allele. Our results indicated that rs2289590 in AURKB and rs11084490 in AURKC were associated with a reduced GBM risk. The present study was performed on a less numerous but ethnically homogeneous population. Hence, future investigations in larger and multiethnic groups are needed to strengthen these results.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Glioblastoma/patologia , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Seguimentos , Genótipo , Glioblastoma/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem , Quinase 1 Polo-Like
2.
Exp Cell Res ; 407(2): 112803, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34461108

RESUMO

Aberrant expression of meiosis-specific genes in cancer has recently emerged as a driver of some cancer formation. Aurora kinase C (AURKC) is a member of the Aurora kinase family of proteins known to regulate chromosome segregation during cell divisions. AURKC is normally expressed in meiotic cells; however, elevated levels of AURKC mRNA and protein are frequently measured in cancer cells. To understand the function of AURKC in cancer cells, expression was induced in noncancerous, human retina pigmented epithelial cells. While AURKC expression did not alter cell proliferation over 72 h, it did increase cell migration and anchorage independent growth in soft agar suggesting an oncogenic role in mitotically dividing cells. To evaluate AURKC as a potential therapeutic target, a frameshift mutation in the gene was introduced in U2OS osteosarcoma cells using CRISPR-Cas9 technology resulting in a premature stop codon. Cancer cells lacking AURKC displayed no change in cell proliferation over 72 h but did migrate less and formed fewer colonies in soft agar. Whole transcriptome sequencing analysis uncovered over 400 differentially expressed genes in U2OS cells with and without AURKC. GO analysis revealed alterations in proteinaceous extracellular matrix genes including COL1A1. These data indicate that therapeutics targeting AURKC could decrease cancer cell metastasis and disease progression. Because AURKC is transcriptionally silenced in normal mitotic cells, its disruption could specifically target cancer cells limiting the toxic side effects associated with current therapeutics.


Assuntos
Aurora Quinase C/metabolismo , Biomarcadores Tumorais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Meiose , Neoplasias/patologia , Retina/patologia , Apoptose , Aurora Quinase C/genética , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Segregação de Cromossomos , Células Epiteliais/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Prognóstico , Retina/metabolismo , Taxa de Sobrevida , Transcriptoma
3.
PLoS Genet ; 17(4): e1009327, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901174

RESUMO

The Aurora protein kinases are well-established regulators of spindle building and chromosome segregation in mitotic and meiotic cells. In mouse oocytes, there is significant Aurora kinase A (AURKA) compensatory abilities when the other Aurora kinase homologs are deleted. Whether the other homologs, AURKB or AURKC can compensate for loss of AURKA is not known. Using a conditional mouse oocyte knockout model, we demonstrate that this compensation is not reciprocal because female oocyte-specific knockout mice are sterile, and their oocytes fail to complete meiosis I. In determining AURKA-specific functions, we demonstrate that its first meiotic requirement is to activate Polo-like kinase 1 at acentriolar microtubule organizing centers (aMTOCs; meiotic spindle poles). This activation induces fragmentation of the aMTOCs, a step essential for building a bipolar spindle. We also show that AURKA is required for regulating localization of TACC3, another protein required for spindle building. We conclude that AURKA has multiple functions essential to completing MI that are distinct from AURKB and AURKC.


Assuntos
Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Proteínas Fetais/genética , Meiose/genética , Proteínas Associadas aos Microtúbulos/genética , Oócitos/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Animais , Aurora Quinase B/genética , Aurora Quinase C/genética , Divisão do Núcleo Celular/genética , Segregação de Cromossomos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Centro Organizador dos Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/genética , Polos do Fuso/genética , Quinase 1 Polo-Like
4.
J Assist Reprod Genet ; 38(6): 1571-1588, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33725274

RESUMO

PURPOSE: Is it possible to eliminate metastasised chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) cells from ovarian cortex fragments by inhibition of Aurora B/C kinases (AURKB/C) without compromising ovarian tissue or follicles? METHODS: Human ovarian cortex tissue with experimentally induced tumour foci of CML, AML and primary cells of AML patients were exposed to a 24h treatment with 1 µM GSK1070916, an AURKB/C inhibitor, to eliminate malignant cells by invoking mitotic catastrophe. After treatment, the inhibitor was removed, followed by an additional culture period of 6 days to allow any remaining tumour cells to form new foci. Ovarian tissue integrity after treatment was analysed by four different assays. Appropriate controls were included in all experiments. RESULTS: Foci of metastasised CML and AML cells in ovarian cortex tissue were severely affected by a 24h ex vivo treatment with an AURKB/C inhibitor, leading to the formation of multi-nuclear syncytia and large-scale apoptosis. Ovarian tissue morphology and viability was not compromised by the treatment, as no significant difference was observed regarding the percentage of morphologically normal follicles, follicular viability, glucose uptake or in vitro growth of small follicles between ovarian cortex treated with 1 µM GSK1070916 and the control. CONCLUSION: Purging of CML/AML metastases in ovarian cortex is possible by targeting the Mitotic Catastrophe Signalling Pathway using GSK1070916 without affecting the ovarian tissue. This provides a therapeutic strategy to prevent reintroduction of leukaemia and enhances safety of autotransplantation in leukaemia patients currently considered at high risk for ovarian involvement.


Assuntos
Aurora Quinase B/genética , Aurora Quinase C/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Apoptose/efeitos dos fármacos , Compostos Aza/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Criopreservação , Feminino , Humanos , Indóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Mitose/efeitos dos fármacos , Mitose/genética , Metástase Neoplásica , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Transplante Autólogo/normas
5.
PLoS Genet ; 15(12): e1008414, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830031

RESUMO

Human nondisjunction errors in oocytes are the leading cause of pregnancy loss, and for pregnancies that continue to term, the leading cause of intellectual disabilities and birth defects. For the first time, we have conducted a candidate gene and genome-wide association study to identify genes associated with maternal nondisjunction of chromosome 21 as a first step to understand predisposing factors. A total of 2,186 study participants were genotyped on the HumanOmniExpressExome-8v1-2 array. These participants included 749 live birth offspring with standard trisomy 21 and 1,437 parents. Genotypes from the parents and child were then used to identify mothers with nondisjunction errors derived in the oocyte and to establish the type of error (meiosis I or meiosis II). We performed a unique set of subgroup comparisons designed to leverage our previous work suggesting that the etiologies of meiosis I and meiosis II nondisjunction differ for trisomy 21. For the candidate gene analysis, we selected genes associated with chromosome dynamics early in meiosis and genes associated with human global recombination counts. Several candidate genes showed strong associations with maternal nondisjunction of chromosome 21, demonstrating that genetic variants associated with normal variation in meiotic processes can be risk factors for nondisjunction. The genome-wide analysis also suggested several new potentially associated loci, although follow-up studies using independent samples are required.


Assuntos
Síndrome de Down/genética , Estudo de Associação Genômica Ampla/métodos , Não Disjunção Genética/genética , Aurora Quinase C/genética , Proteínas de Transporte de Cátions/genética , Criança , Síndrome de Down/etnologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Meiose , Mães , Oócitos , Estados Unidos/etnologia , Fator A de Crescimento do Endotélio Vascular/genética
6.
Klin Onkol ; 31(6): 429-433, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30545223

RESUMO

BACKGROUND: Cancer testis antigens (CTAs) are considered cancer bio-markers due to their highly specific expression pattern in human malignancies and near absence from normal somatic tissues. Their specific expression has made them potential targets for early dia-gnosis, assessment of patients prognosis and treatment of cancer in recent years. Lactobacilli are a group of probio-tics with anti-cancer, immunomodulatory and other beneficial features. These bacteria have been shown to alter expression of several cancer-related genes. AIM: We investigated the effect of Lactobacillus rhamnosus GG supernatant (LRS) and Lactobacillus crispatus SJ-3C-US supernatant (LCS) on expression of four CTAs (TSGA10, AURKC, OIP5 and AKAP4) in HeLa cell line after synchronization using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and quantitative real-time polymerase chain reaction. RESULTS: LRS and LCS inhibited HeLa cell growth after 24 h as demonstrated by MTT assay. Expressions of all CTAs were down-regulated after treatment with both supernatants. CONCLUSION: This study showed the role of Lactobacilli in down-regulation of CTAs genes. Such expression change might be involved in the anticancer effects of these Lactobacilli. The underlying mechanisms of these observations are not clear but epigenetic modulatory mechanisms may participate in this process. Future studies are needed to assess functional roles of Lactobacilli in modulation of other cancer-related genes. Key words: probio-tic - cancer testis antigen - bio-marker - HeLa cell line.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Aurora Quinase C/genética , Proteínas Cromossômicas não Histona/genética , Lacticaseibacillus rhamnosus , Lactobacillus crispatus , Proteínas/genética , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Regulação para Baixo , Células HeLa , Humanos
7.
Curr Biol ; 28(21): 3458-3468.e5, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30415701

RESUMO

Errors in chromosome segregation during female meiosis I occur frequently, and aneuploid embryos account for 1/3 of all miscarriages in humans [1]. Unlike mitotic cells that require two Aurora kinase (AURK) homologs to help prevent aneuploidy (AURKA and AURKB), mammalian germ cells also require a third (AURKC) [2, 3]. AURKA is the spindle-pole-associated homolog, and AURKB/C are the chromosome-localized homologs. In mitosis, AURKB has essential roles as the catalytic subunit of the chromosomal passenger complex (CPC), regulating chromosome alignment, kinetochore-microtubule attachments, cohesion, the spindle assembly checkpoint, and cytokinesis [4, 5]. In mouse oocyte meiosis, AURKC takes over as the predominant CPC kinase [6], although the requirement for AURKB remains elusive [7]. In the absence of AURKC, AURKB compensates, making defining potential non-overlapping functions difficult [6, 8]. To investigate the role(s) of AURKB and AURKC in oocytes, we analyzed oocyte-specific Aurkb and Aurkc single- and double-knockout (KO) mice. Surprisingly, we find that double KO female mice are fertile. We demonstrate that, in the absence of AURKC, AURKA localizes to chromosomes in a CPC-dependent manner. These data suggest that AURKC prevents AURKA from localizing to chromosomes by competing for CPC binding. This competition is important for adequate spindle length to support meiosis I. We also describe a unique requirement for AURKB to negatively regulate AURKC to prevent aneuploidy. Together, our work reveals oocyte-specific roles for the AURKs in regulating each other's localization and activity. This inter-kinase regulation is critical to support wild-type levels of fecundity in female mice.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Meiose , Oócitos/metabolismo , Aneuploidia , Animais , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Aurora Quinase C/metabolismo , Segregação de Cromossomos/genética , Feminino , Fertilidade/genética , Camundongos
8.
Artigo em Inglês | MEDLINE | ID: mdl-29307372

RESUMO

Resveratrol (RSV) is a naturally occurring polyphenolic phytoalexin possessing numerous health-promoting effects. Chromosomal instability (CIN), usually results from defective spindle assembly checkpoint (SAC), is a major contributor to many diseases. While it's recently recognized that RSV exhibits a nonlinear dose response for disease prevention, whether it's the case for its role in CIN remains unknown. Here, we investigated the potential of a broad range of RSV concentrations (0.01-100µM) on CIN and the underlying mechanisms in human normal colon epithelial NCM460 cells. CIN was measured by cytokinesis-block micronucleus assay; mitotic fidelity was determined by aberrant mitosis analysis; SAC activity was assessed by nocodazole-challenge assay, and the expression of SAC genes was examined by RT-qPCR. We found that 0.1µM RSV significantly reduced CIN (P<0.01), while 100µM RSV significantly induced it (P<0.05). Mitotic infidelity was significantly prevented by 0.1µM RSV but promoted by 100µM RSV (P<0.05 for both). Moreover, the function of SAC was sustained and impaired by 0.1µM and 100µM RSV, respectively. Several SAC genes, including Aurora-B, Aurora-C, Plk-1 and CENP-E, were significantly up-regulated and down-regulated by 0.1µM and 100µM RSV, respectively (P<0.05). In conclusion, RSV exhibited a biphasic dose-dependent effect on CIN that was exerted via the regulation of mitotic fidelity through the SAC network. The health implications of these findings were summarized.


Assuntos
Colo/citologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Resveratrol/toxicidade , Aurora Quinase B/genética , Aurora Quinase C/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/genética , Colo/efeitos dos fármacos , Colo/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
9.
Front Biosci (Elite Ed) ; 10(1): 143-154, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930610

RESUMO

Wilms' tumor (WT) is the most frequent renal cancer in childhood, the occurrence of which is characterized by a relatively low frequency of associated mutations. While epigenetic alterations have been postulated to play a relevant role in the emergence of this tumor, the mechanisms involved in WT development remain largely unknown. In this study, the DNA methylation profile of WT was characterized with Beadchip array. Comparisons between WT with normal kidney identified 827 differentially methylated regions, most of which were attributable in hypermethylation in CpG islands. Among affected genes, WT1 and TP73 showed altered enhancers where hypermethylation was validaded by pyrosequencing. Thirty differentially methylated regions (DMRs) were identified in WT as compared to normal kidney, two of which were previously described. Two novel DMRs, located in RPS6KA4/MIR1237 and the AURKC promoter, were found to be hypermethylated in WT. Altogether, our data reinforced the relevance of alterations of DNA methylation in WT, highlighting the complex nature of these alterations that affect promoter regions as well as enhancers, UTRs and gene bodies.


Assuntos
Aurora Quinase C/genética , Metilação de DNA , MicroRNAs/genética , Regiões Promotoras Genéticas , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Tumor de Wilms/genética , Humanos
10.
Int J Mol Sci ; 19(1)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29283376

RESUMO

Aurora kinases (AKs) are serine/threonine kinases that are essential for cell division. Humans have three AK genes: AKA, AKB, and AKC. AKA is required for centrosome assembly, centrosome separation, and bipolar spindle assembly, and its mutation leads to abnormal spindle morphology. AKB is required for the spindle checkpoint and proper cytokinesis, and mutations cause chromosome misalignment and cytokinesis failure. AKC is expressed in germ cells, and has a role in meiosis analogous to that of AKB in mitosis. Mutation of any of the three isoforms can lead to cancer. AK proteins possess divergent N- and C-termini and a conserved central catalytic domain. We examined the evolution of the AK gene family using an identity matrix and by building a phylogenetic tree. The data suggest that AKA is the vertebrate ancestral gene, and that AKB and AKC resulted from gene duplication in placental mammals. In a nonsynonymous/synonymous rate substitution analysis, we found that AKB experienced the strongest, and AKC the weakest, purifying selection. Both the N- and C-termini and regions within the kinase domain experienced differential selection among the AK isoforms. These differentially selected sequences may be important for species specificity and isoform specificity, and are therefore potential therapeutic targets.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Citocinese , Mitose , Seleção Genética , Sequência de Aminoácidos , Animais , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Aurora Quinase C/metabolismo , Centrossomo/ultraestrutura , Evolução Molecular , Duplicação Gênica , Expressão Gênica , Humanos , Meiose , Filogenia , Plantas/classificação , Plantas/genética , Domínios Proteicos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(2): 334-339, 2017 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-28446271

RESUMO

OBJECTIVE: To explore the mRNA expression of Aurora-A,B,C(AUR-A,B,C) in acute leukemia(AL) and their correlations with the clinical indications. METHODS: The mRNA expression levels of AUR-A,B,C in 73 cases of newly diagnosed AL (untreated group), 20 cases of AL with remission (remission group) and 14 healthy volunteers as control (healthy group) were detected by QRT-PCR, and the difference of expression levels in difference groups, their correlations with clinical indicators and the correlation between the AUR-A,B,C mRNA expression levels themselves were analyzed. RESULTS: The mRNA expression levels of AUR-A,B,C in untreated group were all higher than those in healthy group and remission group(P<0.01), but there was not significant difference between healthy group and remission group(P>0.05); the mRNA expressions of AUR-A,B,C in acute lymphoblastic leukemia(ALL) group were all significantly higher than that in AML group(P<0.01). The mRNA expression of AUR-A,B,C in high risk group was higher than that in low risk group(P<0.05), but there was no difference in mRNA expression of AUR-A,B,C between high risk group and middle risk group as well as between middle risk group and low risk group(P>0.05). The mRNA expression of AUR-A, B, C in CD34, CD71 and CD56 negative group was not statistically different from that in CD34,CD71 and CD56 positive group(P>0.05). In 73 cases of newly diagnosed AL, the mRNA expression levels of AUR-A, B significantly were positively correlated with lactate dehydrogenase(LDH) level and risk stratification (r=0.279, P=0.017; r=0.314, P=0.007 and r=0.277, P=0.018; r=0.349, P=0.002), while the mRNA expression levels of AUR-A, B were not significantly correlated with age, WBC count, blast ratio in bone marrow at initial diagnosis and remission or no-remission after 1 cours of chemotherapy; the mRNA expression level of AUR-C was significantly positively correlated with WBC count (r=0.263, P=0.025), and LDH level (r=0.348, P=0.003) at initial diagnosis and risk stratificantion(r=0.376, P=0.001), and negatively correlated with age (r=-0.241, P=0.040), and was not significantly correlated with blast ratio in bone marrow at initial diagnosis and remission or noremission after 1 course of chemotherapy. There were significant positive correlations in the mRNA expression between AUR-A and B (r=0.444, P=0.000), AUR-B and C (r=0.763, P=0.000) as well as AUR-A and C (r=0.616, P=0.000). CONCLUSION: Aur-A, B, C mRNA were highly expressed in patients with newly diagnosed AL, moreover the mRNA expression levels of Aur-A,B,C were positively correlated with each other, the high expression of Aur-A, B, C are associated with leukemia types, risk stratification, WBC count and LDH level at initial diagnosis, so they all maybe used as the prognostic markers and potential therapeutic targets.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Leucemia Mieloide Aguda/genética , Doença Aguda , Medula Óssea , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , RNA Mensageiro/metabolismo
12.
Trends Genet ; 33(5): 349-363, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28359584

RESUMO

The aurora kinases (AURKs) comprise an evolutionarily conserved family of serine/threonine kinases involved in mitosis and meiosis. While most mitotic cells express two AURK isoforms (AURKA and AURKB), mammalian germ cells also express a third, AURKC. Although much is known about the functions of the kinases in mitosis, less is known about how the three isoforms function to coordinate meiosis. This review is aimed at describing what is known about the three isoforms in female meiosis, the similarities and differences between kinase functions, and speculates as to why mammalian germ cells require expression of three AURKs instead of two.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Oócitos/crescimento & desenvolvimento , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Humanos , Meiose/genética , Camundongos , Oócitos/metabolismo , Oogênese/genética
13.
Andrology ; 5(2): 370-380, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28187507

RESUMO

Macrozoospermia is characterized by a high proportion of abnormal spermatozoa with enlarged heads. So far, it has been associated with mutations only in the Aurora Kinase C gene (AURKC) in some cases. Although many publications have reported failure to conceive in couples with macrozoospermia, a few others have described successful pregnancies, thus raising questions as to whether ICSI and AURKC genetic screening should be recommended in all patients with macrozoospermia. First, we report on two monozygotic twins presenting macrozoospermia for whom the genetic status was explored (Aurora Kinase C sequencing) and whole semen and gradient-selected spermatozoa were analyzed, using Fluorescent In Situ Hybridization (FISH), Electron Microscopy and flow cytometry. Additionally, FISH analysis was performed on individually selected uniflagellate spermatozoa with normal sized heads. Second, we also provide an updated review of patients with macrozoospermia gathering the percentage of enlarged head spermatozoa, the genetic status and pregnancy outcomes. Both twins carried a homozygous mutation of AURKC. Spermocytograms showed means of 86% and 83.5% of enlarged head forms. FISH analyses showed that normal head size, uniflagellate spermatozoa had an aneuploid or polyploid nucleus despite a high level of selection. SEM analysis also showed special intranuclear inclusions in enlarged head spermatozoa. Our data together with cases reported in the literature allowed us to recommend that the AURKC gene should be sequenced when the sperm contains 30% or more of enlarged head spermatozoa, and when a mutation is found, ART should not be performed. Our analyses provide information that could greatly help practitioners in their decision-making with regard to optimal care of patients with macrozoospermia.


Assuntos
Aurora Quinase C/genética , Técnicas de Reprodução Assistida , Teratozoospermia/genética , Adulto , Testes Genéticos , Humanos , Masculino , Cabeça do Espermatozoide , Gêmeos/genética
14.
Zhonghua Nan Ke Xue ; 23(4): 367-371, 2017 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29714424

RESUMO

Approximately 2,300 genes are found to be associated with spermiogenesis and their expressions play important roles in the regulation of spermiogenesis. In recent years, more and more attention has been focused on the studies of the genes associated with oligospermia, asthenospermia and teratospermia and their molecular mechanisms. Some genes, such as GSTM1, DNMT3L, and CYP1A1, have been shown to be potentially associated with oligospermia; some, such as CATSPER1, CRISP2, SEPT4, TCTE3, TEKT4, and DNAH1, with asthenospermia; and still others, such as DPY19L2 and AURKC, with teratospermia. These findings have provided a molecular basis for the studies of the pathogenesis of oligospermia, asthenospermia and teratospermia, as well as a new approach to the exploration of new diagnostic and therapeutic techniques.


Assuntos
Astenozoospermia/genética , Oligospermia/genética , Espermatogênese/genética , Teratozoospermia/genética , Aurora Quinase C/genética , Canais de Cálcio/genética , Moléculas de Adesão Celular , Citocromo P-450 CYP1A1/genética , Dineínas do Citoplasma , DNA (Citosina-5-)-Metiltransferases/genética , Dineínas/genética , Glutationa Transferase/genética , Glicoproteínas/genética , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas dos Microtúbulos/genética
15.
IUBMB Life ; 68(8): 634-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270838

RESUMO

Single nucleotide polymorphisms (SNPs) in mitotic checkpoint genes can contribute to susceptibility of human cancer, including gastric cancer (GC). We aimed to investigate the effects of Aurora kinase A (AURKA), Aurora kinase B (AURKB), and Aurora kinase C (AURKC) gene polymorphisms on GC risk in Slovenian population. We genotyped four SNPs in AURKA (rs2273535 and rs1047972), AURKB (rs2241909), and AURKC (rs758099) in a total of 128 GC patients and 372 healthy controls using TaqMan allelic discrimination assays to evaluate their effects on GC risk. Our results showed that genotype frequencies between cases and controls were significantly different for rs1047972 and rs758099 (P < 0.05). Our study demonstrated that AURKA rs1047972 TT and (CC + CT) genotypes were significantly associated with an increased risk of gastric cancer. Our results additionally revealed that AURKC rs758099 TT and (CC + CT) genotypes were also associated with increased GC risk. In stratified analysis, genotypes TT and (CC + CT) of AURKA rs1047972 SNP were associated with increased risk of both, intestinal and diffuse, types of GC. In addition, AURKC rs758099 TT and (CC + CT) genotypes were positively associated with increased intestinal type GC risk, but not with an increased diffuse type GC risk. Based on these results, we can conclude that AURKA rs1047972 and AURKC rs758099 polymorphisms could affect the risk of GC development. Further larger studies are needed to confirm these findings. © 2016 IUBMB Life, 68(8):634-644, 2016.


Assuntos
Aurora Quinase A/genética , Aurora Quinase C/genética , Predisposição Genética para Doença , Neoplasias Gástricas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/patologia
16.
Hum Mol Genet ; 25(13): 2698-2711, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106102

RESUMO

Aneuploidy is the leading genetic abnormality that leads to miscarriage, and it is caused by a failure of accurate chromosome segregation during gametogenesis or early embryonic divisions. Aurora kinase C (AURKC) is essential for formation of euploid sperm in humans because mutations in AURKC are correlated with macrozoospermia and these sperm are tetraploid. These mutations are currently the most frequent mutations that cause macrozoospermia and result from an inability to complete meiosis I (MI). Three of these mutations AURKC c.144delC (AURKC p.L49Wfs22), AURKC c.686G > A (AURKC p.C229Y) and AURKC c.744C > G (AURKC p.Y248*) occur in the coding region of the gene and are the focus of this study. By expressing these alleles in oocytes isolated from Aurkc-/- mice, we show that the mutations have different effects on AURKC function during MI. AURKC p.L49Wfs22 is a loss-of-function mutant that perturbs localization of the chromosomal passenger complex (CPC), AURKC p.C229Y is a hypomorph that cannot fully support cell-cycle progression, and AURKC p.Y248* fails to localize and function with the CPC to support chromosome segregation yet retains catalytic activity in the cytoplasm. Finally, we show that these variants of AURKC cause meiotic failure and polyploidy due to a failure in AURKC-CPC function that results in metaphase chromosome misalignment. This study is the first to assess the function of mutant alleles of AURKC that affect human fertility in a mammalian meiotic system.


Assuntos
Aurora Quinase C/genética , Aurora Quinase C/metabolismo , Alelos , Aneuploidia , Animais , Segregação de Cromossomos , Cromossomos , Humanos , Infertilidade Masculina/genética , Masculino , Mamíferos , Meiose , Camundongos , Mutação , Espermatozoides
17.
Tumour Biol ; 36(10): 8147-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25990457

RESUMO

AURKC, a member of the Aurora kinase gene family, is highly expressed in testis but is either moderately expressed or repressed in most somatic cells. Varying expression of AURKC has been observed in human cancers, but the underlying mechanisms of differential expression have been investigated only to a limited extent. We investigated the role of promoter CpG methylation in the regulation of AURKC gene expression in human cancer cells, in relation to a recently reported AURKC transcription repressor PLZF/ZBTB16, implicated in transformation and tumorigenesis. AURKC and PLZF/ZBTB16 expression profiles were investigated in reference to CpG methylation status on the AURKC promoter experimentally, and also in The Cancer Genome Atlas (TCGA) dataset involving multiple cancer types. AURKC promoter showed dense to moderate hypermethylation correlating with low to moderate expression of the gene in normal somatic cells and cancer cell lines, while testis with high expression revealed marked hypo-methylation. Treatment with the demethylating agent, 5-aza-dC, but not the histone deacetylase (HDAC) inhibitor, TSA, led to elevated expression in cancer cell lines, indicating that promoter DNA methylation negatively regulates AURKC expression. High expression of PLZF in PLZF-transfected cells treated with 5-aza-dC only partially repressed expression of AURKC despite 5-aza-dC also inducing elevated PLZF expression. Analyses of the TCGA data showed differential expression of AURKC in multiple cancer types and stronger correlation of AURKC expression with CpG methylation compared to PLZF levels. These findings demonstrate that differential promoter CpG methylation is an important mechanism regulating AURKC expression in cancer cells.


Assuntos
Aurora Quinase C/genética , Ilhas de CpG/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Testículo/metabolismo , Transformação Celular Neoplásica , Humanos , Masculino , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real
18.
Tumour Biol ; 36(10): 8201-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25994570

RESUMO

Breast cancer is the most frequent cancer with second mortality rate in women worldwide. Lack of validated biomarkers for early detection of breast cancer to warranty the diagnosis and effective treatments in early stages has directed to the new therapeutic approach. Cancer/testis antigens which have restricted normal expression in testis and aberrant expression in different cancers are promising targets for generating cancer vaccines, monoclonal antibodies, or dendritic cell-based immunotherapy. In this context, we investigated the expression of two known cancer testis genes, Aurora kinase C (AURKC) and testis expressed 101 (TEX101), and one new candidate, deleted in azoospermia 1 (DAZ1), in six breast cancer cell lines including two ductal carcinomas, T47D and BT-474, and four adenocarcinomas, MDA-MB-231, MDA-MB-468, MCF7, and SKBR3 as well as 50 breast cancer tumors in comparison to normal mammary epithelial cells using quantitative real-time reverse transcription PCR (RT-PCR). Results showed significant overexpression (p = 0.000) of all three genes in BT474, DAZ1 in MDA-MB-231, and AURKC and DAZ1 in SKBR3 and significant downregulation (p = 0.000) of AURKC in MCF7 cell line relative to normal breast epithelial cells. Breast tumors showed significant overexpression of AURKC in comparison to normal breast tissues (p = 0.016). The results are noticeable especially in the case of AURKC; however, there is a little knowledge about the nature, causes, consequences, and effects of cancer/testis antigens activation in different cancers. It is suggested that AURKC has effects on cell division via its serin/threonin kinases activity and organizing microtubules in relation to centrosome/spindle function during mitosis.


Assuntos
Aurora Quinase C/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Mama/metabolismo , Perfilação da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Proteína 1 Suprimida em Azoospermia , Feminino , Humanos , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
19.
Hum Reprod Update ; 21(4): 455-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25888788

RESUMO

BACKGROUND: Male infertility affects >20 million men worldwide and represents a major health concern. Although multifactorial, male infertility has a strong genetic basis which has so far not been extensively studied. Recent studies of consanguineous families and of small cohorts of phenotypically homogeneous patients have however allowed the identification of a number of autosomal recessive causes of teratozoospermia. Homozygous mutations of aurora kinase C (AURKC) were first described to be responsible for most cases of macrozoospermia. Other genes defects have later been identified in spermatogenesis associated 16 (SPATA16) and dpy-19-like 2 (DPY19L2) in patients with globozoospermia and more recently in dynein, axonemal, heavy chain 1 (DNAH1) in a heterogeneous group of patients presenting with flagellar abnormalities previously described as dysplasia of the fibrous sheath or short/stump tail syndromes, which we propose to call multiple morphological abnormalities of the flagella (MMAF). METHODS: A comprehensive review of the scientific literature available in PubMed/Medline was conducted for studies on human genetics, experimental models and physiopathology related to teratozoospermia in particular globozoospermia, large headed spermatozoa and flagellar abnormalities. The search included all articles with an English abstract available online before September 2014. RESULTS: Molecular studies of numerous unrelated patients with globozoospermia and large-headed spermatozoa confirmed that mutations in DPY19L2 and AURKC are mainly responsible for their respective pathological phenotype. In globozoospermia, the deletion of the totality of the DPY19L2 gene represents ∼ 81% of the pathological alleles but point mutations affecting the protein function have also been described. In macrozoospermia only two recurrent mutations were identified in AURKC, accounting for almost all the pathological alleles, raising the possibility of a putative positive selection of heterozygous individuals. The recent identification of DNAH1 mutations in a proportion of patients with MMAF is promising but emphasizes that this phenotype is genetically heterogeneous. Moreover, the identification of mutations in a dynein strengthens the emerging point of view that MMAF may be a phenotypic variation of the classical forms of primary ciliary dyskinesia. Based on data from human and animal models, the MMAF phenotype seems to be favored by defects directly or indirectly affecting the central pair of axonemal microtubules of the sperm flagella. CONCLUSIONS: The studies described here provide valuable information regarding the genetic and molecular defects causing infertility, to improve our understanding of the physiopathology of teratozoospermia while giving a detailed characterization of specific features of spermatogenesis. Furthermore, these findings have a significant influence on the diagnostic strategy for teratozoospermic patients allowing the clinician to provide the patient with informed genetic counseling, to adopt the best course of treatment and to develop personalized medicine directly targeting the defective gene products.


Assuntos
Aurora Quinase C/genética , Infertilidade Masculina/genética , Proteínas de Membrana/genética , Espermatogênese/genética , Espermatozoides/anormalidades , Alelos , Animais , Dineínas/genética , Proteínas de Homeodomínio/genética , Humanos , Masculino , Mutação Puntual/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Proteínas de Transporte Vesicular
20.
Oncogene ; 34(5): 537-45, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24632603

RESUMO

The Aurora kinases, which include Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are serine/threonine kinases required for the control of mitosis (AURKA and AURKB) and meiosis (AURKC). Since their discovery nearly 20 years ago, Aurora kinases have been studied extensively in cell and cancer biology. Several early studies found that Aurora kinases are amplified and overexpressed at the transcript and protein level in various malignancies, including several types of leukemia. These discoveries and others provided a rationale for the development of small-molecule inhibitors of Aurora kinases as leukemia therapies. The first generation of Aurora kinase inhibitors did not fare well in clinical trials, owing to poor efficacy and high toxicity. However, the creation of second-generation, highly selective Aurora kinase inhibitors has increased the enthusiasm for targeting these proteins in leukemia. This review will describe the functions of each Aurora kinase, summarize their involvement in leukemia and discuss inhibitor development and efficacy in leukemia clinical trials.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Leucemia/genética , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase C/antagonistas & inibidores , Ciclo Celular/genética , Ensaios Clínicos como Assunto , Humanos , Leucemia/tratamento farmacológico , Leucemia/patologia , Meiose/genética , Mitose/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA