Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Neural Eng ; 21(3)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38862011

RESUMO

Objective.Commonly used cable equation approaches for simulating the effects of electromagnetic fields on excitable cells make several simplifying assumptions that could limit their predictive power. Bidomain or 'whole' finite element methods have been developed to fully couple cells and electric fields for more realistic neuron modeling. Here, we introduce a novel bidomain integral equation designed for determining the full electromagnetic coupling between stimulation devices and the intracellular, membrane, and extracellular regions of neurons.Approach.Our proposed boundary element formulation offers a solution to an integral equation that connects the device, tissue inhomogeneity, and cell membrane-induced E-fields. We solve this integral equation using first-order nodal elements and an unconditionally stable Crank-Nicholson time-stepping scheme. To validate and demonstrate our approach, we simulated cylindrical Hodgkin-Huxley axons and spherical cells in multiple brain stimulation scenarios.Main Results.Comparison studies show that a boundary element approach produces accurate results for both electric and magnetic stimulation. Unlike bidomain finite element methods, the bidomain boundary element method does not require volume meshes containing features at multiple scales. As a result, modeling cells, or tightly packed populations of cells, with microscale features embedded in a macroscale head model, is simplified, and the relative placement of devices and cells can be varied without the need to generate a new mesh.Significance.Device-induced electromagnetic fields are commonly used to modulate brain activity for research and therapeutic applications. Bidomain solvers allow for the full incorporation of realistic cell geometries, device E-fields, and neuron populations. Thus, multi-cell studies of advanced neuronal mechanisms would greatly benefit from the development of fast-bidomain solvers to ensure scalability and the practical execution of neural network simulations with realistic neuron morphologies.


Assuntos
Campos Eletromagnéticos , Análise de Elementos Finitos , Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Neurônios/efeitos da radiação , Humanos , Simulação por Computador , Animais , Axônios/fisiologia , Axônios/efeitos da radiação , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Encéfalo/fisiologia
2.
Sci Rep ; 11(1): 3683, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574428

RESUMO

Probable mechanism behind the neuronal ephaptic coupling is investigated based on the introduction of "Brain"-triggered potential excitation signal smartly with a specific very low frequency (VLF) waves as a neuronal motor toolkit. Detection of this electric motor toolkit is attributed to in-vitro precise analyses of a neural network of snail, along to the disconnected snail's neuronal network as a control. This is achieved via rapid (real-time) electrical signals acquisition by blind patch-clamp method during micro-electrode implanting in the neurons at the gigaseal conditions by the surgery operations. This process is based on its waveform (potential excitation signal) detection by mathematical curve fitting process. The characterized waveform of this electrical signal is "Saw Tooth" that is smartly stimulated, alternatively, by the brain during triggering the action potential's (AP's) hyperpolarization zone at a certain time interval at the several µs levels. Triggering the neuron cells results in (1) observing a positive shift (10.0%, depending on the intensity of the triggering wave), and (2) major promotion in the electrical current from sub nano (n) to micro (µ) amper (nA, µA) levels. Direct tracing the time domain (i.e., electrical signal vs. time) and estimation of the frequency domain (diagram of electrical response vs. the applied electrical frequencies) by the "Discrete Fast Fourier Transform" algorithm approve the presence of bilateral and reversible electrical currents between axon and dendrite. This mechanism therefore opens a novel view about the neuronal motor toolkit mechanism, versus the general knowledge about the unilateral electrical current flow from axon to dendrite operations in as neural network. The reliability of this mechanism is evaluated via (1) sequential modulation and demodulation of the snail's neuron network by a simulation electrical functions and sequentially evaluation of the neuronal current sensitivity between pA and nA (during the promotion of the signal-to-noise ratio, via averaging of 30 ± 1 (n = 15) and recycling the electrical cycles before any neuronal response); and (2) operation of the process on the differentiated stem cells. The interstice behavior is attributed to the effective role of Ca2+ channels (besides Na+ and K+ ionic pumping), during hyper/hypo calcium processes, evidenced by inductively coupled plasma as the selected analytical method. This phenomenon is also modeled during proposing quadrupole well potential levels in the neuron systems. This mechanism therefore points to the microprocessor behavior of neuron networks. Stimulation of the neuronal system based on this mechanism, not only controls the sensitivity of neuron electrical stimulation, but also would open a light window for more efficient operating the neuronal connectivity during providing interruptions by phenomena such as neurolysis as well as an efficient treatment of neuron-based disorders.


Assuntos
Axônios/fisiologia , Encéfalo/fisiologia , Neurônios Motores/fisiologia , Neurônios Eferentes/fisiologia , Caramujos/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Axônios/efeitos da radiação , Encéfalo/efeitos da radiação , Ondas Encefálicas/fisiologia , Cálcio/metabolismo , Estimulação Elétrica/efeitos adversos , Potenciais da Membrana/efeitos da radiação , Neurônios Motores/efeitos da radiação , Rede Nervosa/fisiologia , Rede Nervosa/efeitos da radiação , Neurônios Eferentes/efeitos da radiação , Técnicas de Patch-Clamp , Caramujos/efeitos da radiação
3.
J Mol Neurosci ; 71(6): 1290-1300, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33417168

RESUMO

To study the effect of photobiomodulation (PBM) on axon regeneration and secretion change of dorsal root ganglion (DRG) under oxidative stress after spinal cord injury (SCI), and further explore the effect of changes in DRG secretion caused by PBM on the polarization of macrophages. The PBM-DRG model was constructed to perform PBM on neurons under oxidative stress simulated in vitro. And the irradiation conditions were as follows: wavelength, 810 nm; power density, 2 mW/cm2; irradiation area, 4.5 cm2; and irradiation time, 440 s. Then resulted in an energy of 4 J (2 mW/cm2 × 4.5 cm2 × 440 s). About 100 µM H202 was added to the culture medium to simulate oxidative stress after SCI. An ROS (reactive oxygen species) assay kit was used to measure ROS contend in the DRG. The survival level of the neurons was measured using the CCK-8 method, and the axon regeneration of neurons was observed by using immunofluorescence. The secretion level of CCL2 from DRG was determined by RT-qPCR and ELISA. Further culturing macrophages of DRG-conditioned medium culture, the expression level of iNOS and Arg-1 in macrophages was assessed using Western blot analysis. The expression level of TNF-α and IL-1ß was determined by ELISA. After adding the neutralizing antibody of CCL2 to the DRG neuron-conditioned medium following PBM irradiation to culture macrophages to observe the effects on macrophage polarization and secretion. PBM could reduce ROS levels in neurons, increase neuronal survival under oxidative stress, and promote neuronal axon regeneration. In addition, PBM could also promote CCL2 secretion by DRG under oxidative stress. By constructing a DRG supernatant-M1 macrophage adoptive culture model, we found that the supernatant of DRG after PBM intervention could reduce the expression level of iNOS and the secretion of TNF-α and IL-1ß in M1 macrophages; at the same time, it could also up-regulate the expression of Arg-1, one of the markers of M2 macrophages. Furthermore, these effects could be prevented by the addition of neutralizing antibodies of CCL2. PBM could promote survival and axonal regeneration of DRG under SCI oxidative stress, increase the secretion level of CCL2 by DRG, and this change can reduce the polarization of macrophages to M1, further indicating that PBM could promote spinal cord injury repair.


Assuntos
Axônios/metabolismo , Quimiocina CCL2/metabolismo , Macrófagos/citologia , Estresse Oxidativo , Fototerapia/métodos , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Animais , Axônios/efeitos da radiação , Diferenciação Celular , Células Cultivadas , Quimiocina CCL2/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Interleucina-1beta/metabolismo , Luz , Macrófagos/imunologia , Macrófagos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/metabolismo
4.
Prostate ; 81(1): 58-71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022812

RESUMO

BACKGROUND: Nerves are key factors in prostate cancer (PCa) progression. Here, we propose that neuropeptide Y (NPY) nerves are key regulators of cancer-nerve interaction. METHODS: We used in vitro models for NPY inhibition studies and subsequent metabolomics, apoptotic and migration assays, and nuclear transcription factor-κB (NF-κB) translocation studies. Human naïve and radiated PCa tissues were used for NPY nerve density biomarker studies. Tissues derived from a Botox denervation clinical trial were used to corroborate metabolomic changes in humans. RESULTS: Cancer cells increase NPY positive nerves in vitro and in preneoplastic human tissues. NPY-specific inhibition resulted in increased cancer apoptosis, decreased motility, and energetic metabolic pathway changes. A comparison of metabolomic response in NPY-inhibited cells with the transcriptome response in human PCa patients treated with Botox showed shared 13 pathways, including the tricarboxylic acid cycle. We identified that NF-κB is a potential NPY downstream mediator. Using in vitro models and tissues derived from a previous human chemical denervation study, we show that Botox specifically, but not exclusively, inhibits NPY in cancer. Quantification of NPY nerves is independently predictive of PCa-specific death. Finally, NPY nerves might be involved in radiation therapy (RT) resistance, as radiation-induced apoptosis is reduced when PCa cells are cocultured with dorsal root ganglia/nerves and NPY positive nerves are increased in prostates of patients that failed RT. CONCLUSION: These data suggest that targeting the NPY neural microenvironment may represent a therapeutic approach for the treatment of PCa and resistance through the regulation of multiple oncogenic mechanisms.


Assuntos
Neuropeptídeo Y/metabolismo , Neoplasias da Próstata/radioterapia , Adolescente , Adulto , Fatores Etários , Animais , Apoptose/efeitos da radiação , Axônios/metabolismo , Axônios/efeitos da radiação , Toxinas Botulínicas Tipo A/farmacologia , Carcinogênese , Linhagem Celular Tumoral , Criança , Humanos , Masculino , Metaboloma , Camundongos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Sistema Nervoso/efeitos da radiação , Neuropeptídeo Y/antagonistas & inibidores , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Tolerância a Radiação , Transcriptoma , Adulto Jovem
5.
Lasers Med Sci ; 35(2): 413-420, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31273571

RESUMO

The aim of the present study was to investigate the therapeutic effects of 660-nm and 880-nm photobiomodulation therapy (PBMT) following inferior alveolar nerve (IAN) crush injury. Following the nerve crush injuries of IAN, 36 Wistar rats were randomly divided into three groups as follows: (1) control, (2) 660-nm PBMT, and (3) 808-nm PBMT (GaAlAs laser, 100 J/cm2, 70 mW, 0.028-cm2 beam). PBMT was started immediately after surgery and performed once every 3 days during the postoperative period. At the end of the 30-day treatment period, histopathological and histomorphometric evaluations of tissue sections were made under a light and electron microscope. The ratio of the inner axonal diameter to the total outer axonal diameter (g-ratio) and the number of axons per square micrometer were evaluated. In the 808-nm PBMT group, the number of nerve fibers with suboptimal g-ratio ranges of 0-0.49 (p < 0.001) is significantly lower than expected, which indicates better rate of myelinization in the 808-nm PBMT group. The number of axons per square micrometer was significantly higher in the 808-nm PBMT group when compared with the control (p < 0.001) and 660-nm PBMT group (p = 0.010). The data and the histopathological investigations suggest that the PBMT with the 808-nm wavelength along with its settings was able to enhance IAN regeneration after nerve crush injury.


Assuntos
Lesões por Esmagamento/radioterapia , Luz , Terapia com Luz de Baixa Intensidade , Nervo Mandibular/efeitos da radiação , Compressão Nervosa , Regeneração Nervosa/efeitos da radiação , Animais , Axônios/patologia , Axônios/efeitos da radiação , Feminino , Lasers Semicondutores , Nervo Mandibular/patologia , Ratos Wistar
6.
J Cell Mol Med ; 24(1): 476-487, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31667932

RESUMO

Macrophages play key roles in the secondary injury stage of spinal cord injury (SCI). M1 macrophages occupy the lesion area and secrete high levels of inflammatory factors that hinder lesion repair, and M2 macrophages can secrete neurotrophic factors and promote axonal regeneration. The regulation of macrophage secretion after SCI is critical for injury repair. Low-level laser therapy (810-nm) (LLLT) can boost functional rehabilitation in rats after SCI; however, the mechanisms remain unclear. To explore this issue, we established an in vitro model of low-level laser irradiation of M1 macrophages, and the effects of LLLT on M1 macrophage polarization and neurotrophic factor secretion and the related mechanisms were investigated. The results showed that LLLT irradiation decreased the expression of M1 macrophage-specific markers, and increased the expression of M2 macrophage-specific markers. Through forward and reverse experiments, we verified that LLLT can promote the secretion of various neurotrophic factors by activating the PKA-CREB pathway in macrophages and finally promote the regeneration of axons. Accordingly, LLLT may be an effective therapeutic approach for SCI with clinical application prospects.


Assuntos
Axônios/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Terapia com Luz de Baixa Intensidade , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa , Animais , Axônios/efeitos dos fármacos , Axônios/efeitos da radiação , Meios de Cultivo Condicionados/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Isoquinolinas/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/genética , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/efeitos da radiação , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfonamidas/farmacologia
7.
PLoS One ; 14(11): e0224846, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31710637

RESUMO

Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60-70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100-170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this outcome is technically challenging to explore in vivo. We propose that optogenetically endowed hNPs hold great promise as tools to explore de novo circuit formation in the brain and, in the future, perhaps launch a new generation of neuromodulatory therapies.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Optogenética , Animais , Astrócitos/citologia , Astrócitos/efeitos da radiação , Axônios/metabolismo , Axônios/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Linhagem da Célula/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Channelrhodopsins/metabolismo , Células-Tronco Embrionárias Humanas/efeitos da radiação , Humanos , Lentivirus/metabolismo , Luz , Camundongos Nus , Córtex Motor/metabolismo , Células-Tronco Neurais/efeitos da radiação , Plasticidade Neuronal/efeitos da radiação , Neurônios/efeitos da radiação , Neurotransmissores/metabolismo , Fenótipo , Estimulação Luminosa , Ratos Nus , Transmissão Sináptica/efeitos da radiação
8.
Anat Rec (Hoboken) ; 302(8): 1314-1324, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30950229

RESUMO

The aim of the present study is to test whether ultrasound therapy of muscles denervated by nerve injury would improve the quality of their reinnervation by reduction of the collateral axonal branching at the lesion site and poly-innervation degree at the neuromuscular junctions. After transection and suture of the buccal branch of the facial nerve, pulsed or continuous type of ultrasound therapy was applied to the paralyzed whisker pad muscles of rats in the course of 2 months. Instead of reduction, we found a significant increase in the collateral axonal branching after continuous ultrasound therapy when compared to the branching determined after pulsed or sham ultrasound therapy. Both types of ultrasound therapy also failed to reduce the proportion of polyinnervated end plates in the reinnervated facial muscles. Accordingly, continuous ultrasound therapy failed to restore any parameter of the motor performance of the vibrissal hairs. Application of pulsed ultrasound therapy promoted slight improvements of the functional parameters angular velocity and acceleration. The inhomogeneous structural and functional results achieved after both types of ultrasound therapy let us conclude that further studies are required to evaluate its effects on peripheral nerve regeneration. Anat Rec, 302:1314-1324, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Axônios/fisiologia , Traumatismos do Nervo Facial/terapia , Placa Motora/fisiologia , Neurogênese , Procedimentos de Cirurgia Plástica/efeitos adversos , Recuperação de Função Fisiológica , Terapia por Ultrassom/métodos , Animais , Axônios/efeitos da radiação , Músculos Faciais/inervação , Músculos Faciais/efeitos da radiação , Nervo Facial/cirurgia , Traumatismos do Nervo Facial/etiologia , Feminino , Placa Motora/efeitos da radiação , Neurônios Motores/fisiologia , Neurônios Motores/efeitos da radiação , Ratos , Ratos Wistar , Vibrissas/inervação , Vibrissas/fisiologia , Vibrissas/efeitos da radiação
9.
Lasers Med Sci ; 34(8): 1555-1566, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30887233

RESUMO

In this study, we combine heat diffusion equation and modified Hodgkin-Huxley axonal model to investigate how an action potential is generated during infrared neural stimulation. The effects of temporal and spatial distribution of heat induced by infrared pulsed lasers on variation of electrical membrane capacitance are investigated. These variations can lead to depolarize the membrane and generate an action potential. We estimate the threshold values of laser light parameters such as energy density, pulse duration, and repetition rate are needed to trigger an action potential. In order to do it, we present an analytic solution to heat diffusion equation. Then, the analytic results are verified by experimental results. Furthermore, the modified Hodgkin-Huxley axonal model is applied to simulate the generation of action potential during infrared neural stimulation by taking into account the temperature dependence of electrical membrane capacitance. Results show that the threshold temperature increase induced by a train infrared pulse laser can be smaller if repetition rate is higher. These results also indicate that temperature rise time and axon diameter influence on threshold temperature increase. To verify threshold values estimated by the presented method, we use a train infrared pulsed laser (λ = 1450 nm with repetition rate of 3.8 Hz, pulse duration of 18 ms and energy density of 5 J/cm2) to optically pace an adult rat heart, and we are able to successfully pace the rat heart during an open-heart surgery. The presented method can be used to estimate threshold values of laser parameters required for generating an action potential, and it can provide an insight to how the temperature changes lead to neural stimulation during INS.


Assuntos
Raios Infravermelhos , Lasers , Sistema Nervoso/efeitos da radiação , Potenciais de Ação/efeitos da radiação , Animais , Axônios/efeitos da radiação , Membrana Celular/efeitos da radiação , Masculino , Imagens de Fantasmas , Ratos , Temperatura , Fatores de Tempo
10.
Eur J Neurosci ; 46(9): 2507-2518, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921700

RESUMO

Injury to the adult central nervous system (CNS) results in the formation of glial scar tissues. Glial scar-induced failure of regenerative axon pathfinding may limit axon regrowth beyond the lesion site and cause incorrect reinnervation and dystrophic appearance of stalled growth after CNS trauma. Glial scars also upregulate chondroitin sulphate proteoglycans (CSPGs) and expression of proinflammatory factor(s) that form a barrier to axonal regeneration. Therefore, interventions for glial scarring are an attractive strategy for augmenting axonal sprouting and regeneration and overcoming the physical and molecular barriers impeding functional repair. The glial reaction occurs shortly after spinal cord injury (SCI) and can persist for days or weeks with upregulation of cell cycle proteins. In this study, we utilised Beagle dogs to establish a preclinical SCI model and examine the efficacy of low-dose fractionated irradiation (LDI) treatment, which was performed once a day for 14 days (2 Gy per dose, 28 Gy in total). Low-dose fractionated irradiation is a stable method for suppressing cell activation and proliferation through interference in the cell cycle. Our results demonstrated that LDI could reduce astrocyte and microglia activation/proliferation and attenuate CSPGs and IL-1ß expression. Low-dose fractionated irradiation also promoted and provided a pathway for long-distance axon regeneration beyond the lesion site, induced reinnervation of axonal targets and restored locomotor function after SCI in Beagle dogs. Taken together, our findings suggest that LDI would be a promising therapeutic strategy for targeting glial scarring, promoting axon regeneration and facilitating reconstruction of functional circuits after SCI.


Assuntos
Regeneração Nervosa/efeitos da radiação , Recuperação de Função Fisiológica/efeitos da radiação , Traumatismos da Medula Espinal/radioterapia , Medula Espinal/efeitos da radiação , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Astrócitos/efeitos da radiação , Axônios/patologia , Axônios/fisiologia , Axônios/efeitos da radiação , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Cães , Fracionamento da Dose de Radiação , Gliose/patologia , Gliose/fisiopatologia , Gliose/radioterapia , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Microglia/patologia , Microglia/fisiologia , Microglia/efeitos da radiação , Microscopia Eletrônica , Atividade Motora/fisiologia , Atividade Motora/efeitos da radiação , Regeneração Nervosa/fisiologia , Distribuição Aleatória , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
11.
J Cell Sci ; 129(24): 4633-4643, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27831495

RESUMO

Photoactivation allows one to pulse-label molecules and obtain quantitative data about their behavior. We have devised a new modeling-based analysis for photoactivatable actin experiments that simultaneously measures properties of monomeric and filamentous actin in a three-dimensional cellular environment. We use this method to determine differences in the dynamic behavior of ß- and γ-actin isoforms, showing that both inhabit filaments that depolymerize at equal rates but that ß-actin exists in a higher monomer-to-filament ratio. We also demonstrate that cofilin (cofilin 1) equally accelerates depolymerization of filaments made from both isoforms, but is only required to maintain the ß-actin monomer pool. Finally, we used modeling-based analysis to assess actin dynamics in axon-like projections of differentiating neuroblastoma cells, showing that the actin monomer concentration is significantly depleted as the axon develops. Importantly, these results would not have been obtained using traditional half-time analysis. Given that parameters of the publicly available modeling platform can be adjusted to suit the experimental system of the user, this method can easily be used to quantify actin dynamics in many different cell types and subcellular compartments.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Luz , Modelos Biológicos , Citoesqueleto de Actina/efeitos da radiação , Animais , Axônios/metabolismo , Axônios/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Humanos
12.
Sci Rep ; 6: 23976, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052670

RESUMO

Growth cones of extending axons navigate to correct targets by sensing a guidance cue gradient via membrane protein receptors. Although most signaling mechanisms have been clarified using an in vitro approach, it is still difficult to investigate the growth cone behavior in complicated extracellular environment of living animals due to the lack of tools. We develop a system for the light-dependent activation of a guidance receptor, Deleted in Colorectal Cancer (DCC), using Arabidopsis thaliana Cryptochrome 2, which oligomerizes upon blue-light absorption. Blue-light illumination transiently activates DCC via its oligomerization, which initiates downstream signaling in the illuminated subcellular region. The extending axons are attracted by illumination in cultured chick dorsal root ganglion neurons. Moreover, light-mediated navigation of the growth cones is achieved in living Caenorhabditis elegans. The photo-manipulation system is applicable to investigate the relationship between the growth cone behavior and its surrounding environment in living tissue.


Assuntos
Orientação de Axônios/fisiologia , Axônios/fisiologia , Crescimento Neuronal/fisiologia , Optogenética/métodos , Receptores de Superfície Celular/metabolismo , Animais , Animais Geneticamente Modificados , Orientação de Axônios/efeitos da radiação , Axônios/metabolismo , Axônios/efeitos da radiação , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos da radiação , Embrião de Galinha , Galinhas , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Immunoblotting , Luz , Camundongos , Microscopia de Fluorescência , Crescimento Neuronal/efeitos da radiação , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/efeitos da radiação , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Radiat Oncol ; 10: 33, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25636531

RESUMO

BACKGROUND: Recently, we characterized a Gamma Knife® radiation necrosis mouse model with various magnetic resonance imaging (MRI) protocols to identify biomarkers useful in differentiation from tumors. Though the irradiation was focal to one hemisphere, a contralateral injury was observed that appeared to be localized in the white matter only. Interestingly, this injury was identifiable in T2-weighted images, apparent diffusion coefficient (ADC), and magnetization transfer ratio (MTR) maps, but not on post-contrast T1-weighted images. This observation of edema independent of vascular changes is akin to the perilesional edema seen in clinical radiation necrosis. FINDINGS: The pathology underlying the observed white-matter MRI changes was explored by performing immunohistochemistry for healthy axons and myelin. The presence of both healthy axons and myelin was reduced in the contralateral white-matter lesion. CONCLUSIONS: Based on our immunohistochemical findings, the contralateral white-matter injury is most likely due to axonal degeneration.


Assuntos
Axônios/patologia , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Edema/patologia , Lesões por Radiação/patologia , Animais , Axônios/efeitos da radiação , Encéfalo/efeitos da radiação , Edema/etiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Necrose , Lesões por Radiação/etiologia
14.
Nature ; 518(7537): 111-114, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25561173

RESUMO

Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary rat hippocampal neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhanced growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to explore site-specific organelle functions in different model systems.


Assuntos
Compartimento Celular/fisiologia , Endossomos/metabolismo , Mitocôndrias/metabolismo , Optogenética/métodos , Peroxissomos/metabolismo , Animais , Axônios/fisiologia , Axônios/efeitos da radiação , Transporte Biológico/efeitos da radiação , Compartimento Celular/efeitos da radiação , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/efeitos da radiação , Dineínas/metabolismo , Dineínas/efeitos da radiação , Endossomos/efeitos da radiação , Hipocampo/citologia , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Cinesinas/metabolismo , Cinesinas/efeitos da radiação , Microtúbulos/metabolismo , Microtúbulos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Miosina Tipo V/metabolismo , Miosina Tipo V/efeitos da radiação , Peroxissomos/efeitos da radiação , Ratos
15.
Artigo em Inglês | MEDLINE | ID: mdl-25353835

RESUMO

In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, that the density redistribution of transmembrane sodium channels may reduce the threshold of the action potential, up to its spontaneous initiation. At the significant redistribution of sodium channels in the membrane, the rarefaction zones of the transmembrane channel density are formed, blocking the propagation of the action potential. Blocking the action potential propagation along the axon is shown to cause anesthesia in the example case of a squid axon. Various approaches to experimental observation of the effects considered in this paper are discussed.


Assuntos
Potenciais de Ação/efeitos da radiação , Axônios/efeitos da radiação , Micro-Ondas , Modelos Neurológicos , Ultrassom , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Membrana Celular/fisiologia , Membrana Celular/efeitos da radiação , Decapodiformes , Fenômenos Eletromagnéticos , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/efeitos da radiação , Micro-Ondas/efeitos adversos , Pressão , Canais de Sódio/metabolismo , Canais de Sódio/efeitos da radiação , Vibração
16.
PLoS One ; 9(2): e88244, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505446

RESUMO

Since approximately two thirds of epileptic patients are non-eligible for surgery, local axonal fiber transections might be of particular interest for them. Micrometer to millimeter wide synchrotron-generated X-ray beamlets produced by spatial fractionation of the main beam could generate such fiber disruptions non-invasively. The aim of this work was to optimize irradiation parameters for the induction of fiber transections in the rat brain white matter by exposure to such beamlets. For this purpose, we irradiated cortex and external capsule of normal rats in the antero-posterior direction with a 4 mm×4 mm array of 25 to 1000 µm wide beamlets and entrance doses of 150 Gy to 500 Gy. Axonal fiber responses were assessed with diffusion tensor imaging and fiber tractography; myelin fibers were examined histopathologically. Our study suggests that high radiation doses (500 Gy) are required to interrupt axons and myelin sheaths. However, a radiation dose of 500 Gy delivered by wide minibeams (1000 µm) induced macroscopic brain damage, depicted by a massive loss of matter in fiber tractography maps. With the same radiation dose, the damage induced by thinner microbeams (50 to 100 µm) was limited to their paths. No macroscopic necrosis was observed in the irradiated target while overt transections of myelin were detected histopathologically. Diffusivity values were found to be significantly reduced. A radiation dose ≤ 500 Gy associated with a beamlet size of < 50 µm did not cause visible transections, neither on diffusion maps nor on sections stained for myelin. We conclude that a peak dose of 500 Gy combined with a microbeam width of 100 µm optimally induced axonal transections in the white matter of the brain.


Assuntos
Axônios/patologia , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Animais , Axônios/efeitos da radiação , Encéfalo/efeitos da radiação , Bainha de Mielina/patologia , Bainha de Mielina/efeitos da radiação , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/efeitos da radiação , Doses de Radiação , Ratos , Síncrotrons , Raios X
17.
J Neurosci ; 34(9): 3320-39, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24573290

RESUMO

Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/efeitos da radiação , Axônios/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Neurônios/citologia , Raios Ultravioleta , Precursor de Proteína beta-Amiloide/deficiência , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/ultraestrutura , Células Cultivadas , Embrião de Mamíferos , Hipocampo/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/patologia , Neurônios/efeitos da radiação , Presenilina-1/deficiência , Presenilina-2/deficiência , Transfecção
18.
Int J Radiat Biol ; 89(3): 155-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23020685

RESUMO

UNLABELLED: Abstract Purpose: The aim of the present study was to evaluate the electrophysiological, biochemical and ultrastructural changes on the rat sciatic nerve after radiotherapy. MATERIAL AND METHODS: Thirty male Wistar albino rats were divided into three groups as: Control group (n = 10), Group I: 3 months after radiotherapy (n = 10), and Group II: 6 months after radiotherapy (n = 10). Groups I and II were irradiated with a (60)Co gamma source. A dose of 20 Gy in 10 fractions was applied to Groups I and II. Compound motor action potentials (CMAP) were recorded in all groups. Superoxide dismutase (SOD) and catalase (CAT) activities and malondialdehyde (MDA) levels were measured in the sciatic nerve of rats using the biochemical methods. Ultrastructural changes were determined by electron microscopy. RESULTS: In Groups I and II, the amplitude of CMAP was significantly lower and the latency was significantly higher than that of the control group. There were no significant differences between Groups I and II regarding the CMAP amplitude and latency. The MDA levels were significantly increased, whereas the SOD and CAT activities were significantly decreased in experimental groups when compared with the control group. However, there were no significant changes in these parameters between Groups I and II. Degeneration in myelinated nerve fibers was observed ultrastructurally only in the experimental groups. Significant changes were observed between the control group and experimental groups in terms of ultrastructural myelin grading score and axonal damage score. No significant differences were found between Groups I and II. CONCLUSIONS: These findings indicated that the dose of 20 Gy in 10 fractions radiotherapy caused neuropathic damages in normal rat sciatic nerve 3 and 6 months after irradiation.


Assuntos
Radioterapia/efeitos adversos , Nervo Isquiático/lesões , Nervo Isquiático/efeitos da radiação , Animais , Axônios/efeitos da radiação , Axônios/ultraestrutura , Catalase/metabolismo , Relação Dose-Resposta à Radiação , Fenômenos Eletrofisiológicos , Peroxidação de Lipídeos/efeitos da radiação , Masculino , Microscopia Eletrônica de Transmissão , Bainha de Mielina/efeitos da radiação , Bainha de Mielina/ultraestrutura , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Ratos , Ratos Wistar , Nervo Isquiático/fisiopatologia , Nervo Isquiático/ultraestrutura , Superóxido Dismutase/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(52): 21522-7, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236175

RESUMO

Cranial irradiation is widely used in cancer therapy, but it often causes cognitive defects in cancer survivors. Oxidative stress is considered a major cause of tissue injury from irradiation. However, in an earlier study mice deficient in the antioxidant enzyme extracellular superoxide dismutase (EC-SOD KO) showed reduced sensitivity to radiation-induced defects in hippocampal functions. To further dissect the role of EC-SOD in neurogenesis and in response to irradiation, we generated a bigenic EC-SOD mouse model (OE mice) that expressed high levels of EC-SOD in mature neurons in an otherwise EC-SOD-deficient environment. EC-SOD deficiency was associated with reduced progenitor cell proliferation in the subgranular zone of dentate gyrus in KO and OE mice. However, high levels of EC-SOD in the granule cell layer supported normal maturation of newborn neurons in OE mice. Following irradiation, wild-type mice showed reduced hippocampal neurogenesis, reduced dendritic spine densities, and defects in cognitive functions. OE and KO mice, on the other hand, were largely unaffected, and the mice performed normally in neurocognitive tests. Although the resulting hippocampal-related functions were similar in OE and KO mice following cranial irradiation, molecular analyses suggested that they may be governed by different mechanisms: whereas neurotrophic factors may influence radiation responses in OE mice, dendritic maintenance may be important in the KO environment. Taken together, our data suggest that EC-SOD plays an important role in all stages of hippocampal neurogenesis and its associated cognitive functions, and that high-level EC-SOD may provide protection against irradiation-related defects in hippocampal functions.


Assuntos
Cognição/efeitos da radiação , Espaço Extracelular/enzimologia , Hipocampo/fisiologia , Hipocampo/efeitos da radiação , Neurogênese/efeitos da radiação , Radiação Ionizante , Superóxido Dismutase/metabolismo , Animais , Axônios/metabolismo , Axônios/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Dendritos/metabolismo , Dendritos/efeitos da radiação , Memória/efeitos da radiação , Camundongos , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos da radiação , Fatores de Tempo , Fatores de Transcrição/metabolismo
20.
Med Phys ; 39(9): 5603-13, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22957626

RESUMO

PURPOSE: To segment fiber tracts in the limbic circuit and to assess their sensitivity to radiation therapy (RT). METHODS: Twelve patients with brain metastases who had received fractionated whole brain radiation therapy to 30 Gy or 37.5 Gy were included in the study. Diffusion weighted images were acquired pre-RT, at the end of RT, and 1-month post-RT. The fornix, corpus callosum, and cingulum were extracted from diffusion weighted images by combining fiber tracking and segmentation methods based upon characteristics of the fiber bundles. Cingulum was segmented by a seed-based tractography, fornix by a region of interests (ROI)-based tractography, and corpus callosum by a level-set segmentation algorithm. The radiation-induced longitudinal changes of diffusion indices of the structures were evaluated. RESULTS: Significant decreases were observed in the fractional anisotropy of the posterior part of the cingulum, fornix, and corpus callosum from pre-RT to end of RT by -14.0%, -12.5%, and -5.2%, respectively (p < 0.001), and from pre-RT to 1-month post-RT by -11.9%, -12.8%, and -6.4%, respectively (p < 0.001). Moreover, significant increases were observed in the mean diffusivity of the corpus callosum and the posterior part of the cingulum from pre-RT to end of RT by 6.8% and 6.5%, respectively, and from pre-RT to 1-month post-RT by 8.5% and 6.3%, respectively. The increase in the radial diffusivity primarily contributed to the significant decrease in the fractional anisotropy, indicating that demyelination is the predominant radiation effect on the white matter structures. CONCLUSIONS: Our findings indicate that the fornix and the posterior part of the cingulum are significantly susceptible to radiation damage. We have developed robust computer-aided semiautomatic segmentation and fiber tracking tools to facilitate the ROI delineation of critical structures, which is important for assessment of radiation damage in a longitudinal fashion.


Assuntos
Axônios/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Sistema Límbico/patologia , Sistema Límbico/efeitos da radiação , Algoritmos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA