Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007638

RESUMO

Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.


Assuntos
Axonema , Cílios , Peixe-Zebra , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Peixe-Zebra/metabolismo , Camundongos , Axonema/metabolismo , Axonema/ultraestrutura , Dineínas do Axonema/metabolismo , Dineínas do Axonema/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Dineínas/metabolismo
2.
Cells ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39056782

RESUMO

Disease-causing bi-allelic DNA variants in CCDC39 and CCDC40 are frequent causes of the hereditary disorder of primary ciliary dyskinesia (PCD). The encoded proteins form a molecular ruler complex, crucial for maintaining the 96 nm repeat units along the ciliary axonemes. Defects of those proteins cause a stiff, rapid, and flickery ciliary beating pattern, recurrent respiratory infections, axonemal disorganization, and abnormal assembly of GAS8, CCDC39, and DNALI1. We performed molecular characterization of the defects in the 96 nm axonemal ruler due to disease-causing variants in CCDC39 and CCDC40 and analyzed the effect on additional axonemal components. We identified a cohort of 51 individuals with disease-causing variants in CCDC39 and CCDC40 via next-generation sequencing techniques and demonstrated that the IDA heavy chains DNAH1, DNAH6, and DNAH7 are conspicuously absent within the respiratory ciliary axonemes by immunofluorescence analyses. Hence, we show for the first time that the centrin2 (CETN2) containing IDAs are also affected. These findings underscore the crucial role of CCDC39 and CCDC40 in the assembly and function of IDAs in human respiratory cilia. Thus, our data improve the diagnostics of axonemal ruler defects by further characterizing the associated molecular IDA defects.


Assuntos
Axonema , Humanos , Masculino , Dineínas do Axonema/metabolismo , Dineínas do Axonema/genética , Axonema/metabolismo , Cílios/metabolismo , Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto , Dineínas/metabolismo , Dineínas/genética , Mutação/genética , Proteínas
3.
Mol Biol Cell ; 35(9): br16, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024276

RESUMO

The outer dynein arm (ODA) is a large, multimeric protein complex essential for ciliary motility. The composition and assembly of ODA are best characterized in the green algae Chlamydomonas reinhardtii, where individual ODA subunits are synthesized and preassembled into a mature complex in the cytosol prior to ciliary import. The single-cellular parasite Trypanosoma brucei contains a motile flagellum essential for cell locomotion and pathogenesis. Similar to human motile cilia, T. brucei flagellum contains a two-headed ODA complex arranged at 24 nm intervals along the axonemal microtubule doublets. The subunit composition and the preassembly of the ODA complex in T. brucei, however, have not been investigated. In this study, we affinity-purified the ODA complex from T. brucei cytoplasmic extract. Proteomic analyses revealed the presence of two heavy chains (ODAα and ODAß), two intermediate chains (IC1and IC2) and several light chains. We showed that both heavy chains and both intermediate chains are indispensable for flagellar ODA assembly. Our study also provided biochemical evidence supporting the presence of a cytoplasmic, preassembly pathway for T. brucei ODA.


Assuntos
Axonema , Citoplasma , Dineínas , Flagelos , Proteínas de Protozoários , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Flagelos/metabolismo , Citoplasma/metabolismo , Axonema/metabolismo , Dineínas/metabolismo , Proteínas de Protozoários/metabolismo , Microtúbulos/metabolismo , Proteômica/métodos , Cílios/metabolismo
4.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38829962

RESUMO

Two sets of motor proteins underpin motile cilia/flagella function. The axoneme-associated inner and outer dynein arms drive sliding of adjacent axoneme microtubule doublets to periodically bend the flagellum for beating, while intraflagellar transport (IFT) kinesins and dyneins carry IFT trains bidirectionally along the axoneme. Despite assembling motile cilia and flagella, IFT train speeds have only previously been quantified in immobilized flagella-mechanical immobilization or genetic paralysis. This has limited investigation of the interaction between IFT and flagellar beating. Here, in uniflagellate Leishmania parasites, we use high-frequency, dual-color fluorescence microscopy to visualize IFT train movement in beating flagella. We discovered that adhesion of flagella to a microscope slide is detrimental, reducing IFT train speed and increasing train stalling. In flagella free to move, IFT train speed is not strongly dependent on flagella beat type; however, permanent disruption of flagella beating by deletion of genes necessary for formation or regulation of beating showed an inverse correlation of beat frequency and IFT train speed.


Assuntos
Flagelos , Leishmania , Microtúbulos , Axonema/metabolismo , Axonema/genética , Transporte Biológico , Cílios/metabolismo , Cílios/genética , Dineínas/metabolismo , Dineínas/genética , Flagelos/metabolismo , Flagelos/genética , Cinesinas/metabolismo , Cinesinas/genética , Leishmania/citologia , Leishmania/genética , Leishmania/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Microtúbulos/metabolismo
5.
Mol Biol Cell ; 35(8): ar106, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865178

RESUMO

Outer dynein arms (ODAs) are responsible for ciliary beating in eukaryotes. They are assembled in the cytoplasm and shipped by intraflagellar transport (IFT) before attachment to microtubule doublets via the docking complex. The LRRC56 protein has been proposed to contribute to ODAs maturation. Mutations or deletion of the LRRC56 gene lead to reduced ciliary motility in all species investigated so far, but with variable impact on dynein arm presence. Here, we investigated the role of LRRC56 in the protist Trypanosoma brucei, where its absence results in distal loss of ODAs, mostly in growing flagella. We show that LRRC56 is a transient cargo of IFT trains during flagellum construction and surprisingly, is required for efficient attachment of a subset of docking complex proteins present in the distal portion of the organelle. This relation is interdependent since the knockdown of the distal docking complex prevents LRRC56's association with the flagellum. Intriguingly, lrrc56-/- cells display shorter flagella whose maturation is delayed. Inhibition of cell division compensates for the distal ODAs absence thanks to the redistribution of the proximal docking complex, restoring ODAs attachment but not the flagellum length phenotype. This work reveals an unexpected connection between LRRC56 and the docking complex.


Assuntos
Dineínas , Flagelos , Proteínas de Protozoários , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Flagelos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Cílios/metabolismo , Transporte Biológico/fisiologia , Axonema/metabolismo
6.
EMBO Rep ; 25(6): 2722-2742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773322

RESUMO

Alpha, beta, and gamma tubulins are essential building blocks for all eukaryotic cells. The functions of the non-canonical tubulins, delta, epsilon, and zeta, however, remain poorly understood and their requirement in mammalian development untested. Herein we have used a spermatogenesis model to define epsilon tubulin (TUBE1) function in mice. We show that TUBE1 is essential for the function of multiple complex microtubule arrays, including the meiotic spindle, axoneme and manchette and in its absence, there is a dramatic loss of germ cells and male sterility. Moreover, we provide evidence for the interplay between TUBE1 and katanin-mediated microtubule severing, and for the sub-specialization of individual katanin paralogs in the regulation of specific microtubule arrays.


Assuntos
Katanina , Microtúbulos , Espermatogênese , Tubulina (Proteína) , Animais , Masculino , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Camundongos , Katanina/metabolismo , Katanina/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Células Germinativas/metabolismo , Fuso Acromático/metabolismo , Espermatozoides/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/genética , Camundongos Knockout , Axonema/metabolismo
7.
Mol Biol Cell ; 35(7): ar90, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758663

RESUMO

Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel Chlamydomonas mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, ttll3(ex5), completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the ttll3(ex5) mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on ß-tubulin in Chlamydomonas, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of ß-tubulin.


Assuntos
Axonema , Cílios , Flagelos , Microtúbulos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Flagelos/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Chlamydomonas/metabolismo , Mutação , Dineínas do Axonema/metabolismo
8.
Sci China Life Sci ; 67(8): 1697-1714, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761355

RESUMO

The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species. Enzymatic shuttles, particularly adenylate kinase (AK) and creatine kinase (CK), are pivotal in the efficient transfer of intracellular ATP, showing distinct tissue- and species-specificity. Here, the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups, of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates. Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort. Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility. Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke (RS) of the axoneme. Examination of various human and mouse sperm samples with substructural damage, including the presence of multiple RS subunits, showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme. Using an ATP probe together with metabolomic analysis, it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme, and were concentrated at sites associated with energy consumption in the flagellum. These findings indicate a novel function for RS beyond its structural role, namely, the regulation of ATP transfer. In conclusion, the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.


Assuntos
Trifosfato de Adenosina , Adenilato Quinase , Axonema , Camundongos Knockout , Motilidade dos Espermatozoides , Cauda do Espermatozoide , Animais , Adenilato Quinase/metabolismo , Masculino , Camundongos , Axonema/metabolismo , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Metabolismo Energético , Espermatozoides/metabolismo , Flagelos/metabolismo , Creatina Quinase/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/genética
9.
Nat Commun ; 15(1): 3456, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658528

RESUMO

Intraflagellar transport (IFT) orchestrates entry of proteins into primary cilia. At the ciliary base, assembled IFT trains, driven by kinesin-2 motors, can transport cargo proteins into the cilium, across the crowded transition zone. How trains assemble at the base and how proteins associate with them is far from understood. Here, we use single-molecule imaging in the cilia of C. elegans chemosensory neurons to directly visualize the entry of kinesin-2 motors, kinesin-II and OSM-3, as well as anterograde cargo proteins, IFT dynein and tubulin. Single-particle tracking shows that IFT components associate with trains sequentially, both in time and space. Super-resolution maps of IFT components in wild-type and mutant worms reveal ciliary ultrastructure and show that kinesin-II is essential for axonemal organization. Finally, imaging cilia lacking kinesin-II and/or transition zone function uncovers the interplay of kinesin-II and OSM-3 in driving efficient transport of IFT trains across the transition zone.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cinesinas , Caenorhabditis elegans/metabolismo , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Flagelos/metabolismo , Flagelos/ultraestrutura , Tubulina (Proteína)/metabolismo , Axonema/metabolismo , Axonema/ultraestrutura , Dineínas/metabolismo , Transporte Biológico , Imagem Individual de Molécula , Transporte Proteico
10.
Mol Biol Cell ; 35(5): ar72, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568782

RESUMO

Cilia generate three-dimensional waveforms required for cell motility and transport of fluid, mucus, and particles over the cell surface. This movement is driven by multiple dynein motors attached to nine outer doublet microtubules that form the axoneme. The outer and inner arm dyneins are organized into 96-nm repeats tandemly arrayed along the length of the doublets. Motility is regulated in part by projections from the two central pair microtubules that contact radial spokes located near the base of the inner dynein arms in each repeat. Although much is known about the structures and protein complexes within the axoneme, many questions remain about the regulatory mechanisms that allow the cilia to modify their waveforms in response to internal or external stimuli. Here, we used Chlamydomonas mbo (move backwards only) mutants with altered waveforms to identify at least two conserved proteins, MBO2/CCDC146 and FAP58/CCDC147, that form part of a L-shaped structure that varies between doublet microtubules. Comparative proteomics identified additional missing proteins that are altered in other motility mutants, revealing overlapping protein defects. Cryo-electron tomography and epitope tagging revealed that the L-shaped, MBO2/FAP58 structure interconnects inner dynein arms with multiple regulatory complexes, consistent with its function in modifying the ciliary waveform.


Assuntos
Axonema , Dineínas , Axonema/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Cílios/metabolismo , Proteínas/metabolismo , Flagelos/metabolismo
11.
PLoS Genet ; 20(3): e1011038, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498551

RESUMO

Motile cilia assembly utilizes over 800 structural and cytoplasmic proteins. Variants in approximately 58 genes cause primary ciliary dyskinesia (PCD) in humans, including the dynein arm (pre)assembly factor (DNAAF) gene DNAAF4. In humans, outer dynein arms (ODAs) and inner dynein arms (IDAs) fail to assemble motile cilia when DNAAF4 function is disrupted. In Chlamydomonas reinhardtii, a ciliated unicellular alga, the DNAAF4 ortholog is called PF23. The pf23-1 mutant assembles short cilia and lacks IDAs, but partially retains ODAs. The cilia of a new null allele (pf23-4) completely lack ODAs and IDAs and are even shorter than cilia from pf23-1. In addition, PF23 plays a role in the cytoplasmic modification of IC138, a protein of the two-headed IDA (I1/f). As most PCD variants in humans are recessive, we sought to test if heterozygosity at two genes affects ciliary function using a second-site non-complementation (SSNC) screening approach. We asked if phenotypes were observed in diploids with pairwise heterozygous combinations of 21 well-characterized ciliary mutant Chlamydomonas strains. Vegetative cultures of single and double heterozygous diploid cells did not show SSNC for motility phenotypes. When protein synthesis is inhibited, wild-type Chlamydomonas cells utilize the pool of cytoplasmic proteins to assemble half-length cilia. In this sensitized assay, 8 double heterozygous diploids with pf23 and other DNAAF mutations show SSNC; they assemble shorter cilia than wild-type. In contrast, double heterozygosity of the other 203 strains showed no effect on ciliary assembly. Immunoblots of diploids heterozygous for pf23 and wdr92 or oda8 show that PF23 is reduced by half in these strains, and that PF23 dosage affects phenotype severity. Reductions in PF23 and another DNAAF in diploids affect the ability to assemble ODAs and IDAs and impedes ciliary assembly. Thus, dosage of multiple DNAAFs is an important factor in cilia assembly and regeneration.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Humanos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cílios/genética , Cílios/metabolismo , Mutação , Dineínas/genética , Dineínas/metabolismo , Proteínas/genética , Chlamydomonas/genética , Chlamydomonas/metabolismo , Dosagem de Genes , Axonema/genética , Axonema/metabolismo
12.
EMBO Rep ; 25(1): 198-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177908

RESUMO

The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as axonemal microtubule growth and stabilization in polarized epithelia, are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/ß-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.


Assuntos
Cílios , Tubulina (Proteína) , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Células Epiteliais/metabolismo
13.
Curr Biol ; 33(24): R1274-R1279, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113834

RESUMO

Dyneins are a family of motor proteins that carry out motility and force generation functions towards the minus end of microtubule filaments. Cytoplasmic dynein (dynein-1) is responsible for transporting intracellular cargos in the retrograde direction in the cytoplasm, anchoring several organelles to the microtubule network, driving nuclear migration in developing neurons, and orienting the mitotic spindle in dividing cells. All other dyneins are localized to cilia. Similar to dynein-1, dynein-2 walks along microtubules and drives intraflagellar transport in the retrograde direction. Other ciliary dyneins are positioned between adjacent microtubule doublets of the axoneme and power ciliary beating by sliding microtubules relative to each other. In this primer, we first highlight the structure, mechanism, and regulation of dynein-1, which is the best-characterized member of the dynein motor family, and then describe the unique features and cellular roles of other dyneins. We also discuss accessory proteins that regulate the activation and motility of dynein motors in different cellular contexts.


Assuntos
Dineínas , Microtúbulos , Dineínas/metabolismo , Microtúbulos/metabolismo , Axonema/metabolismo , Cinesinas/metabolismo , Fuso Acromático/metabolismo
14.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203325

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States, with an estimated 52,000 deaths in 2023. Though significant progress has been made in both diagnosis and treatment of CRC in recent years, genetic heterogeneity of CRC-the culprit for possible CRC relapse and drug resistance, is still an insurmountable challenge. Thus, developing more effective therapeutics to overcome this challenge in new CRC treatment strategies is imperative. Genetic and epigenetic changes are well recognized to be responsible for the stepwise development of CRC malignancy. In this review, we focus on detailed genetic alteration information about the nuclear factor (NF)-κB signaling, including both NF-κB family members, and their regulators, such as protein arginine methyltransferase 5 (PRMT5), and outer dynein arm docking complex subunit 2 (ODAD2, also named armadillo repeat-containing 4, ARMC4), etc., in CRC patients. Moreover, we provide deep insight into different CRC research models, with a particular focus on patient-derived xenografts (PDX) and organoid models, and their potential applications in CRC research. Genetic alterations on NF-κB signaling components are estimated to be more than 50% of the overall genetic changes identified in CRC patients collected by cBioportal for Cancer Genomics; thus, emphasizing its paramount importance in CRC progression. Consequently, various genetic alterations on NF-κB signaling may hold great promise for novel therapeutic development in CRC. Future endeavors may focus on utilizing CRC models (e.g., PDX or organoids, or isogenic human embryonic stem cell (hESC)-derived colonic cells, or human pluripotent stem cells (hPSC)-derived colonic organoids, etc.) to further uncover the underpinning mechanism of these genetic alterations in NF-κB signaling in CRC progression. Moreover, establishing platforms for drug discovery in dishes, and developing Biobanks, etc., may further pave the way for the development of innovative personalized medicine to treat CRC in the future.


Assuntos
Neoplasias Colorretais , NF-kappa B , Humanos , Animais , NF-kappa B/genética , Transdução de Sinais/genética , Medicina de Precisão , Axonema , Modelos Animais de Doenças , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Proteína-Arginina N-Metiltransferases
15.
J. bras. pneumol ; 41(3): 251-263, May-Jun/2015. graf
Artigo em Inglês | LILACS | ID: lil-751968

RESUMO

Primary ciliary dyskinesia (PCD) is a genetic disorder of ciliary structure or function. It results in mucus accumulation and bacterial colonization of the respiratory tract which leads to chronic upper and lower airway infections, organ laterality defects, and fertility problems. We review the respiratory signs and symptoms of PCD, as well as the screening tests for and diagnostic investigation of the disease, together with details related to ciliary function, ciliary ultrastructure, and genetic studies. In addition, we describe the difficulties in diagnosing PCD by means of transmission electron microscopy, as well as describing patient follow-up procedures.


Discinesia ciliar primária (DCP) é uma doença genética que compromete a estrutura e/ou a função ciliar, causando retenção de muco e bactérias no trato respiratório e levando a infecções crônicas nas vias aéreas superiores e inferiores, defeitos de lateralidade visceral e problemas de fertilidade. Revisamos os sinais e sintomas respiratórios da DCP, os testes de triagem e a investigação diagnóstica, bem como detalhes relacionados ao estudo da função, ultraestrutura e genética ciliar. Descrevemos também as dificuldades em diagnosticar a DCP por meio de microscopia eletrônica de transmissão, bem como o seguimento dos pacientes.


Assuntos
Humanos , Síndrome de Kartagener/diagnóstico , Axonema/ultraestrutura , Cílios/fisiologia , Cílios/ultraestrutura , Dineínas/ultraestrutura , Doenças Genéticas Inatas , Síndrome de Kartagener/genética , Microscopia Eletrônica , Tomografia Computadorizada por Raios X
16.
Biocell ; 36(3): 133-142, Dec. 2012. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-694714

RESUMO

Trypanosoma brucei is a protozoan flagellate that causes African sleeping sickness. Flagellar function in this organism is critical for life cycle progression and pathogenesis, however the regulation of flagellar motility is not well understood. The flagellar axoneme produces a complex beat through the precisely coordinated firing of many proteins, including multiple dynein motors. These motors are found in the inner arm and outer arm complexes. We are studying one of the inner arm dynein motors in the T. brucei flagellum: dynein-f. RNAi knockdown of genes for two components of dynein-f: DNAH10, the a heavy chain, and IC138, an intermediate chain, cause severe motility defects including immotility. To determine if motility defects result from structural disruption of the axoneme, we used two different flagellar preparations to carefully examine axoneme structure in these strains using transmission electron microscopy (TEM). Our analysis showed that inner arm dynein size, axoneme structural integrity and fixed central pair orientation are not significantly different in either knockdown culture when compared to control cultures. These results support the idea that immotility in knockdowns affecting DNAH10 or IC138 results from loss of dynein-f function rather than from obvious structural defects in the axoneme.


Assuntos
Animais , Axonema/metabolismo , Dineínas/química , Trypanosoma brucei brucei/metabolismo , Ciclo Celular , Movimento Celular , Dineínas/metabolismo , Flagelos/metabolismo , Modelos Biológicos , Microscopia Eletrônica de Transmissão/métodos , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA