Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.465
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 15: 1378863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765018

RESUMO

Background: At menstruation, the functional layer of the human endometrium sheds off due to the trigger of the release of inflammatory factors, including interleukin 6 (IL-6), as a result of a sharp decline in progesterone levels, leading to tissue breakdown and bleeding. The endometrial mesenchymal stem-like cells (CD140b+CD146+ eMSC) located in the basalis are responsible for the cyclical regeneration of the endometrium after menstruation. Endometrial cells from the menstruation phase have been proven to secrete a higher amount of IL-6 and further enhance the self-renewal and clonogenic activity of eMSC. However, the IL-6-responsive mechanism remains unknown. Thus, we hypothesized that IL-6 secreted from niche cells during menstruation regulates the proliferation and self-renewal of eMSC through the WNT/ß-catenin signaling pathway. Methods: In this study, the content of IL-6 across the menstrual phases was first evaluated. Coexpression of stem cell markers (CD140b and CD146) with interleukin 6 receptor (IL-6R) was confirmed by immunofluorescent staining. In vitro functional assays were conducted to investigate the effect of IL-6 on the cell activities of eMSC, and the therapeutic role of these IL-6- and WNT5A-pretreated eMSC on the repair of injured endometrium was observed using an established mouse model. Results: The endometrial cells secrete a high amount of IL-6 under hypoxic conditions, which mimic the physiological microenvironment in the menstruation phase. Also, the expression of IL-6 receptors was confirmed in our eMSC, indicating their capacity to respond to IL-6 in the microenvironment. Exogenous IL-6 can significantly enhance the self-renewal, proliferation, and migrating capacity of eMSC. Activation of the WNT/ß-catenin signaling pathway was observed upon IL-6 treatment, while suppression of the WNT/ß-catenin signaling impaired the stimulatory role of IL-6 on eMSC activities. IL-6- and WNT5A-pretreated eMSC showed better performance during the regeneration of the injured mouse endometrium. Conclusion: We demonstrate that the high level of IL-6 produced by endometrial cells at menstruation can induce the stem cells in the human endometrium to proliferate and migrate through the activation of the WNT/ß-catenin pathway. Treatment of eMSC with IL-6 and WNT5A might enhance their therapeutic potential in the regeneration of injured endometrium.


Assuntos
Proliferação de Células , Endométrio , Interleucina-6 , Menstruação , Células-Tronco Mesenquimais , Via de Sinalização Wnt , Feminino , Células-Tronco Mesenquimais/metabolismo , Humanos , Interleucina-6/metabolismo , Endométrio/metabolismo , Endométrio/citologia , Animais , Camundongos , Adulto , Células Cultivadas , Autorrenovação Celular
2.
Cell Stem Cell ; 31(5): 754-771.e6, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701759

RESUMO

Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.


Assuntos
Processamento Alternativo , Diferenciação Celular , Cromatina , Ribonucleoproteínas Nucleares Heterogêneas , Neurônios , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Fatores de Transcrição , Processamento Alternativo/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Transcrição Gênica , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Éxons/genética , Humanos , Autorrenovação Celular/genética
3.
Proc Natl Acad Sci U S A ; 121(18): e2317690121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648485

RESUMO

The underlying mechanism(s) by which the PML::RARA fusion protein initiates acute promyelocytic leukemia is not yet clear. We defined the genomic binding sites of PML::RARA in primary mouse and human hematopoietic progenitor cells with V5-tagged PML::RARA, using anti-V5-PML::RARA chromatin immunoprecipitation sequencing and CUT&RUN approaches. Most genomic PML::RARA binding sites were found in regions that were already chromatin-accessible (defined by ATAC-seq) in unmanipulated, wild-type promyelocytes, suggesting that these regions are "open" prior to PML::RARA expression. We found that GATA binding motifs, and the direct binding of the chromatin "pioneering factor" GATA2, were significantly enriched near PML::RARA binding sites. Proximity labeling studies revealed that PML::RARA interacts with ~250 proteins in primary mouse hematopoietic cells; GATA2 and 33 others require PML::RARA binding to DNA for the interaction to occur, suggesting that binding to their cognate DNA target motifs may stabilize their interactions. In the absence of PML::RARA, Gata2 overexpression induces many of the same epigenetic and transcriptional changes as PML::RARA. These findings suggested that PML::RARA may indirectly initiate its transcriptional program by activating Gata2 expression: Indeed, we demonstrated that inactivation of Gata2 prior to PML::RARA expression prevented its ability to induce self-renewal. These data suggested that GATA2 binding creates accessible chromatin regions enriched for both GATA and Retinoic Acid Receptor Element motifs, where GATA2 and PML::RARA can potentially bind and interact with each other. In turn, PML::RARA binding to DNA promotes a feed-forward transcriptional program by positively regulating Gata2 expression. Gata2 may therefore be required for PML::RARA to establish its transcriptional program.


Assuntos
Fator de Transcrição GATA2 , Células-Tronco Hematopoéticas , Proteínas de Fusão Oncogênica , Animais , Humanos , Camundongos , Sítios de Ligação , Autorrenovação Celular , Cromatina/metabolismo , DNA/metabolismo , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Ligação Proteica , Receptor alfa de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/genética
4.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653778

RESUMO

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Assuntos
Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Fatores de Transcrição SOXC , Tretinoína , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Linhagem da Célula/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética
5.
Cell Rep ; 43(4): 114032, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568805

RESUMO

N(6)-methyladenosine (m6A) critically regulates RNA dynamics in various biological processes. The m6A demethylase ALKBH5 promotes tumorigenesis of glioblastoma, while the intricate web that orchestrates its regulation remains enigmatic. Here, we discover that cell density affects ALKBH5 subcellular localization and m6A dynamics. Mechanistically, ALKBH5 is phosphorylated by the large tumor suppressor kinase 2 (LATS2), preventing its nuclear export and enhancing protein stability. Furthermore, phosphorylated ALKBH5 reciprocally erases m6A from LATS2 mRNA, thereby stabilizing this transcript. Unexpectedly, LATS2 depletion suppresses glioblastoma stem cell self-renewal independent of yes-associated protein activation. Additionally, deficiency in either LATS2 or ALKBH5 phosphorylation impedes tumor progression in mouse xenograft models. Moreover, high levels of LATS2 expression and ALKBH5 phosphorylation are associated with tumor malignancy in patients with gliomas. Collectively, our study unveils an oncogenic positive feedback loop between LATS2 and ALKBH5, revealing a non-canonical branch of the Hippo pathway for RNA processing and suggesting potential anti-cancer interventions.


Assuntos
Adenosina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor , Humanos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fosforilação , Camundongos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Adenosina/metabolismo , Retroalimentação Fisiológica , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células HEK293 , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Autorrenovação Celular
6.
Cell Stem Cell ; 31(3): 359-377.e10, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458178

RESUMO

Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.


Assuntos
Vesículas Extracelulares , Células-Tronco Hematopoéticas , NADP/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/fisiologia , Autorrenovação Celular
7.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302992

RESUMO

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Células-Tronco Neoplásicas/patologia , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA
8.
Elife ; 122024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265286

RESUMO

Intra-tissue genetic heterogeneity is universal to both healthy and cancerous tissues. It emerges from the stochastic accumulation of somatic mutations throughout development and homeostasis. By combining population genetics theory and genomic information, genetic heterogeneity can be exploited to infer tissue organization and dynamics in vivo. However, many basic quantities, for example the dynamics of tissue-specific stem cells remain difficult to quantify precisely. Here, we show that single-cell and bulk sequencing data inform on different aspects of the underlying stochastic processes. Bulk-derived variant allele frequency spectra (VAF) show transitions from growing to constant stem cell populations with age in samples of healthy esophagus epithelium. Single-cell mutational burden distributions allow a sample size independent measure of mutation and proliferation rates. Mutation rates in adult hematopietic stem cells are higher compared to inferences during development, suggesting additional proliferation-independent effects. Furthermore, single-cell derived VAF spectra contain information on the number of tissue-specific stem cells. In hematopiesis, we find approximately 2 × 105 HSCs, if all stem cells divide symmetrically. However, the single-cell mutational burden distribution is over-dispersed compared to a model of Poisson distributed random mutations. A time-associated model of mutation accumulation with a constant rate alone cannot generate such a pattern. At least one additional source of stochasticity would be needed. Possible candidates for these processes may be occasional bursts of stem cell divisions, potentially in response to injury, or non-constant mutation rates either through environmental exposures or cell-intrinsic variation.


Assuntos
Células-Tronco Adultas , Adulto , Humanos , Autorrenovação Celular , Exposição Ambiental , Heterogeneidade Genética , Genômica
9.
J Theor Biol ; 581: 111746, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38280545

RESUMO

We construct a multi-stage cell lineage model for cell division, apoptosis and movement. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the stem cell divisions (including self-renewal, asymmetrical cell division (ACD) and differentiation). The densities of cells and molecules are described by coupled reaction-diffusion partial differential equations, and the plane wavefront propagation speeds can be obtained analytically and verified numerically. It is found that with ACD the population and propagation of stem cells can be promoted but the negative regulation on self-renewal and differentiation will work slowly. Regulatory inhibition on differentiation will inversely increase stem cells but not affect the population and wave propagation of the cell lineage. While negative regulation on self-renewal and ACD will decrease the population of stem cells and slow down the propagation, and even drive stem cells to extinction. Moreover we find that inhibition on self-renewal has a strength advantage while inhibition on ACD has a range advantage to kill stem cells. Possible relations to model cancer development and therapy are also discussed.


Assuntos
Divisão Celular Assimétrica , Células-Tronco , Diferenciação Celular , Linhagem da Célula , Autorrenovação Celular
11.
Blood ; 143(19): 1965-1979, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271660

RESUMO

ABSTRACT: Acute myeloid leukemia (AML) is an aggressive hematological malignancy originating from transformed hematopoietic stem or progenitor cells. AML prognosis remains poor owing to resistance and relapse driven by leukemia stem cells (LSCs). Targeting molecules essential for LSC function is a promising therapeutic approach. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is often dysregulated in AML. We found that although PI3Kγ is highly enriched in LSCs and critical for self-renewal, it was dispensable for normal hematopoietic stem cells. Mechanistically, PI3Kγ-AKT signaling promotes nuclear factor erythroid 2-related factor 2 (NRF2) nuclear accumulation, which induces 6-phosphogluconate dehydrogenase (PGD) and the pentose phosphate pathway, thereby maintaining LSC stemness. Importantly, genetic or pharmacological inhibition of PI3Kγ impaired expansion and stemness of murine and human AML cells in vitro and in vivo. Together, our findings reveal a key role for PI3Kγ in selectively maintaining LSC function by regulating AKT-NRF2-PGD metabolic pathway. Targeting the PI3Kγ pathway may, therefore, eliminate LSCs without damaging normal hematopoiesis, providing a promising therapeutic strategy for AML.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Via de Pentose Fosfato , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Humanos , Camundongos , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Autorrenovação Celular , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética
12.
Haematologica ; 109(2): 411-421, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584287

RESUMO

Leukemia stem cells (LSC) represent a crucial and rare subset of cells present in acute myeloid leukemia (AML); they play a pivotal role in the initiation, maintenance, and relapse of this disease. Targeting LSC holds great promise for preventing AML relapse and improving long-term outcomes. However the precise molecular mechanisms governing LSC self-renewal are still poorly understood. Here, we present compelling evidence that the expression of miR-30e-5p, a potential tumor-suppressive microRNA, is significantly lower in AML samples than in healthy bone marrow samples. Forced expression of miR- 30e effectively inhibits leukemogenesis, impairs LSC self-renewal, and delays leukemia progression. Mechanistically, Cyb561 acts as a direct target of miR-30e-5p in LSC, and its deficiency restricts the self-renewal of LSC by activating reactive oxygen series signaling and markedly prolongs recipients' survival. Moreover, genetic or pharmacological overexpression of miR-30e-5p or knockdown of Cyb561 suppresses the growth of human AML cells. In conclusion, our findings establish the crucial role of the miR-30e-5p/Cyb561/ROS axis in finely regulating LSC self-renewal, highlighting Cyb561 as a potential therapeutic target for LSC-directed therapies.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Espécies Reativas de Oxigênio , Autorrenovação Celular/genética , MicroRNAs/genética , Transdução de Sinais , Recidiva , Proliferação de Células/genética , Linhagem Celular Tumoral
13.
Stem Cell Rev Rep ; 20(1): 25-51, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922108

RESUMO

CD133 protein has been one of the most used surface markers to select and identify cancer cells with stem-like features. However, its expression is not restricted to tumoral cells; it is also expressed in differentiated cells and stem/progenitor cells in various normal tissues. CD133 participates in several cellular processes, in part orchestrating signal transduction of essential pathways that frequently are dysregulated in cancer, such as PI3K/Akt signaling and the Wnt/ß-catenin pathway. CD133 expression correlates with enhanced cell self-renewal, migration, invasion, and survival under stress conditions in cancer. Aside from the intrinsic cell mechanisms that regulate CD133 expression in each cellular type, extrinsic factors from the surrounding niche can also impact CD33 levels. The enhanced CD133 expression in cells can confer adaptive advantages by amplifying the activation of a specific signaling pathway in a context-dependent manner. In this review, we do not only describe the CD133 physiological functions known so far, but importantly, we analyze how the microenvironment changes impact the regulation of CD133 functions emphasizing its value as a marker of cell adaptability beyond a cancer-stem cell marker.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Células-Tronco Neoplásicas/metabolismo , Autorrenovação Celular
14.
Sci Rep ; 13(1): 20314, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985890

RESUMO

The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Osteogênese/genética , Autorrenovação Celular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética
15.
Cancer Biol Ther ; 24(1): 2271638, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37927213

RESUMO

The poly(rC) binding protein 1 gene (PCBP1) encodes the heterogeneous nuclear ribonucleoprotein E1 (hnRNPE1), a nucleic acid-binding protein that plays a tumor-suppressive role in the mammary epithelium by regulating phenotypic plasticity and cell fate. Following the loss of PCBP1 function, the FAM3C gene (encoding the Interleukin-like EMT inducer, or "ILEI" protein) and the leukemia inhibitory factor receptor (LIFR) gene are upregulated. Interaction between FAM3C and LIFR in the extracellular space induces phosphorylation of signal transducer and activator of transcription 3 (pSTAT3). Overexpression and/or hyperactivity of STAT3 has been detected in 40% of breast cancer cases and is associated with a poor prognosis. Herein, we characterize feed-forward regulation of LIFR expression in response to FAM3C/LIFR/STAT3 signaling in mammary epithelial cells. We show that PCBP1 upregulates LIFR transcription through activity at the LIFR promoter, and that FAM3C participates in transcriptional regulation of LIFR. Additionally, our bioinformatic analysis reveals a signature of transcriptional regulation associated with FAM3C/LIFR interaction and identifies the TWIST1 transcription factor as a downstream effector that participates in the maintenance of LIFR expression. Finally, we characterize the effect of LIFR expression in cell-based experiments that demonstrate the promotion of invasion, migration, and self-renewal of breast cancer stem cells (BCSCs), consistent with previous studies linking LIFR expression to tumor initiation and metastasis in mammary epithelial cells.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Proteínas de Neoplasias/genética , Receptores de OSM-LIF/genética , Receptores de OSM-LIF/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Invasividade Neoplásica
16.
Cell Tissue Res ; 394(3): 441-453, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37851112

RESUMO

Liver cancer stem cell (CSC) self-renewal and tumorigenesis are important causes of hepatocellular carcinoma (HCC) recurrence. We purposed to investigate the function of long noncoding RNA small nucleolar RNA host gene 9 (SNHG9) in liver CSC self-renewal and tumorigenesis in this study. Flow cytometry was carried out to separate CD133+ Populations and CD133- Populations from HCC cell lines. A combination of CD133+ cells and Matrigel matrix was subcutaneously injected to create the NOD-SCID mouse xenograft tumor model. Colony formation test and spheroids formation assay were carried out to clarify the impact of SNHG9 on the self-renewal of liver CSCs. RNA immunoprecipitation, RNA-pull down, and chromatin immunoprecipitation were performed on CD133+ cells to elucidate the mechanism of SNHG9 regulating PTEN expression. We found that SNHG9 was highly expressed in HCC clinical samples, HCC cells, and CD133+ cells. In vitro, interference with SNHG9 prevented the formation of colonies and spheroids in liver CSC cells and primary HCC cells. In vivo, interference with SNHG9 reduced the tumor volume and weight. SNHG9 could bind to EZH2, and SNHG9 interference suppressed EZH2 recruitment and H3K27me3 levels in the PTEN promoter region. In addition, SNHG9 inhibition promoted PTEN expression while having little impact on EZH2 levels. Interference with SNHG9 inhibited liver CSC self-renewal and tumorigenesis by up-regulating PTEN levels. In conclusion, by binding to EZH2, SNHG9 down-regulated PTEN levels, promoting liver CSC self-renewal and tumor formation, and exacerbating HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Camundongos , Animais , Humanos , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Autorrenovação Celular , Transdução de Sinais , Linhagem Celular Tumoral , Camundongos Endogâmicos NOD , Camundongos SCID , Carcinogênese/patologia , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
17.
Nature ; 621(7979): 602-609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704733

RESUMO

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Metástase Neoplásica , Coluna Vertebral , Células-Tronco , Humanos , Neoplasias da Mama/patologia , Diferenciação Celular , Autorrenovação Celular , Metástase Neoplásica/patologia , Osteoblastos/citologia , Osteoblastos/patologia , Coluna Vertebral/citologia , Coluna Vertebral/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Biomarcadores
18.
Nat Rev Mol Cell Biol ; 24(12): 895-911, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626124

RESUMO

Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.


Assuntos
Autorrenovação Celular , Transdução de Sinais , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Humanos , Carcinogênese , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(35): e2304168120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603749

RESUMO

The niche has been shown to control stem cell self-renewal in different tissue types and organisms. Recently, a separate niche has been proposed to control stem cell progeny differentiation, called the differentiation niche. However, it remains poorly understood whether and how the differentiation niche directly signals to stem cell progeny to control their differentiation. In the Drosophila ovary, inner germarial sheath (IGS) cells contribute to two separate niche compartments for controlling both germline stem cell (GSC) self-renewal and progeny differentiation. In this study, we show that IGS cells express Inx2 protein, which forms gap junctions (GJs) with germline-specific Zpg protein to control stepwise GSC lineage development, including GSC self-renewal, germline cyst formation, meiotic double-strand DNA break formation, and oocyte specification. Germline-specific Zpg and IGS-specific Inx2 knockdowns cause similar defects in stepwise GSC development. Additionally, secondary messenger cAMP is transported from IGS cells to GSCs and their progeny via GJs to activate PKA signaling for controlling stepwise GSC development. Therefore, this study demonstrates that the niche directly controls GSC progeny differentiation via the GJ-cAMP-PKA signaling axis, which provides important insights into niche control of stem cell differentiation and highlights the importance of GJ-transported cAMP in tissue regeneration. This may represent a general strategy for the niche to control adult stem cell development in various tissue types and organisms since GJs and cAMP are widely distributed.


Assuntos
Células-Tronco Adultas , Feminino , Animais , Transporte Biológico , Diferenciação Celular , Autorrenovação Celular , Drosophila , Junções Comunicantes
20.
Endocr Relat Cancer ; 30(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643458

RESUMO

B-Raf kinase inhibitors such as vemurafenib (PLX4032) and dabrafenib have limited therapeutic efficacy on BRAF-mutated thyroid cancer. Cancer stem cells (CSCs) play important roles in tumor recurrence, drug resistance, and metastasis. Whether CSCs play a role in dampening the antitumor activity of B-Raf kinase inhibitors remains unknown. Here, we report that vemurafenib (PLX4032) induced the expression of several stemness-related genes including Gli1, Snail, BMI1, and SOX2 in two anaplastic thyroid cancer cell lines, SW1736 and 8505C, but decreased the expression of these genes in A375 cells, a human melanoma cell line. PLX4032 promoted thyroid cancer stem cell self-renewal, as evidenced by increased numbers of aldehyde dehydrogenase-positive cells and thyrospheres. Mechanistically, PLX4032 activates the PI-3 and mitogen-activated protein kinase pathways through HER3 to cross-activate Gli1, a transcription factor of the sonic hedgehog (Shh) pathway. GANT61, a specific inhibitor of Gli1, blocked the expression of the stemness-related genes in PLX4032-treated thyroid cancer cells in vitro and in vivo in two thyroid cancer xenograft models. GANT61 treatment alone weakly inhibited SW1736 tumor growth but enhanced the antitumor activity of PLX4032 when used in combination. Our study provides mechanistic insights into how thyroid cancer poorly responds to B-Raf kinase inhibitors and suggests that targeting B-Raf and the Shh pathway in combination may overcome thyroid cancer drug resistance.


Assuntos
Proteínas Hedgehog , Neoplasias da Glândula Tireoide , Humanos , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/uso terapêutico , Autorrenovação Celular , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA