Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Neuroreport ; 35(2): 81-89, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38109419

RESUMO

Human chorionic membrane mesenchymal stem cells (hCM-MSCs) have increasingly emerged as an excellent source of transplanted cells for regenerative therapy as they can be isolated via a non-invasive and simple method with high proliferative capabilities. However, the roles and mechanisms of hCM-MSCs on traumatic brain injury (TBI) animal models have not been investigated yet. The aim of this study was to investigate the therapeutic potential and mechanism of hCM-MSCs transplantation in a rat model of TBI. Adult male Sprague-Dawley rats were subjected to moderate lateral fluid percussion-induced TBI. At 2 h after TBI, hCM-MSCs, or PBS were administered intravenously via the tail vein. Neurological function, brain water content, Evans blue dye extravasation, immunofluorescence staining, and enzyme-linked immunosorbent were evaluated. The results showed that transplanted hCM-MSCs were observed in the injured brain. Compared with the PBS group, hCM-MSCs treatment significantly decreased the numbers of M1 macrophages/microglia, MPO + neutrophils and caspase-3 + cells ( P  < 0.01). Meanwhile, hCM-MSCs treatment significantly reduced the expression levels of the pro-inflammatory cytokines (TNF-α, interleukin-(IL)6 and IL-1ß) while increasing the numbers of M2 macrophages/microglia and the expression of the anti-inflammatory cytokines IL-10 ( P  < 0.01). In addition, hCM-MSCs treatment significantly reduced brain water content and Evans blue extravasation. Lastly, hCM-MSCs treatment significantly promoted neurogenesis and angiogenesis, and attenuated neurological deficits. Collectively, these findings indicate that hCM-MSCs exhibited effective therapeutic efficacy in a rat TBI model, and its mechanism may be by reducing inflammation, apoptosis and the blood-brain barrier disruption, promoting angiogenesis and neurogenesis.


Assuntos
Lesões Encefálicas Traumáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Adulto , Ratos , Humanos , Masculino , Animais , Ratos Sprague-Dawley , Azul Evans/metabolismo , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Administração Intravenosa , Água/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069044

RESUMO

Gintonin, newly extracted from ginseng, is a glycoprotein that acts as an exogenous lysophosphatidic acid (LPA) receptor ligand. This study aimed to demonstrate the in vivo preventive effects of gintonin on gastric damage. ICR mice were randomly assigned to five groups: a normal group (received saline, 0.1 mL/10 g, p.o.); a control group (administered 0.3 M HCl/ethanol, 0.1 mL/10 g, p.o.) or indomethacin (30 mg/kg, p.o.); gintonin at two different doses (50 mg/kg or 100 mg/kg, p.o.) with either 0.3 M HCl/ethanol or indomethacin; and a positive control (Ranitidine, 40 mg/kg, p.o.). After gastric ulcer induction, the gastric tissue was examined to calculate the ulcer index. The expression of gastric damage markers, such as tumor necrosis factor (TNF)-α, cyclooxygenase 2 (COX-2), and LPA2 and LPA5 receptors, were measured by Western blotting. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay. The platelet endothelial cell adhesion molecule (PECAM-1), Evans blue, and occludin levels in gastric tissues were measured using immunofluorescence analysis. Both HCl/ethanol- and indomethacin-induced gastric ulcers showed increased TNF-α, IL-6, Evans blue permeation, and PECAM-1, and decreased COX-2, PGE2, occludin, and LPA5 receptor expression levels. However, oral administration of gintonin alleviated the gastric ulcer index induced by HCl/ethanol and indomethacin in a dose-dependent manner. Gintonin suppressed TNF-α and IL-6 expression, but increased COX-2 expression and PGE2 levels in mouse gastric tissues. Gintonin intake also increased LPA5 receptor expression in mouse gastric tissues. These results indicate that gintonin can play a role in gastric protection against gastric damage induced by HCl/ethanol or indomethacin.


Assuntos
Indometacina , Úlcera Gástrica , Camundongos , Animais , Indometacina/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Etanol/farmacologia , Interleucina-6/metabolismo , Dinoprostona/metabolismo , Azul Evans/metabolismo , Ocludina/metabolismo , Camundongos Endogâmicos ICR , Mucosa Gástrica/metabolismo
3.
Shock ; 59(6): 966-972, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040184

RESUMO

ABSTRACT: Objectives: This study investigated the role and potential involvement of pulmonary vascular glycocalyx degradation in acute lung injury in rats with severe heatstroke (HS). Methods: Rats in an established HS model were exposed to a heated environment for 60 min in an incubator (temperature, 40°C ± 2°C; humidity, 65% ± 5%). Following pretreatment with heparanase III (HPSE III) or heparin, pathological lung injury, arterial blood gas, alveolar barrier disruption, and hemodynamic changes were evaluated. The vascular endothelial structures of the lungs were examined using electron microscopy. The concentration of Evans blue dye in the lungs and arterial blood gas were assessed. An enzyme-linked immunosorbent assay was used to quantify the plasma concentration of heparan sulfate proteoglycan. The expression of glypican-1 and syndecan-1 in pulmonary vessels was measured using immunofluorescence. Western blots were used to detect the expression of TNF-α, IL-6, and vascular endothelial biomarkers in the rat lungs. Pulmonary apoptosis was assessed using a TUNEL (terminal dUTP nick end labeling) assay, and the concentrations of malondialdehyde were measured. Results: Glycocalyx shedding aggravated lung injuries. Severe histopathological damage was observed, and indexes of lung function deviated from abnormal ranges. In addition, pulmonary vascular endothelial cells were disrupted. Compared with the HS group, the plasma concentration of heparan sulfate proteoglycan significantly increased in the HPSE group ( P < 0.05). The expression of glypican-1 and syndecan-1 decreased, and the extravasation of Evans blue dye increased ( P < 0.01). Endothelial biomarker expression increased in the lung tissue, whereas occludin expression decreased. Moreover, TNF-α and IL-6 were overexpressed following heat stress. Furthermore, apoptosis of pulmonary tissues and the concentration of malondialdehyde in rat lungs increased in the HS and HPSE groups. Conclusions : Heatstroke induced pulmonary glycocalyx degradation, which increased vascular permeability and aggravated vascular endothelial dysfunction, contributing to apoptosis, inflammation, and oxidation in the pulmonary tissues.


Assuntos
Lesão Pulmonar Aguda , Golpe de Calor , Ratos , Animais , Glicocálix/metabolismo , Sindecana-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Glipicanas/metabolismo , Interleucina-6/metabolismo , Azul Evans/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/metabolismo , Golpe de Calor/metabolismo , Endotélio Vascular/metabolismo , Malondialdeído/metabolismo
4.
Diabetes ; 72(5): 638-652, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821829

RESUMO

NADPH oxidases (NOXs) are major players in generating reactive oxygen species (ROS) and are implicated in various neurodegenerative ocular pathologies. The aim of this study was to investigate the role of a NOX4 inhibitor (GLX7013114) in two in vivo, experimental streptozotocin (STZ) paradigms depicting the early events of diabetic retinopathy (DR). Animals in the diabetic treated group received GLX7013114 topically (20 µL/eye, 10 mg/mL, once daily) for 14 days (paradigm A: preventive) and 7 days (paradigm B: treated) at 48 h and 4 weeks after STZ injection, respectively. Several methodologies were used (immunohistochemistry, Western blot, real-time PCR, ELISA, pattern electroretinography [PERG]) to assess the diabetes-induced early events of DR, namely oxidative stress, neurodegeneration, and neuroinflammation, and the effect of GLX7013114 on the diabetic insults. GLX7013114, administered as eye drops (paradigms A and B), was beneficial in treating the oxidative nitrative stress, activation of caspase-3 and micro- and macroglia, and attenuation of neuronal markers. It also attenuated the diabetes-induced increase in vascular endothelial growth factor, Evans blue dye leakage, and proinflammatory cytokine (TNF-α protein, IL-1ß/IL-6 mRNA) levels. PERG amplitude values suggested that GLX7013114 protected retinal ganglion cell function (paradigm B). This study provides new findings regarding the pharmacological profile of the novel NOX4 inhibitor GLX7013114 as a promising therapeutic candidate for the treatment of the early stage of DR. ARTICLE HIGHLIGHTS: NADPH oxidases (NOXs) are implicated in the early pathological events of diabetic retinopathy (DR). The NOX4 inhibitor GLX7013114, topically administered, reduced oxidative damage and apoptosis in the rat streptozotocin model of DR. GLX7013114 protected retinal neurons and retinal ganglion cell function and reduced the expression of pro-inflammatory cytokines in the diabetic retina. GLX7013114 diminished the diabetes-induced increase in vascular endothelial growth factor levels and Evans blue dye leakage in retinal tissue. GLX7013114 exhibits neuroprotective, anti-inflammatory, and vasculoprotective properties that suggest it may have a role as a putative therapeutic for the early events of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Ratos , Animais , Retinopatia Diabética/metabolismo , Azul Evans/metabolismo , Azul Evans/farmacologia , Azul Evans/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Estreptozocina/farmacologia , Retina/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia , NADPH Oxidases/uso terapêutico , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo
5.
Exp Dermatol ; 32(4): 413-424, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36457228

RESUMO

Atopic dermatitis (AD) is an allergic disease mediated by Th2 cells. In AD, externally stimulated keratinocytes release inflammatory cytokines, such as IL-33 and TSLP. Inflammatory cells infiltrate skin tissue and increase vascular permeability. Therefore, we hypothesized that imatinib mesylate (IMT), which suppresses vascular permeability, may be a candidate therapeutic agent for AD. A vitamin D3 analog (MC903) was administered daily to both ears of Balb/c mice to create a murine AD model to which IMT was applied. The skin lesions were evaluated histopathologically and by immunostaining. Cytokine expression in the skin was assessed by using real-time polymerase chain reaction (PCR) and immunostaining and was investigated using Evans Blue to determine whether IMT suppressed vascular permeability due to histamine. The suppressive effect of TNF-α/IL-4-induced TSLP expression in primary mouse keratinocytes (MKCs) treated with IMT was then investigated. Tslp gene and protein expression in the lesion was measured using real-time PCR and ELISA. The activation of signal transduction was analysed by western blotting. Topical application of IMT significantly reduced ear thickness, Evans blue leakage, and scratch onset. IMT suppressed the number of infiltrating cells (CD4+ T cells, eosinophils, and basophils), and the expression of IL-13, IL-33, and TSLP in a MC903-induced, murine AD model and inhibited TNF-α/IL-4-induced TSLP expression via downregulation of ERK phosphorylation in MKCs. IMT reduced the skin symptoms in a MC903-induced, murine AD model, suggesting that it may have potential as a new treatment for AD.


Assuntos
Dermatite Atópica , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Mesilato de Imatinib/farmacologia , Interleucina-33/metabolismo , Linfopoietina do Estroma do Timo , Camundongos Endogâmicos BALB C , Azul Evans/efeitos adversos , Azul Evans/metabolismo , Interleucina-4/metabolismo , Citocinas/metabolismo , Queratinócitos/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Colecalciferol/farmacologia , Colecalciferol/metabolismo
6.
Brain Behav Immun ; 106: 247-261, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089218

RESUMO

The α-synuclein (α-syn) is involved in methamphetamine (METH)-induced neurotoxicity. Neurons can transfer excessive α-syn to neighboring neurons and glial cells. The effects of α-syn aggregation in astrocytes after METH exposure on the blood-brain barrier (BBB) remains unclear. Our previous study demonstrated that nuclear receptor-related protein 1 (Nurr1), a member of the nuclear receptor family widely expressed in the brain, was involved in the process of METH-induced α-syn accumulated in astrocytes to activate neuroinflammation. The role Nurr1 plays in astrocyte-mediated neuroinflammation, which results in BBB injury induced by METH, remains uncertain. This study found that METH up-regulated α-syn expression in neurons extended to astrocytes, thereby eliciting astrocyte activation, increasing and decreasing IL-1ß, IL-6, TNF-α, and GDNF levels by down-regulating Nurr1 expression, and ultimately damaging the BBB. Specifically, the permeability of BBB to Evans blue and sodium fluorescein (NaF) increased; IgG deposits in the brain parenchyma increased; the Claudin5, Occludin, and PDGFRß levels decreased. Several ultrastructural pathological changes occurred in the BBB, such as abnormal cerebral microvascular diameter, astrocyte end-foot swelling, decreased pericyte coverage, and loss of tight junctions. However, knockout or inhibition of α-syn or astrocyte-specific overexpression of Nurr1 partially alleviated these symptoms and BBB injury. Moreover, the in vitro experiments confirmed that METH increased α-syn level in the primary cultured neurons, which could be further transferred to primary cultured astrocytes, resulting in decreased Nurr1 levels. The decreased Nurr1 levels mediated the increase of IL-1ß, IL-6, and TNF-α, and the decrease of GDNF, thereby changing the permeability to NaF, transendothelial electrical resistance, and Claudin5 and Occludin levels of primary cultured brain microvascular endothelial cells. Based on our findings, we proposed a new mechanism to elucidate METH-induced BBB injury and presented α-syn and Nurr1 as promising drug intervention targets to reduce BBB injury and resulting neurotoxicity in METH abusers.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Síndromes Neurotóxicas , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Células Endoteliais/metabolismo , Azul Evans/metabolismo , Azul Evans/farmacologia , Fluoresceína/metabolismo , Fluoresceína/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Imunoglobulina G , Interleucina-6/metabolismo , Metanfetamina/metabolismo , Doenças Neuroinflamatórias , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Ocludina/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , alfa-Sinucleína/metabolismo
7.
Methods Mol Biol ; 2475: 289-295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451766

RESUMO

Before the endothelial mitogenic activity of the Vascular Endothelial Growth Factor A (VEGF) was described, VEGF had already been identified for its ability to induce vascular leakage. VEGF-induced vascular leakage has been most frequently studied in vivo using the Miles assay, a simple yet invaluable technique that has allowed researchers to unravel the molecular mechanisms underpinning vascular leakage both for VEGF and other permeability inducing agents. In this protocol, a mouse is intravenously injected with Evans Blue dye before VEGF is administered locally via intradermal injection. VEGF promotes vascular leak of serum proteins in the dermis, enabling Evans Blue-labeled albumin extravasation from the circulation and subsequent accumulation in the skin. As the volume of dye extravasation is proportional to the degree of vascular leak, it can be quantified as a proxy measurement of VEGF-induced vascular leakage.


Assuntos
Permeabilidade Capilar , Fator A de Crescimento do Endotélio Vascular , Animais , Azul Evans/metabolismo , Camundongos , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
8.
J Trauma Acute Care Surg ; 93(4): 530-537, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35261371

RESUMO

BACKGROUND: Primary blast lung injury (PBLI) is a major cause of death in military conflict and terrorist attacks on civilian populations. However, the mechanisms of PBLI are not well understood, and a standardized animal model is urgently needed. This study aimed to establish an animal model of PBLI for laboratory study. METHODS: The animal model of PBLI was established using a self-made mini shock tube simulation device. In brief, mice were randomly divided into two groups: the control group and the model group, the model group were suffered 0.5 bar shock pressures. Mice were sacrificed at 2 hours, 4 hours, 6 hours, 12 hours, and 24 hours after injury. Lung tissue gross observation, hematoxylin and eosin staining and lung pathology scoring were performed to evaluated lung tissue damage. Evans blue dye leakage and bronchoalveolar lavage fluid examination were performed to evaluated pulmonary edema. The relative expression levels of inflammation factors were measured by real-time quantitative polymerase chain reaction and Western blotting analysis. The release of neutrophil extracellular traps was observed by immunofluorescence stain. RESULTS: In the model group, the gross observation and hematoxylin and eosin staining assay showed the inflammatory cell infiltration, intra-alveolar hemorrhage, and damaged lung tissue structure. The Evans blue dye and bronchoalveolar lavage fluid examination revealed that the lung tissue permeability and edema was significantly increased after injury. Real-time quantitative polymerase chain reaction and Western blotting assays showed that IL-1ß, IL-6, TNF-α were upregulated in the model group. Immunofluorescence assay showed that the level of neutrophil extracellular traps in the lung tissue increased significantly in the model group. CONCLUSION: The self-made mini shock tube simulation device can be used to establish the animal model of PBLI successfully. Pathological changes of PBLI mice were characterized by mechanical damage and inflammatory response in lung tissue.


Assuntos
Lesão Pulmonar , Animais , Camundongos , Modelos Animais de Doenças , Amarelo de Eosina-(YS)/metabolismo , Azul Evans/metabolismo , Hematoxilina/metabolismo , Interleucina-6/metabolismo , Pulmão/patologia , Lesão Pulmonar/patologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Int J Nanomedicine ; 17: 6759-6772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36597431

RESUMO

Background: Focused ultrasound (FUS) combined with microbubbles (MBs) has emerged as a potential approach for opening the blood-brain barrier (BBB) for delivering drugs into the brain. However, MBs range in size of microns and thus can hardly extravasate into the brain parenchyma. Recently, growing attention has been paid to gas vesicles (GVs), which are genetically encoded gas-filled nanostructures with protein shells, due to their potential for extravascular targeting in ultrasound imaging and therapy. However, the use of GVs as agents for BBB opening has not yet been investigated. Methods: In this study, GVs were extracted and purified from Halobacterium NRC-1. Ultrasound imaging performance of GVs was assessed in vitro and in vivo. Then, FUS/GVs-mediated BBB opening for small molecular Evans blue or large molecular liposome delivery across the BBB was examined. Results: The results showed a good contrast performance of GVs for brain perfusion ultrasound imaging in vivo. At the acoustic negative pressure of 1.5 MPa, FUS/GVs opened the BBB safely, and effectively enhanced Evans blue and 200-nm liposome delivery into the brain parenchyma. Conclusion: Our study suggests that biosynthetic GVs hold great potential to serve as local BBB-opening agents in the development of new targeted drug delivery strategies for central nervous system disorders.


Assuntos
Barreira Hematoencefálica , Lipossomos , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Lipossomos/metabolismo , Azul Evans/metabolismo , Encéfalo/metabolismo , Transporte Biológico , Sistemas de Liberação de Medicamentos/métodos , Microbolhas , Imageamento por Ressonância Magnética/métodos
10.
J Allergy Clin Immunol ; 149(1): 275-291, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111449

RESUMO

BACKGROUND: P17, a peptide isolated from Tetramorium bicarinatum ant venom, is known to induce an alternative phenotype of human monocyte-derived macrophages via activation of an unknown G protein-coupled receptor (GPCR). OBJECTIVE: We sought to investigate the mechanism of action and the immunomodulatory effects of P17 mediated through MRGPRX2 (Mas-related G protein-coupled receptor X2). METHODS: To identify the GPCR for P17, we screened 314 GPCRs. Upon identification of MRGPRX2, a battery of in silico, in vitro, ex vivo, and in vivo assays along with the receptor mutation studies were performed. In particular, to investigate the immunomodulatory actions, we used ß-hexosaminidase release assay, cytokine releases, quantification of mRNA expression, cell migration and differentiation assays, immunohistochemical labeling, hematoxylin and eosin, and immunofluorescence staining. RESULTS: P17 activated MRGPRX2 in a dose-dependent manner in ß-arrestin recruitment assay. In LAD2 cells, P17 induced calcium and ß-hexosaminidase release. Quercetin- and short hairpin RNA-mediated knockdown of MRGPRX2 reduced P17-evoked ß-hexosaminidase release. In silico and in vitro mutagenesis studies showed that residue Lys8 of P17 formed a cation-π interaction with the Phe172 of MRGPRX2 and [Ala8]P17 lost its activity partially. P17 activated LAD2 cells to recruit THP-1 and human monocytes in Transwell migration assay, whereas MRGPRX2-impaired LAD2 cells cannot. In addition, P17-treated LAD2 cells stimulated differentiation of THP-1 and human monocytes, as indicated by the enhanced expression of macrophage markers cluster of differentiation 11b and TNF-α by quantitative RT-PCR. Immunohistochemical and immunofluorescent staining suggested monocyte recruitment in mice ears injected with P17. CONCLUSIONS: Our data provide novel structural information regarding the interaction of P17 with MRGPRX2 and intracellular pathways for its immunomodulatory action.


Assuntos
Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Permeabilidade Capilar/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Cricetulus , Citocinas/metabolismo , Edema/imunologia , Edema/metabolismo , Azul Evans/metabolismo , Inativação Gênica , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Receptores Acoplados a Proteínas G/genética
11.
Bioconjug Chem ; 30(6): 1711-1723, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31082207

RESUMO

The effectiveness of numerous molecular drugs is hampered by their poor pharmacokinetics. Different from previous approaches with limited effectiveness, most recently, emerging high-affinity albumin binding moieties (ABMs) for in vivo hitchhiking of endogenous albumin opens up an avenue to chaperone small molecules for long-acting therapeutics. Although several FDA-approved fatty acids have shown prolonged residence and therapeutic effect, an easily synthesized, water-soluble, and high-efficiency ABM with versatile drug loading ability is urgently needed to improve the therapeutic efficacy of short-lived constructs. We herein identified an ideal bivalent Evans blue derivative, denoted as N(tEB)2, as a smart ABM-delivery platform to chaperone short-lived molecules, through both computational modeling screening and efficient synthetic schemes. The optimal N(tEB)2 could reversibly link two molecules of albumin through its two binding heads with a preferable spacer, resulting in significantly extended circulation half-life of a preloaded cargo and water-soluble. Notably, this in situ dimerization of albumin was able to sandwich peptide therapeutics to protect them from proteolysis. As an application, we conjugated N(tEB)2 with exendin-4 for long-acting glucose control in a diabetic mouse model, and it was superior to both previously tested NtEB-exendin-4 (Abextide) and the newly FDA-approved semaglutide, which has been arguably the best commercial weekly formula so far. Hence, this novel albumin binder has excellent clinical potential for next-generation biomimetic drug delivery systems.


Assuntos
Azul Evans/análogos & derivados , Azul Evans/metabolismo , Exenatida/análogos & derivados , Exenatida/metabolismo , Albumina Sérica/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Azul Evans/síntese química , Exenatida/sangue , Exenatida/síntese química , Humanos , Hipoglicemiantes/sangue , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Camundongos , Modelos Moleculares , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Multimerização Proteica , Proteólise , Ratos , Albumina Sérica/química
12.
J Gastroenterol Hepatol ; 34(1): 186-193, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29966173

RESUMO

BACKGROUND AND AIM: Metformin has been shown to have anti-cytokine property. Lipopolysaccharide (LPS)-induced or repeated water avoidance stress (WAS)-induced visceral allodynia and increased gut permeability were pro-inflammatory cytokine-dependent responses, which were considered to be animal models of irritable bowel syndrome (IBS). We hypothesized that metformin improves symptoms in the patients with IBS by attenuating these visceral changes and tested the hypothesis in rats. METHODS: The threshold of the visceromotor response induced by colonic balloon distention was measured. Colonic permeability was determined in vivo by quantifying the absorbed Evans blue for 15 min spectrophotometrically. RESULTS: Subcutaneously injected LPS (1 mg/kg) reduced the threshold of visceromotor response, and metformin (5-50 mg/kg for 3 days) intraperitoneally attenuated this response in a dose-dependent manner. Repeated WAS (1 h daily for 3 days) induced visceral allodynia, which was also blocked by metformin. The antinociceptive effect of metformin on the LPS-induced allodynia was reversed by compound C, an adenosine monophosphate-activated protein kinase inhibitor or NG -nitro-L-arginine methyl ester, a nitric oxide synthesis inhibitor but not modified by naloxone. Additionally, it was blocked by sulpiride, a dopamine D2 receptor antagonist, but domperidone, a peripheral dopamine D2 receptor antagonist, did not alter it. Metformin also blocked the LPS-induced or repeated WAS-induced increased colonic permeability. CONCLUSIONS: Metformin attenuated the visceral allodynia and increased gut permeability in animal IBS models. These actions may be evoked via activation of adenosine monophosphate-activated protein kinase, nitric oxide, and central dopamine D2 pathways. These results indicate the possibility that metformin can be useful for treating IBS.


Assuntos
Azul Evans/metabolismo , Hiperalgesia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Animais , Colo/metabolismo , Modelos Animais de Doenças , Domperidona/farmacologia , Antagonistas de Dopamina/farmacologia , Hiperalgesia/etiologia , Hipoglicemiantes/farmacologia , Síndrome do Intestino Irritável/induzido quimicamente , Lipopolissacarídeos , Masculino , Metformina/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico , Sulpirida/farmacologia
13.
Eur J Pharm Sci ; 123: 228-240, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031862

RESUMO

Nanoparticles targeting transporters of the blood-brain barrier (BBB) are promising candidates to increase the brain penetration of biopharmacons. Solute carriers (SLC) are expressed at high levels in brain endothelial cells and show a specific pattern at the BBB. The aim of our study was to test glutathione and ligands of SLC transporters as single or dual BBB targeting molecules for nanovesicles. High mRNA expression levels for hexose and neutral amino acid transporting SLCs were found in isolated rat brain microvessels and our rat primary cell based co-culture BBB model. Niosomes were derivatized with glutathione and SLC ligands glucopyranose and alanine. Serum albumin complexed with Evans blue (67 kDa), which has a very low BBB penetration, was selected as a cargo. The presence of targeting ligands on niosomes, especially dual labeling, increased the uptake of the cargo molecule in cultured brain endothelial cells. This cellular uptake was temperature dependent and could be decreased with a metabolic inhibitor and endocytosis blockers filipin and cytochalasin D. Making the negative surface charge of brain endothelial cells more positive with a cationic lipid or digesting the glycocalyx with neuraminidase elevated the uptake of the cargo after treatment with targeted nanocarriers. Treatment with niosomes increased plasma membrane fluidity, suggesting the fusion of nanovesicles with endothelial cell membranes. Targeting ligands elevated the permeability of the cargo across the BBB in the culture model and in mice, and dual-ligand decoration of niosomes was more effective than single ligand labeling. Our data indicate that dual labeling with ligands of multiple SLC transporters can potentially be exploited for BBB targeting of nanoparticles.


Assuntos
Alanina/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Azul Evans/metabolismo , Glucose/metabolismo , Lipídeos/química , Nanopartículas , Albumina Sérica/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Alanina/química , Animais , Transporte Biológico , Barreira Hematoencefálica/citologia , Células Cultivadas , Técnicas de Cocultura , Composição de Medicamentos , Azul Evans/administração & dosagem , Azul Evans/química , Feminino , Glucose/análogos & derivados , Glucose/química , Glutationa/química , Glutationa/metabolismo , Ligantes , Lipossomos , Masculino , Camundongos Nus , Ratos Wistar , Albumina Sérica/administração & dosagem , Albumina Sérica/química , Proteínas Carreadoras de Solutos/genética
14.
Toxicol Sci ; 158(1): 151-163, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460142

RESUMO

Silver nanoparticles (AgNPs) enter the central nervous system through the blood-brain barrier (BBB). AgNP exposure can increase amyloid beta (Aß) deposition in neuronal cells to potentially induce Alzheimer's disease (AD) progression. However, the mechanism through which AgNPs alter BBB permeability in endothelial cells and subsequently lead to AD progression remains unclear. This study investigated whether AgNPs disrupt the tight junction proteins of brain endothelial cells, and alter the proteomic metabolism of neuronal cells underlying AD progression in a triple cell coculture model constructed using mouse brain endothelial (bEnd.3) cells, mouse brain astrocytes (ALT), and mouse neuroblastoma neuro-2a (N2a) cells. The results showed that AgNPs accumulated in ALT and N2a cells because of the disruption of tight junction proteins, claudin-5 and ZO-1, in bEnd.3 cells. The proteomic profiling of N2a cells after AgNP exposure identified 298 differentially expressed proteins related to fatty acid metabolism. Particularly, AgNP-induced palmitic acid production was observed in N2a cells, which might promote Aß generation. Moreover, AgNP exposure increased the protein expression of amyloid precursor protein (APP) and Aß generation-related secretases, PSEN1, PSEN2, and ß-site APP cleaving enzyme for APP cleavage in ALT and N2a cells, stimulated Aß40 and Aß42 secretion in the culture medium, and attenuated the gene expression of Aß clearance-related receptors, P-gp and LRP-1, in bEnd.3 cells. Increased Aß might further aggregate on the neuronal cell surface to enhance the secretion of inflammatory cytokines, MCP-1 and IL-6, thus inducing apoptosis in N2a cells. This study suggested that AgNP exposure might cause Aß deposition and inflammation for subsequent neuronal cell apoptosis to potentially induce AD progression.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Ácidos Graxos/metabolismo , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Neurônios/metabolismo , Proteômica , Prata/química , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Azul Evans/metabolismo , Mediadores da Inflamação/metabolismo , Nanopartículas Metálicas/química , Camundongos , Neurônios/citologia , Proteínas de Junções Íntimas/metabolismo
15.
Int J Nanomedicine ; 12: 1293-1304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243090

RESUMO

In our previous rodent studies, the paclitaxel (PTX)-incorporating polymeric micellar nanoparticle formulation NK105 had showed significantly stronger antitumor effects and reduced peripheral neurotoxicity than PTX dissolved in Cremophor® EL and ethanol (PTX/CRE). Thus, to elucidate the mechanisms underlying reduced peripheral neurotoxicity due to NK105, we performed pharmacokinetic analyses of NK105 and PTX/CRE in rats. Among neural tissues, the highest PTX concentrations were found in the dorsal root ganglion (DRG). Moreover, exposure of DRG to PTX (Cmax_PTX and AUC0-inf._PTX) in the NK105 group was almost half that in the PTX/CRE group, whereas exposure of sciatic and sural nerves was greater in the NK105 group than in the PTX/CRE group. In histopathological analyses, damage to DRG and both peripheral nerves was less in the NK105 group than in the PTX/CRE group. The consistency of these pharmacokinetic and histopathological data suggests that high levels of PTX in the DRG play an important role in the induction of peripheral neurotoxicity, and reduced distribution of PTX to the DRG of NK105-treated rats limits the ensuing peripheral neurotoxicity. In further analyses of PTX distribution to the DRG, Evans blue (Eb) was injected with BODIPY®-labeled NK105 into rats, and Eb fluorescence was observed only in the DRG. Following injection, most Eb dye bound to albumin particles of ~8 nm and had penetrated the DRG. In contrast, BODIPY®-NK105 particles of ~90 nm were not found in the DRG, suggesting differential penetration based on particle size. Because PTX also circulates as PTX-albumin particles of ~8 nm following injection of PTX/CRE, reduced peripheral neurotoxicity of NK105 may reflect exclusion from the DRG due to particle size, leading to reduced PTX levels in rat DRG (275).


Assuntos
Micelas , Nanopartículas/química , Neurotoxinas/toxicidade , Paclitaxel/análogos & derivados , Paclitaxel/farmacologia , Polímeros/química , Albuminas/metabolismo , Animais , Biomarcadores/metabolismo , Química Farmacêutica , Etanol/química , Azul Evans/metabolismo , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Glicerol/análogos & derivados , Glicerol/química , Imuno-Histoquímica , Injeções , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Paclitaxel/toxicidade , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia
16.
J Cardiothorac Vasc Anesth ; 31(2): 441-445, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27720495

RESUMO

OBJECTIVE: The authors assessed the diagnostic accuracy of a new modified Evans blue dye test (MEBDT) as a screening test for aspiration in tracheostomized patients. DESIGN: Monocentric retrospective study performed between October 2013 and December 2015. SETTING: Anesthesia and Intensive Care Unit, Second University of Naples. PARTICIPANTS: Among 62 eligible patients, 5 were excluded. The authors' study population included 57 patients. INTERVENTIONS: Patients underwent both fiberoptic endoscopic examination of the swallow (FEES) and MEBDT to evaluate swallow. The MEBDT results were compared with those of FEES and the diagnostic accuracy of MEBDT was calculated using the FEES as the gold standard. MEASUREMENTS AND MAIN RESULTS: The authors found that both FEES and MEBDT were positive for aspiration in 40 patients (true-positive MEBDT); FEES and MEBDT were negative in 10 (true-negative MEBDT). On the other hand, FEES was positive with an MEBDT negative in 7 patients (false-negative MEBDT), and there were no FEES negative and MEBDT positive (false-positive MEBDT). MEBDT had a sensitivity, specificity, positive, and negative predicted value of 85%, 100%, 100%, and 58.82%, respectively. CONCLUSIONS: MEBDT could be a supplementary diagnostic test for aspiration. Patients with positive MEBDT should not undergo oral feeding, while patients with negative MEBDT should undergo FEES before starting oral feeding.


Assuntos
Endoscopia/métodos , Azul Evans/administração & dosagem , Tecnologia de Fibra Óptica/métodos , Programas de Rastreamento/métodos , Aspiração Respiratória/diagnóstico , Traqueostomia/efeitos adversos , Idoso , Azul Evans/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aspiração Respiratória/metabolismo , Estudos Retrospectivos , Traqueostomia/tendências
17.
J Control Release ; 241: 186-193, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27686583

RESUMO

Mild hyperthermia has been used in combination with polymer therapeutics to further increase delivery to solid tumors and enhance efficacy. An attractive method for generating heat is through non-invasive high intensity focused ultrasound (HIFU). HIFU is often used for ablative therapies and must be adapted to produce uniform mild hyperthermia in a solid tumor. In this work a magnetic resonance imaging guided HIFU (MRgHIFU) controlled feedback system was developed to produce a spatially uniform 43°C heating pattern in a subcutaneous mouse tumor. MRgHIFU was employed to create hyperthermic conditions that enhance macromolecular delivery. Using a mouse model with two subcutaneous tumors, it was demonstrated that MRgHIFU enhanced delivery of both Evans blue dye (EBD) and Gadolinium-chelated N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. The EBD accumulation in the heated tumors increased by nearly 2-fold compared to unheated tumors. The Gadolinium-chelated HPMA copolymers also showed significant enhancement in accumulation over control as evaluated through MRI T1-mapping measurements. Results show the potential of HIFU-mediated hyperthermia for enhanced delivery of polymer therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Hipertermia Induzida/métodos , Substâncias Macromoleculares/administração & dosagem , Acrilamidas/administração & dosagem , Acrilamidas/metabolismo , Animais , Azul Evans/administração & dosagem , Azul Evans/metabolismo , Gadolínio/administração & dosagem , Gadolínio/metabolismo , Substâncias Macromoleculares/metabolismo , Imageamento por Ressonância Magnética , Camundongos Endogâmicos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Braz J Microbiol ; 46(2): 415-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26273256

RESUMO

Dyes are the most difficult constituents to remove by conventional biological wastewater treatment. Colored wastewater is mainly eliminated by physical and chemical procedures, which are very expensive and have drawbacks. Therefore, the advantage of using biological processes, such as the biotransformation of dyes, is that they may lead to complete mineralization or formation of less toxic products. To prove the possibility of using fungal processes for decolorization and other applications, the analysis of the toxicity of the processes' products is required. The decolorization of the mixture of two dyes from different classes - triphenylmethane brilliant green and azo Evans blue (GB - total concentration 0.08 g/L, proportion 1:1 w/w) - by Pleurotus ostreatus (BWPH and MB), Gloeophyllum odoratum (DCa), RWP17 (Polyporus picipes) and Fusarium oxysporum (G1) was studied. Zootoxicity (Daphnia magna) and phytotoxicity (Lemna minor) changes were estimated at the end of the experiment. The mixture of dyes was significantly removed by all the strains that were tested with 96 h of experimental time. However, differences among strains from the same species (P. ostreatus) were noted. Shaking improved the efficacy and rate of the dye removal. In static samples, the removal of the mixture reached more than 51.9% and in shaken samples, more than 79.2%. Tests using the dead biomass of the fungi only adsorbed up to 37% of the dye mixture (strain BWPH), which suggests that the process with the living biomass involves the biotransformation of the dyes. The best results were reached for the MB strain, which removed 90% of the tested mixture under shaking conditions. Regardless of the efficacy of the dye removal, toxicity decreased from class V to class III in tests with D. magna. Tests with L. minor control samples were classified as class IV, and samples with certain strains were non-toxic. The highest phytotoxicity decrease was noted in shaken samples where the elimination of dye mixture was the best.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Azul Evans/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Corantes de Rosanilina/metabolismo , Águas Residuárias/microbiologia , Animais , Araceae/efeitos dos fármacos , Araceae/fisiologia , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Azul Evans/toxicidade , Corantes de Rosanilina/toxicidade , Purificação da Água/métodos
19.
Braz. j. microbiol ; 46(2): 415-424, Apr-Jun/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-749732

RESUMO

Dyes are the most difficult constituents to remove by conventional biological wastewater treatment. Colored wastewater is mainly eliminated by physical and chemical procedures, which are very expensive and have drawbacks. Therefore, the advantage of using biological processes, such as the biotransformation of dyes, is that they may lead to complete mineralization or formation of less toxic products. To prove the possibility of using fungal processes for decolorization and other applications, the analysis of the toxicity of the processes' products is required. The decolorization of the mixture of two dyes from different classes - triphenylmethane brilliant green and azo Evans blue (GB - total concentration 0.08 g/L, proportion 1:1 w/w) - by Pleurotus ostreatus (BWPH and MB), Gloeophyllum odoratum (DCa), RWP17 (Polyporus picipes) and Fusarium oxysporum (G1) was studied. Zootoxicity (Daphnia magna) and phytotoxicity (Lemna minor) changes were estimated at the end of the experiment. The mixture of dyes was significantly removed by all the strains that were tested with 96 h of experimental time. However, differences among strains from the same species (P. ostreatus) were noted. Shaking improved the efficacy and rate of the dye removal. In static samples, the removal of the mixture reached more than 51.9% and in shaken samples, more than 79.2%. Tests using the dead biomass of the fungi only adsorbed up to 37% of the dye mixture (strain BWPH), which suggests that the process with the living biomass involves the biotransformation of the dyes. The best results were reached for the MB strain, which removed 90% of the tested mixture under shaking conditions. Regardless of the efficacy of the dye removal, toxicity decreased from class V to class III in tests with D. magna. Tests with L. minor control samples were classified as class IV, and samples with certain strains were non-toxic. The highest phytotoxicity decrease was noted in shaken samples where the elimination of dye mixture was the best.


Assuntos
Animais , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Azul Evans/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Corantes de Rosanilina/metabolismo , Águas Residuárias/microbiologia , Araceae/efeitos dos fármacos , Araceae/fisiologia , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Azul Evans/toxicidade , Corantes de Rosanilina/toxicidade , Purificação da Água/métodos
20.
PLoS Negl Trop Dis ; 9(3): e0003577, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25774662

RESUMO

Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB) dysfunction, as determined by Evans blue (EB) extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue) and non stained (clear) cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα) were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3) was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model can be used to investigate mechanisms involved in host damaging inflammatory responses and agents or modalities that may control damaging post treatment inflammation.


Assuntos
Encefalopatias/imunologia , Cistos/imunologia , Inflamação/etiologia , Neurocisticercose/imunologia , Doenças dos Suínos/imunologia , Animais , Anti-Helmínticos/uso terapêutico , Encefalopatias/veterinária , Permeabilidade Capilar , Cistos/veterinária , Azul Evans/metabolismo , Neurocisticercose/tratamento farmacológico , Neurocisticercose/metabolismo , Neurocisticercose/veterinária , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA