Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Electron. j. biotechnol ; 48: 36-45, nov. 2020. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1254948

RESUMO

Azotobacter vinelandii is a gram-negative soil bacterium that produces two biopolymers of biotechnological interest, alginate and poly(3-hydroxybutyrate), and it has been widely studied because of its capability to fix nitrogen even in the presence of oxygen. This bacterium is characterized by its high respiration rates, which are almost 10-fold higher than those of Escherichia coli and are a disadvantage for fermentation processes. On the other hand, several works have demonstrated that adequate control of the oxygen supply in A. vinelandii cultivations determines the yields and physicochemical characteristics of alginate and poly(3-hydroxybutyrate). Here, we summarize a review of the characteristics of A. vinelandii related to its respiration systems, as well as some of the most important findings on the oxygen consumption rates as a function of the cultivation parameters and biopolymer production.


Assuntos
Respiração , Biopolímeros/biossíntese , Azotobacter vinelandii/fisiologia , Poliésteres , Alginatos , Bactérias Gram-Negativas/fisiologia , Hidroxibutiratos , Fixação de Nitrogênio
2.
Curr Microbiol ; 72(6): 671-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26858204

RESUMO

Azotobacter vinelandii is a soil bacterium that forms desiccation-resistant cysts, and the exopolysaccharide alginate is essential for this process. A. vinelandii also produces alginate under vegetative growth conditions, and this production has biotechnological significance. Poly-ß-hydroxybutyrate (PHB) is another polymer synthetized by A. vinelandii that is of biotechnological interest. The GacS/A two-component signal transduction system plays an important role in regulating alginate production, PHB synthesis, and encystment. GacS/A in turn controls other important regulators such as RpoS and the ncRNAs that belong to the Rsm family. In A. vinelandii, RpoS is necessary for resisting oxidative stress as a result of its control over the expression of the catalase Kat1. In this work, we characterized a new ncRNA in A. vinelandii that is homologous to the P16/RsgA reported in Pseudomonas. We found that the expression of rgsA is regulated by GacA and RpoS and that it was essential for oxidative stress resistance. However, the activity of the catalase Kat1 is unaffected in rgsA mutants. Unlike those reported in Pseudomonas, RgsA in A. vinelandii regulates biofilm formation but not polymer synthesis or the encystment process.


Assuntos
Azotobacter vinelandii/fisiologia , Biofilmes , Estresse Oxidativo , RNA Bacteriano/metabolismo , RNA Longo não Codificante/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Bacteriano/genética , RNA Longo não Codificante/genética , Fator sigma/genética , Fator sigma/metabolismo
3.
Int Microbiol ; 16(1): 35-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151780

RESUMO

The alginate biofilm-producing bacterium Azotobacter vinelandii aerobically fixes nitrogen by oxygen-sensitive nitrogenases. Here we investigated the bacterial response to nitrogen/oxygen gas mixtures. A. vinelandii cells were cultured in nitrogen-free minimal media containing gas mixtures differing in their ratios of nitrogen and oxygen. The bacteria did not grow at oxygen concentrations >75% but grew well in the presence of 5% nitrogen/25% oxygen. Growth of wild-type and alginate-deficient strains when cultured with 50% oxygen did not differ substantially, indicating that alginate is not required for the protection of nitrogenases from oxygen damage. In response to decreasing nitrogen levels, A. vinelandii produced greater amounts of alginate, accompanied by the formation of blebs on the cell surface. The encystment of vegetative cells occurred in tandem with the release of blebs and the development of a multilayered exine. Immunoelectron microscopy using anti alginate-antibody revealed that the blebs contained alginate molecules. By contrast, alginate-deficient mutants could not form blebs. Taken together, our data provide evidence for a novel bleb-dependent polysaccharide export system in A. vinelandii that is activated in response to low nitrogen gas levels.


Assuntos
Azotobacter vinelandii/fisiologia , Proteínas de Bactérias/metabolismo , Nitrogênio/farmacologia , Oxigênio/farmacologia , Polissacarídeos Bacterianos/metabolismo , Alginatos , Azotobacter vinelandii/efeitos dos fármacos , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/ultraestrutura , Proteínas de Bactérias/genética , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos , Mutação
4.
Microbiology (Reading) ; 157(Pt 6): 1685-1693, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21454367

RESUMO

Azotobacter vinelandii is a soil bacterium that undergoes differentiation to form cysts that are resistant to desiccation. Upon induction of cyst formation, the bacterium synthesizes alkylresorcinols that are present in cysts but not in vegetative cells. Alternative sigma factors play important roles in differentiation. In A. vinelandii, AlgU (sigma E) is involved in controlling the loss of flagella upon induction of encystment. We investigated the involvement of the sigma factor RpoS in cyst formation in A. vinelandii. We analysed the transcriptional regulation of the rpoS gene by PsrA, the main regulator of rpoS in Pseudomonas species, which are closely related to A. vinelandii. Inactivation of rpoS resulted in the inability to form cysts resistant to desiccation and to produce cyst-specific alkylresorcinols, whereas inactivation of psrA reduced by 50 % both production of alkylresorcinols and formation of cysts resistant to desiccation. Electrophoretic mobility shift assays revealed specific binding of PsrA to the rpoS promoter region and that inactivation of psrA reduced rpoS transcription by 60 %. These results indicate that RpoS and PsrA are involved in regulation of encystment and alkylresorcinol synthesis in A. vinelandii.


Assuntos
Azotobacter vinelandii/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Resorcinóis/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Dessecação , Ensaio de Desvio de Mobilidade Eletroforética , Fator sigma/genética , Fatores de Transcrição/genética
5.
J Bacteriol ; 191(9): 3142-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270099

RESUMO

During encystment of Azotobacter vinelandii, a family of alkylresorcinols (ARs) and alkylpyrones (APs) are synthesized. In the mature cyst, these lipids replace the membrane phospholipids and are also components of the layers covering the cyst. In this study, A. vinelandii strains unable to synthesize ARs were isolated after mini-Tn5 mutagenesis. Cloning and nucleotide sequencing of the affected loci revealed the presence of the transposons within the arsA gene of the previously reported arsABCD gene cluster, which encodes a type I fatty acid synthase. A mutant strain (SW-A) carrying an arsA mutation allowing transcription of arsBCD was constructed and shown to be unable to produce ARs, indicating that the ArsA protein is essential for the synthesis of these phenolic lipids. Transcription of arsA was induced 200-fold in cells undergoing encystment, but only 14-fold in aged cultures of A. vinelandii, in accordance with AR synthesis and cyst formation percentages under the two conditions. Although it was previously reported that the inactivation of arsB abolishes AR synthesis and results in a failure in encystment, the arsA mutants were able to form cysts resistant to desiccation. These data indicate that ARs play a structural role in the exine layer of the cysts, but they are not essential for either cyst formation or for desiccation resistance.


Assuntos
Azotobacter vinelandii/fisiologia , Dessecação , Viabilidade Microbiana , Mutação , Resorcinóis/metabolismo , Esporos Bacterianos/fisiologia , Azotobacter vinelandii/genética , Azotobacter vinelandii/ultraestrutura , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Ácido Graxo Sintases/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ordem dos Genes , Mutagênese Insercional , Óperon , Esporos Bacterianos/genética , Esporos Bacterianos/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 103(16): 6356-61, 2006 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-16597676

RESUMO

Cysts of Azotobacter vinelandii are resting cells that are surrounded by a protective coat, conferring resistance to various chemical and physical agents. The major chemical components of the cyst coat are alkylresorcinols, which are amphiphilic molecules possessing an aromatic ring with a long aliphatic carbon chain. Although alkylresorcinols are widely distributed in bacteria, fungi, plants, and animals, no enzyme systems for their biosynthesis are known. We report here an ars operon in A. vinelandii that is responsible for the biosynthesis of the alkylresorcinols in the cysts. The ars operon consisted of four genes, two of which encoded a type III polyketide synthase, ArsB and ArsC. In vitro experiments revealed that ArsB and ArsC, sharing 71% amino acid sequence identity, were an alkylresorcinol synthase and an alkylpyrone synthase, respectively, indicating that ArsB and ArsC are not isozymes but enzymatically distinct polyketide synthases. In addition, ArsB and ArsC accepted several acyl-CoAs with various lengths of the side chain as a starter substrate and gave corresponding alkylresorcinols and alkylpyrones, respectively, which suggests that the mode of the ring folding is uninfluenced by the structure of the starter substrates. The importance of the alkylresorcinols for encystment was confirmed by gene inactivation experiments; the lack of alkylresorcinols synthesis caused by ars mutations resulted in the formation of severely impaired cysts, as observed by electron microscopy.


Assuntos
Azotobacter vinelandii/fisiologia , Lipídeos/biossíntese , Família Multigênica/fisiologia , Policetídeo Sintases/metabolismo , Pironas/metabolismo , Resorcinóis/metabolismo , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Genes Bacterianos/genética , Genes Bacterianos/fisiologia , Óperon/genética , Óperon/fisiologia , Policetídeo Sintases/genética , Especificidade por Substrato
7.
Mol Microbiol ; 52(6): 1731-44, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15186421

RESUMO

The NifA protein from Azotobacter vinelandii belongs to a family of enhancer binding proteins (EBPs) that activate transcription by RNA polymerase containing the sigma factor sigma(54). These proteins have conserved AAA+ domains that catalyse ATP hydrolysis to drive conformational changes necessary for open complex formation by sigma(54)-RNA polymerase. The activity of the NifA protein is highly regulated in response to redox and fixed nitrogen through interaction with the antiactivator protein NifL. Binding of NifL to NifA inhibits the ATPase activity of NifA, and this interaction is controlled by the amino-terminal GAF domain of NifA that binds 2-oxoglutarate. Mutations conferring resistance to NifL are located in both the GAF and the AAA+ domains of NifA. To investigate the mechanism by which the GAF domain regulates the activity of the AAA+ domain, we screened for second-site mutations that suppress the NifL-resistant phenotype of mutations in the AAA+ domain. One suppressor mutation, F119S, in the GAF domain restores inhibition by NifL to an AAA+ domain mutation, E356K, in response to fixed nitrogen but not in response to oxygen. The biochemical properties of this mutant protein are consistent with the in vivo phenotype and demonstrate that interdomain suppression results in sensitivity to inhibition by NifL in the presence of the signal transduction protein GlnK, but not to the oxidized form of NifL. In the absence of an AAA+ domain mutation, the F119S mutation confers hypersensitivity to repression by NifL. Isothermal titration calorimetry demonstrates that this mutation prevents binding of 2-oxoglutarate to the GAF domain. Our data support a model in which the GAF domain plays an essential role in preventing inhibition by NifL under conditions appropriate for nitrogen fixation. These observations are of general significance in considering how the activities of EBPs are controlled in response to environmental signals.


Assuntos
Azotobacter vinelandii/genética , Azotobacter vinelandii/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Genes Bacterianos , Genes Reporter , Ácidos Cetoglutáricos/metabolismo , Mutação de Sentido Incorreto , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Oxigênio/metabolismo , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54 , Fator sigma/metabolismo , Fatores de Transcrição/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
8.
Environ Microbiol ; 2(1): 27-38, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11243259

RESUMO

Differentiation in Azotobacter vinelandii involves the encystment of the vegetative cell under adverse environmental circumstances and the germination of the resting cell into the vegetative state when growth conditions are satisfactory again. Morphologically, the encystment process involves the development of a protective coat around the resting cell. This coat partly consists of multiple layers of alginate, which is a copolymer of beta-D-mannuronic acid (M) and alpha-L-guluronic acid (G). Alginate contributes to coat rigidity by virtue of a high content of GG blocks. Such block structures are generated through a family of mannuronan C-5 epimerases that convert M to G after polymerization. Results from immunodetection and light microscopy, using stains that distinguish between different cyst components and types, indicate a correlation between cyst coat organization and the amount and appearance of mannuronan C-5 epimerases in the extracellular medium and attached to the cells. Specific roles of individual members of the epimerase family are indicated. Calcium and magnesium ions appear to have different roles in the structural organization of the cyst coat. Also reported is a new gene sharing strong sequence homology with parts of the epimerase-encoded R-modules. This gene is located within the epimerase gene cluster of Azotobacter vinelandii.


Assuntos
Azotobacter vinelandii/citologia , Carboidratos Epimerases/metabolismo , Esporos Bacterianos/citologia , Alginatos/metabolismo , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/fisiologia , Western Blotting , Cálcio/deficiência , Carboidratos Epimerases/genética , Cátions Bivalentes , Eletroforese em Gel de Poliacrilamida , Ácido Glucurônico , Ácidos Hexurônicos , Magnésio/metabolismo , Fases de Leitura Aberta , Esporos Bacterianos/química , Esporos Bacterianos/fisiologia
9.
Gene ; 232(2): 217-22, 1999 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-10352233

RESUMO

Azotobacter vinelandii forms desiccation-resistant cysts which contain a high proportion of the exopolysaccharide alginate in their envelope. We have previously shown that the A. vinelandii alginate biosynthetic genes algA and algL are transcribed from a promoter located somewhere upstream of algL. In this study we sequenced the A. vinelandii algX, algL, algV, algI and algF genes located between algG and algA. We carried out primer extension analysis of the algG, algX and algL genes and detected transcription start sites upstream algG but not upstream algX or algL, implying that algG and algX form part of the previously identified algL-A operon. A promoter upstream algA was also detected; however, transcription of algA exclusively from this promoter is not sufficient for the AlgA levels required for alginate production. An algF mutant (AJ34) was constructed by insertion of the Omega-tetracycline cassette in the non-polar orientation. As expected, AJ34 produced unacetylated alginate. Viability of 35day old cysts formed by strain AJ34, but not of those formed by the wild type, was reduced, indicating that acetylation of alginate plays a role in cyst resistance to desiccation.


Assuntos
Alginatos/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Genes Bacterianos , Mutação , Transcrição Gênica , Azotobacter vinelandii/fisiologia , Proteínas de Bactérias/química , Sequência de Bases , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Clonagem Molecular , Códon de Iniciação/isolamento & purificação , Manose-6-Fosfato Isomerase/química , Manose-6-Fosfato Isomerase/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Família Multigênica , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Óperon , Plasmídeos/síntese química , RNA Mensageiro/isolamento & purificação , Esporos Bacterianos/fisiologia
10.
J Bacteriol ; 181(1): 141-8, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9864323

RESUMO

Azotobacter vinelandii produces the exopolysaccharide alginate, which is essential for the encystment process. In Pseudomonas aeruginosa, as well as in A. vinelandii, the sigmaE factor encoded by algU is required for transcription of algD, which encodes a key enzyme of the alginate biosynthetic pathway. The P. aeruginosa response regulator AlgR activates transcription of algD. fimS, located upstream algR, is proposed to encode the AlgR cognate sensor kinase. We have cloned and characterized the A. vinelandii algR gene; the deduced amino acid sequence of the protein encoded by this gene shows 79% identity with its P. aeruginosa homolog. Sequence analysis around the algR gene revealed the absence of a fimS homolog. Inactivation of A. vinelandii algR diminished alginate production by 50%, but did not affect algD transcription, and completely impaired the capacity to form mature cysts. Electron microscopy of the cyst structures formed by the algR mutant revealed that the encystment process is blocked at the step of exine formation. The transcriptional regulation of the A. vinelandii algR gene and the role of AlgR in alginate production differ significantly from those of its P. aeruginosa counterparts. These differences could be due to the fact that in A. vinelandii, alginate plays a role in encystment, a function not found in P. aeruginosa.


Assuntos
Azotobacter vinelandii/fisiologia , Proteínas de Bactérias/fisiologia , Transativadores , Alginatos/metabolismo , Sequência de Aminoácidos , Azotobacter vinelandii/genética , Azotobacter vinelandii/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Sequência de Bases , Desidrogenases de Carboidrato/genética , Clonagem Molecular , Conjugação Genética , DNA Bacteriano/genética , Genes Bacterianos , Teste de Complementação Genética , Ácido Glucurônico , Ácidos Hexurônicos , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Plasmídeos/genética , Pseudomonas aeruginosa/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transcrição Gênica
11.
J Bacteriol ; 180(10): 2766-9, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9573166

RESUMO

Alginate is essential for encystment in Azotobacter vinelandii. Transcription of the algD gene, which codes for GDP-mannose dehydrogenase, a key enzyme in the alginate biosynthetic pathway, is initiated at two promoters, one of which, p2, has sigmaE consensus sequences. AlgU is the A. vinelandii alternative sigmaE factor. In this study, we constructed an algU mutant (SMU88) which, as expected, is impaired in alginate production, encystment, and transcription of the algD gene from the p2 promoter. Plasmid pJMSAT1, carrying the A. vinelandii algU gene, restored alginate production and encystment to SMU88 and to strain UW136, a naturally occurring algU mutant. Plasmid pSMU865, carrying the A. vinelandii mucABCD genes coding for negative regulators of AlgU activity and previously shown to diminish alginate production in the wild-type strain, ATCC 9046, was shown here to impair encystment and transcription of the algD gene from the p2 algU-dependent promoter. Since nonencysting strain ATCC 9046/pSMU865 produced more alginate than some encysting strains, such as UW136/pJMSAT1, we propose an AlgU role in encystment, independent of the structural role that alginate plays in mature cysts.


Assuntos
Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Fator sigma , Azotobacter vinelandii/fisiologia , Proteínas de Bactérias/fisiologia , Sequência de Bases , Desidrogenases de Carboidrato/genética , Dados de Sequência Molecular , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA