RESUMO
We propose a simple tool for liquid static culture using a copolymer film with high gas permeability. The film bags were successfully used to culture microorganisms Escherichia coli, Komagataella phaffii (methylotrophic) and Bacillus sp. (biofilm-forming), with cells cultured under physical stress-free conditions with sufficient oxygen supply. Similar growth curves and plasmid productivity were observed for liquid shake and film bag E. coli cultures. The early growth response of the film bag culture following colony inoculation of liquid media differed from conventional shake cultures. Our results indicate that a gas-permeable film bag is a promising liquid culture tool and provides novel microbiology materials.
Assuntos
Escherichia coli , Escherichia coli/crescimento & desenvolvimento , Bacillus/crescimento & desenvolvimento , Gases/química , Permeabilidade , Meios de Cultura/químicaRESUMO
Many notable applications have been described for magnetic nanoparticles in delivery of diverse drugs and bioactive compounds into cells, magnetofection for the treatment of cancer, photodynamic therapy, photothermal therapy, and magnetic particle imaging (MPI). In response to the growing demand for magnetic nanoparticles for drug delivery or biomedical imaging applications, more effective and eco-friendly methodologies are required for large-scale biosynthesis of this nanoparticles. The major challenge in the large-scale biomedical application of magnetic nanoparticles lies in its low efficiency and optimization of nanoparticle production can address this issue. In the current study, a prediction model is suggested by the fractional factorial designs. The present study aims to optimize culture media components for improved growth and iron uptake of this strain. The result of optimization for iron uptake by the strain ASFS1 is to increase the production of magnetic nanoparticles by this strain for biomedical applications in the future. In the present study, design of experiment method was used to probe the effects of some key medium components (yeast extract, tryptone, FeSO4, Na2-EDTA, and FeCl3) on Fe content in biomass and dried biomass of strain ASFS1. A 25-1 fractional factorial design showed that Na2-EDTA, FeCl3, yeast extract-tryptone interaction, and FeSO4-Na2-EDTA interaction were the most parameters on Fe content in biomass within the experimented levels (p < 0.05), while yeast extract, FeCl3, and yeast extract-tryptone interaction were the most significant factors within the experimented levels (p < 0.05) to effect on dried biomass of strain ASFS1. The optimum culture media components for the magnetic nanoparticles production by strain ASFS1 was reported to be 7.95 g L-1 of yeast extract, 5 g L-1 of tryptone, 75 µg mL-1 of FeSO4, 192.3 µg mL-1 of Na2-EDTA and 150 µg mL-1 of FeCl3 which was theoretically able to produce Fe content in biomass (158 µg mL-1) and dried biomass (2.59 mg mL-1) based on the obtained for medium optimization. Using these culture media components an experimental maximum Fe content in biomass (139 ± 13 µg mL-1) and dried biomass (2.2 ± 0.2 mg mL-1) was obtained, confirming the efficiency of the used method.
Assuntos
Meios de Cultura , Ferro , Ferro/metabolismo , Meios de Cultura/química , Bacillus/metabolismo , Bacillus/crescimento & desenvolvimento , Nanopartículas de Magnetita/química , BiomassaRESUMO
Plant Growth-Promoting Rhizobacteria (PGPR) induce systemic resistance (SR) in plants, decreasing the development of phytopathogens. The FZB42 strain of Bacillus velezensis is known to induce an SR against pathogens in various plant species. Previous studies suggested that it could also influence the interactions between plants and associated pests. However, insects have developed several strategies to counteract plant defenses, including salivary proteins that allow the insect escaping detection, manipulating defensive pathways to its advantage, deactivating early signaling processes, or detoxifying secondary metabolites. Because Brown Marmorated Stink Bug (BMSB) Halyomorpha halys is highly invasive and polyphagous, we hypothesized that it could detect the PGPR-induced systemic defenses in the plant, and efficiently adapt its salivary compounds to counteract them. Therefore, we inoculated a beneficial rhizobacterium on Vicia faba roots and soil, previous to plant infestation with BMSB. Salivary gland proteome of BMSB was analyzed by LC-MS/MS and a label-free quantitative proteomic method. Among the differentially expressed proteins, most were up-regulated in salivary glands of insects exposed to PGPR-treated plants for 24 h. We could confirm that BMSB was confronted with a stress during feeding on PGPR-treated plants. The to-be-confirmed defensive state of the plant would have been rapidly detected by the invasive H. halys pest, which consequently modified its salivary proteins. Among the up-regulated proteins, many could be associated with a role in plant defense counteraction, and more especially in allelochemicals detoxification or sequestration.
Assuntos
Bacillus/crescimento & desenvolvimento , Heterópteros/metabolismo , Proteínas e Peptídeos Salivares/análise , Vicia faba/microbiologia , Animais , Cromatografia Líquida de Alta Pressão , Heterópteros/crescimento & desenvolvimento , Larva/metabolismo , Glândulas Salivares/metabolismo , Estresse Fisiológico , Espectrometria de Massas em Tandem , Regulação para Cima , Vicia faba/química , Vicia faba/parasitologiaRESUMO
OBJECTIVES: To develop a simple pectin-degrading microorganism screening method. RESULTS: We developed a method utilizing the phenomenon whereby cooling an alkaline agar medium containing pectin causes the agar to become cloudy. This highly simplified method involves culturing the microorganisms on pectin-containing agar medium until colony formation is observed, and subsequent overnight cooling of the agar medium to 4 °C. Using this simple procedure, we successfully identified pectin-degrading microorganisms by observing colonies with halos on the clouded agar medium. We used alkaline pectinase and Bacillus halodurans, which is known to secrete alkaline pectinase, to establish the screening method. We demonstrated the screening of pectin-degrading microorganisms using the developed method and successfully isolated pectin-degrading microorganisms (Paenibacillus sp., Bacillus clausii, and Bacillus halodurans) from a soil sample. CONCLUSIONS: The developed method is useful for identifying pectin-degrading microorganisms.
Assuntos
Ágar/química , Bactérias/isolamento & purificação , Cisteína Endopeptidases/metabolismo , Pectinas/química , Bacillus/enzimologia , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bacillus clausii/enzimologia , Bacillus clausii/crescimento & desenvolvimento , Bacillus clausii/isolamento & purificação , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Temperatura Baixa , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Paenibacillus/enzimologia , Paenibacillus/crescimento & desenvolvimento , Paenibacillus/isolamento & purificação , Proteólise , Microbiologia do SoloRESUMO
Listeria monocytogenes continues to be one of the most important public health challenges for the meat sector. Many attempts have been made to establish the most efficient cleaning and disinfection protocols, but there is still the need for the sector to develop plans with different lines of action. In this regard, an interesting strategy could be based on the control of this type of foodborne pathogen through the resident microbiota naturally established on the surfaces. A potential inhibitor, Bacillus safensis, was found in a previous study that screened the interaction between the resident microbiota and L. monocytogenes in an Iberian pig processing plant. The aim of the present study was to evaluate the effect of preformed biofilms of Bacillus safensis on the adhesion and implantation of 22 strains of L. monocytogenes. Mature preformed B. safensis biofilms can inhibit adhesion and the biofilm formation of multiple L. monocytogenes strains, eliminating the pathogen by a currently unidentified mechanism. Due to the non-enterotoxigenic properties of B. safensis, its presence on certain meat industry surfaces should be favored and it could represent a new way to fight against the persistence of L. monocytogenes in accordance with other bacterial inhibitors and hygiene operations.
Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/fisiologia , Biofilmes/crescimento & desenvolvimento , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/fisiologia , Aço Inoxidável , Aderência Bacteriana/fisiologiaRESUMO
Due to the inefficient reproduction of microorganisms in oxygen-deprived environments of the reservoir, the applications of microbial enhanced oil recovery (MEOR) are restricted. To overcome this problem, a new type of air-assisted MEOR process was investigated. Three compounding oil degradation strains were screened using biochemical experiments. Their performances in bacterial suspensions with different amounts of dissolved oxygen were evaluated. Water flooding, microbial flooding and air-assisted microbial flooding core flow experiments were carried out. Carbon distribution curve of biodegraded oil with different oxygen concentration was determined by chromatographic analysis. The long-chain alkanes are degraded by microorganisms. A simulation model was established to take into account the change in oxygen concentration in the reservoir. The results showed that the optimal dissolved oxygen concentration for microbial growth was 4.5~5.5mg/L. The main oxygen consumption in the reservoir happened in the stationary and declining phases of the microbial growth systems. In order to reduce the oxygen concentration to a safe level, the minimum radius of oxygen consumption was found to be about 145m. These results demonstrate that the air-assisted MEOR process can overcome the shortcomings of traditional microbial flooding techniques. The findings of this study can help for better understanding of microbial enhanced oil recovery and improving the efficiency of microbial oil displacement.
Assuntos
Alcanos/metabolismo , Bactérias , Biodegradação Ambiental , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Enterobacter/crescimento & desenvolvimento , Enterobacter/isolamento & purificação , Enterobacter/metabolismo , Fermentação , Oxigênio/metabolismo , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismoRESUMO
Engine oil used in automobiles is a threat to soil and water due to the recalcitrant properties of its hydrocarbons. It pollutes surrounding environment which affects both flora and fauna. Microbes can degrade hydrocarbons containing engine oil and utilize it as a substrate for their growth. Our results demonstrated that cell-free broth of Bacillus velezensis KLP2016 (Gram + ve, endospore forming; Accession number KY214239) recorded an emulsification index (E24%) from 52.3% to 65.7% against different organic solvents, such as benzene, pentane, cyclohexane, xylene, n-hexane, toluene and engine oil. The surface tension of the cell-free broth of B. velezensis grown in Luria-Bertani broth at 35 °C decreased from 55 to 40 mN m-1at critical micelle concentration 17.2 µg/mL. The active biosurfactant molecule of cell-free broth of Bacillus velezensis KLP2016 was purified by Dietheylaminoethyl-cellulose and size exclusion chromatography, followed by HPLC (RT = 1.130), UV-vis spectrophotometry (210 nm) and thin layer chromatography (Rf = 0.90). The molecular weight of purified biosurfactant was found to be ~ 1.0 kDa, based on Electron Spray Ionization-MS. A concentration of 1980 × 10-2 parts per million of CO2 was trapped in a KOH solution after 15 days of incubation in Luria-Bertani broth containing 1% engine oil. Our results suggest that bacterium Bacillus velezensis KLP2016 may promise a new dimension to solving the engine oil pollution problem in near future.
Assuntos
Bacillus/metabolismo , Lipopeptídeos/isolamento & purificação , Poluição por Petróleo , Tensoativos/isolamento & purificação , Bacillus/crescimento & desenvolvimento , Biodegradação Ambiental , Dióxido de Carbono/química , Cromatografia em Gel , Emulsões , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/análise , Micelas , Padrões de Referência , Tensão SuperficialRESUMO
BACKGROUND: Thermoplastic immobilization masks used during radiation therapy treatment have been shown to harbor several different types of bacteria. Recovered bacteria included Staphylococcus aureus, Enterococcus species, Gram-negative rods, coagulase-negative staphylococci, and several different Bacillus species. Two of the recovered Bacillus bacteria were examined for their ability to attach to and survive over time on patient head-only masks from four different manufacturers. B. halosaccharovorans was recovered from a treatment facility's water bath while B. cereus was recovered from a patient mask in the same facility. Bacillus bacteria were chosen for this study due to their capability to form dormant spores. METHODS: Inoculums containing either B. halosaccharovorans or B. cereus bacteria were seeded onto predesignated areas of each test mask. Masks were subsequently sampled at intervals of 1-h, 1 week, 2 weeks, 3 weeks, and 4 weeks. Recovered bacterial numbers at each sampling interval were determined using the direct plate count method. Spore stains were made of both bacterial isolates and number of detected spores were enumerated. RESULTS: B. halosaccharovorans attached to each mask type after a 1-h contact time at a number 3X greater than B. cereus. B. halosaccharovorans was also recovered at a number 8.5X greater than B. cereus after 4 weeks. Variation was seen in the attachment capability of each bacterium on tested mask types. Both bacilli were recovered from all 4 masks at each sampling interval including week 4. Examination of spore stains of each bacteria demonstrated nearly a 25:1 ratio of B. halosaccharovorans spores over B. cereus. DISCUSSION: The large variation seen between B. halosaccharovorans and B. cereus capability to attach to each of the four tested masks is revealing, especially when it is combined with determined spore numbers. It suggests that spores play a role in mediating their attachment to mask surfaces. Moreover, the recovery of both bacteria from stored masks after 4 weeks indicates a continued presence of dormant spores since growth-supportive nutrients are lacking. It also implies the potential for their transfer to a patient wearing a contaminated mask during a treatment session. CONCLUSION: The demonstrated ability of these two Bacillus bacteria to attach to and reside on patient masks presents a dilemma. Routine cleaning with approved disinfectants may not be sufficient to eliminate dormant spores on masks surfaces. This matter requires further investigation. For now, a small modification to the routine mask cleaning procedure before its application may help to reduce the possibility of spore transfer.
Assuntos
Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/isolamento & purificação , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Máscaras/microbiologia , Radioterapia/instrumentação , Contagem de Colônia Microbiana , Imobilização/instrumentaçãoRESUMO
BACKGROUND: Biosurfactants, being highly biodegradable, ecofriendly and multifunctional compounds have wide applications in various industrial sectors including environmental bioremediation. Surfactin, a member of lipopeptide family, which is considered as one of the most powerful biosurfactants due to its excellent emulsifying activities as well as environmental and therapeutic applications. Therefore, the aim of this study was to investigate the newly isolated bacterial strain S2MT for production of surfactin-like biosurfactants and their potential applications for oil-contaminated soil remediation. RESULTS: In this study, the strain S2MT was isolated from lake sediment and was identified as Bacillus nealsonii based on transmitted electron microscopy (TEM) and 16S rRNA ribo-typing. The strain S2MT produced biosurfactant that reduced the surface tension (34.15 ± 0.6 mN/m) and displayed excellent emulsifying potential for kerosene (55 ± 0.3%). Additionally, the maximum biosurfactant product yield of 1300 mg/L was achieved when the composition of the culture medium was optimized through response surface methodology (RSM). Results showed that 2% glycerol and 0.1% NH4NO3 were the best carbon/nitrogen substrates for biosurfactant production. The parameters such as temperature (30 °C), pH (8), agitation (100 rpm), NH4NO3 (0.1%) and NaCl (0.5%) displayed most significant contribution towards surface tension reduction that resulted in enhanced biosurfactant yield. Moreover, the extracted biosurfactants were found to be highly stable at environmental factors such as salinity, pH and temperature variations. The biosurfactants were characterized as cyclic lipopeptides relating to surfactin-like isoforms (C13-C15) using thin-layer chromatography (TLC), Ultra high performance liquid chromatography and mass spectrometry (UHPLC-MS). The crude biosurfactant product displayed up to 43.6 ± 0.08% and 46.7 ± 0.01% remediation of heavy engine-oil contaminated soil at 10 and 40 mg/L concentrations, respectively. CONCLUSION: Present study expands the paradigm of surfactin-like biosurfactants produced by novel isolate Bacillus nealsonii S2MT for achieving efficient and environmentally acceptable soil remediation as compared to synthetic surfactants.
Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Biodegradação Ambiental , Poluentes do Solo , Tensoativos/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Tipagem Molecular , Poluição por Petróleo , Filogenia , RNA Ribossômico 16S/genética , Ribotipagem , Tensão SuperficialRESUMO
The aim of this study was to develop a novel fermented soybean food (FSF) using selected Bacillus subtilis GD1, Bacillus subtilis N4, Bacillus velezensis GZ1, Lactobacillus delbrueckii subsp. bulgaricus and Hansenula anomala, as well as to assess its antioxidant and anti-fatigue activity. These Bacillus strains had excellent enzyme producing and soybean transformation capacity. FSF showed the highest peptide, total phenol, total flavonoid content, antioxidant activity, and suitable organic acid and biological amine content. In intense exercise mice, FSF treatment markedly increased hepatic glycogen level, decreased metabolite accumulation, improved the activities of antioxidant enzymes and decreased malondialdehyde (MDA) level in serum and liver, respectively. Furthermore, FSF treatment increased nuclear factor-erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE)-dependent gene expression. Together, the selection of microbial starter culture and mixed culture fermentation are essential for the effective enrichment of bioactive compounds, and FSF has stronger antioxidant and anti-fatigue activity.
Assuntos
Antioxidantes/metabolismo , Bacillus/metabolismo , Alimentos Fermentados/análise , Glycine max/metabolismo , Lactobacillus/metabolismo , Pichia/metabolismo , Animais , Antioxidantes/farmacologia , Bacillus/crescimento & desenvolvimento , Nitrogênio da Ureia Sanguínea , Fadiga/metabolismo , Fadiga/patologia , Flavonoides/análise , Glicogênio/metabolismo , Lactobacillus/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Malondialdeído/sangue , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/análise , Condicionamento Físico Animal , Pichia/crescimento & desenvolvimento , Glycine max/químicaRESUMO
Despite constant progress in the understanding of the mechanisms related to the effects of biosurfactants in the bioremediation processes of oily residues, the possibility of antagonist effects on microbial growth and the production in situ of these compounds must be elucidated. The aims of this work were a) to evaluate the effects of the addition of a homemade biosurfactant of Bacillus methylotrophicus on the microbial count in soil in order to determine the possibility of inhibitory effects, and b) to accomplish biostimulation using media prepared with whey and bioaugmentation with B. methylotrophicus, analyzing the effects on the bioremediation of diesel oil and evidencing the in situ production of biosurfactants through effects on surface tension. The homemade bacterial biosurfactant did not present inhibitory effects acting as a biostimulant until 4000 mg biosurfactant/kg of soil. The biostimulation and bioaugmentation presented similar better results (p > 0.05) with the degradation of oil (~60%) than natural attenuation due to the low quantities of biostimulants added. For bioaugmentated and biostimulated soils, a decrease of surface tension between 30 and 60 days was observed, indicating the production of tensoactives in the soil, which was not observed in natural attenuation or a control treatment.
Assuntos
Bacillus/efeitos dos fármacos , Argila/química , Petróleo/análise , Poluentes do Solo/análise , Solo/química , Tensoativos/farmacologia , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Tensoativos/químicaRESUMO
The aim of this study was to characterize the exopolysaccharide (EPS) produced by Bacillus velezensis SN-1 (B. velezensis SN-1) (EPS-SN-1), which was isolated from the fermented Da jiang. The microbe made crude exopolysaccharides EPS-SN-1 was produced throughout the bacterial growth period, and the highest yield (2.7 g/L) was obtained with sucrose as the carbon source. As per high performance liquid chromatography (HPLC), EPS-SN-1 is a heteropolysaccharide consisting of glucose, mannose and fructose, with a high molecular weight of 2.21 × 105 Da. FTIR spectra further indicated the presence of hydroxyl and carbonyl groups, and NMR analysis confirmed both α- and ß-glycosidic bonds. Furthermore, differential scanning calorimetry (DSC) showed that EPS-SN-1 has high thermal stability with fusion point of 270.7 °C. Finally, EPS-SN-1 demonstrated strong antioxidant capacity via its ability to scavenge hydroxyl radical (â¢OH), 1,1-diphenyl-2-picrylhydrazyl (DPPHâ¢) radical, ABTS radical (ABTSâ¢+) and oxygen radical (O2-â¢). Taken together, EPS-SN-1 is a promising natural antioxidant and probiotic with potential applications in the food industry.
Assuntos
Antioxidantes/química , Bacillus/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Antioxidantes/farmacologia , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Fermentação , Alimentos Fermentados/microbiologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Peso Molecular , Monossacarídeos/análise , Polissacarídeos Bacterianos/farmacologia , Probióticos/química , Probióticos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , TermogravimetriaRESUMO
BACKGROUND: Cadmium (Cd) is a severely toxic heavy metal to most microorganisms. Many bacteria have developed Cd2+ resistance. RESULTS: In this study, we isolated two different Cd2+ resistance Bacillus sp. strains, Bacillus vietamensis 151-6 and Bacillus marisflavi 151-25, which could be grown in the presence of Cd2+ at concentration up to 0.3 mM and 0.8 mM, respectively. According to the genomic sequencing, transcriptome analysis under cadmium stress, and other related experiments, a gene cluster in plasmid p25 was found to be a major contributor to Cd2+ resistance in B. marisflavi 151-25. The cluster in p25 contained orf4802 and orf4803 which encodes an ATPase transporter and a transcriptional regulator protein, respectively. Although 151-6 has much lower Cd2+ resistance than 151-25, they contained similar gene cluster, but in different locations. A gene cluster on the chromosome containing orf4111, orf4112 and orf4113, which encodes an ATPase transporter, a cadmium efflux system accessory protein and a cadmium resistance protein, respectively, was found to play a major role on the Cd2+ resistance for B. vietamensis 151-6. CONCLUSIONS: This work described cadmium resistance mechanisms in newly isolated Bacillus vietamensis 151-6 and Bacillus marisflavi 151-25. Based on homologies to the cad system (CadA-CadC) in Staphylococcus aureus and analysis of transcriptome under Cd2+ induction, we inferred that the mechanisms of cadmium resistance in B. marisflavi 151-25 was as same as the cad system in S. aureus. Although Bacillus vietamensis 151-6 also had the similar gene cluster to B. marisflavi 151-25 and S. aureus, its transcriptional regulatory mechanism of cadmium resistance was not same. This study explored the cadmium resistance mechanism for B. vietamensis 151-6 and B. marisflavi 151-25 and has expanded our understanding of the biological effects of cadmium.
Assuntos
Bacillus/crescimento & desenvolvimento , Cádmio/farmacologia , Farmacorresistência Bacteriana , ATPases do Tipo-P/genética , Bacillus/efeitos dos fármacos , Bacillus/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Óperon , Plasmídeos/genética , Sequenciamento Completo do GenomaRESUMO
Agro-industrial wastes are excellent sources for solid-state culture to produce spores of microorganisms, whereas microbial co-cultivation is not fully exploited in solid-state culture. In this work, the co-cultivation of different strains of Bacillus subtilis, and three microbes of B. subtilis, Bacillus mucilaginosus, and Paecilomyces lilacinus was studied using a solid medium only composed of water and tobacco waste residue after extraction of nicotine and solanesol. The influences of matrix thickness, moister, temperature, and ratio of three microbes in seed on the cell growth and spore formation were studied. The maximum viable cells and spores of each microbe reached 1013 cfu/g when cultured alone at 30 °C in a medium containing 58.3% moisture. Co-cultivation of microbes stimulated cell growth and maximum viable cells of each microbe reached 1014 cfu/g, while spore production was inhibited and decreased to 1011 cfu/g. With decreasing amount of P. lilacinus in seed, total amount of spores was increased. When the seed with a ratio of 6:3:1 for B. mucilaginosus, B. subtilis, and P. lilacinus was inoculated, the total amount of spores reached 4.14 × 1012 cfu/g and the ratio was 1.7:0.7:1. These results indicate the potential of solid-state cultivation in the high production of spores from tobacco waste residue at low cost.
Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus/crescimento & desenvolvimento , Resíduos Industriais , Nicotiana , Paecilomyces/metabolismo , Meios de Cultura , Fertilizantes , Esporos BacterianosRESUMO
A combined calorimetric gas- and spore-based biosensor array is presented in this work to monitor and evaluate the sterilization efficacy of gaseous hydrogen peroxide in aseptic filling machines. H2O2 has been successfully measured under industrial conditions. Furthermore, the effect of H2O2 on three different spore strains , namely Bacillus atrophaeus, Bacillus subtilis and Geobacillus stearothermophilus, has been investigated by means of SEM, AFM and impedimetric measurements. In addition, the sterilization efficacy of a spore-based biosensor and the functioning principle are addressed and discussed: the sensor array is convenient to be used in aseptic food industry to guarantee sterile packages.
Assuntos
Técnicas Biossensoriais , Calorimetria , Peróxido de Hidrogênio/isolamento & purificação , Esporos Bacterianos/efeitos dos fármacos , Bacillus/efeitos dos fármacos , Bacillus/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Desinfetantes/química , Desinfetantes/isolamento & purificação , Gases/química , Gases/isolamento & purificação , Geobacillus stearothermophilus/efeitos dos fármacos , Geobacillus stearothermophilus/crescimento & desenvolvimento , Humanos , Peróxido de Hidrogênio/farmacologia , Infertilidade , Esporos Bacterianos/crescimento & desenvolvimento , EsterilizaçãoRESUMO
A new ergosterol derivative, 23R-hydroxy-(20Z,24R)-ergosta-4,6,8(14),20(22)-tetraen-3-one (1), and a biosynthetically related known compound, (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (2), were isolated from the co-culture between endophytic fungus Pleosporales sp. F46 and endophytic bacterium Bacillus wiedmannii Com1 both inhibiting in the medicinal plant Mahonia fortunei. The structure of the new compound 1 was determined by extensive spectroscopic analysis using HRMS and NMR, together with the modified Mosher's ester method. This is the first example of isolation of a ergosterol derivative with a Δ20(22)-double bond in the side chain. Compound 1 exhibited moderate antibacterial efficacy against Staphylococcus aureus and no obvious cytotoxic activities against the cancer cell lines A549, MDA-MB-231 and Hct116. Our results not only reveal that compound 1 is a potent antibacterial lead compound, but also highlight the powder of co-cultivation for inducing the production of cryptic natural products from endophytes derived from the same host plant.
Assuntos
Ascomicetos/metabolismo , Bacillus/metabolismo , Técnicas de Cocultura , Endófitos/metabolismo , Mahonia/microbiologia , Esteroides/biossíntese , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/fisiologia , Bacillus/crescimento & desenvolvimento , Bacillus/fisiologia , Endófitos/crescimento & desenvolvimento , Endófitos/fisiologia , Modelos Moleculares , Conformação Molecular , Esteroides/químicaRESUMO
The objective was to evaluate the anticancer and antioxidant activities of the methanolic extracts of halophilic bacteria, isolated from soil samples of Marakkanam saltern and Pichavaram mangrove forest, India. Radical Scavenging activity, reducing power, and metal ion chelation ability was used to evaluate the antioxidant potential of the metabolic extracts, whereas cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The methanolic extract of Bacillus VITPS7 exhibited significant antioxidant property. Bacillus VITPS14 and Bacillus VITPS16 extracts were cytotoxic against HeLa cell lines but not to A549 cell lines. Colorimetric assays for the presence of specific metabolites including, total flavonoid and ß carotene content were performed. The presence of these specific classes of metabolites was confirmed by UV-Visible spectrophotometry, Nuclear Magnetic Resonance (NMR) spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS). Specific NMR signals revealed the presence of aromatic and unsaturated metabolites whereas GC-MS analysis indicated the presence of metabolites such as squalene and methyl hexadeconate. The present study thus reports for the first time the presence of squalene in Bacillus VITPS12 and Planococcus maritimus VITP21, in addition to other metabolites that contribute to the observed antioxidant or/and cytotoxicity, thus revealing the therapeutic potential of these selected halophilic bacterial isolates.
Assuntos
Antineoplásicos , Antioxidantes , Bacillus , Citotoxinas , Áreas Alagadas , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Citotoxinas/biossíntese , Citotoxinas/farmacologia , Células HeLa , Humanos , ÍndiaRESUMO
Zearalenone (ZEN) is an estrogen-like mycotoxin occurring in food and feeds, and it can cause oxidative damage and apoptosis in the testis, liver, and kidney. A current concern for researchers is how to reduce the harm it causes to humans and animals. In this study, our aim was to isolate and identify a novel and efficient ZEN-detoxifying strain of bacteria, and we aimed to assess the protective effect of the isolated strain on kidney damage caused by ZEN in mice. Our results indicated that a strain of Bacillus velezensis (B. velezensis), named A2, could completely degrade ZEN (7.45 µg/mL) after three days of incubation at 37 °C in the Luria-Bertani (LB) medium. This fermentation broth of the B. velezensis A2 strain was given to mice. The histopathological analysis indicated that the fermentation broth from the B. velezensis A2 strain reduced the degree of renal injury that is induced by ZEN. Furthermore, it greatly reduced the increase in serum levels of creatinine (CRE), uric acid (UA), and urea nitrogen (BUN) caused by ZEN. In addition, B. velezensis A2 strain also significantly inhibited the increase of malonaldehyde (MDA) content, and reversed the decreases of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities caused by ZEN. Studies have shown that ZEN is involved in the regulation of mRNA and protein levels of genes involved in the ER stress-induced apoptotic pathway, such as heavy chain binding protein (BIP), C-/-EBP homologous protein (CHOP), cysteine Aspartate-specific protease-12 (Caspase-12), c-Jun N-terminal kinase (JNK), and BCL2-related X protein (Bcl-2 and Bax). However, when mice were administered the fermentation broth of the B. velezensis A2 strain, it significantly reversed the expressions of these genes in their kidney tissue. In conclusion, our results indicate that the newly identified strain of B. velezensis A2, has a protective effect from renal injury induced by ZEN in mice. This strain has a potential application in the detoxification of ZEN in feed and protects animals from ZEN poisoning.
Assuntos
Injúria Renal Aguda/metabolismo , Bacillus/metabolismo , Rim/metabolismo , Zearalenona/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/microbiologia , Injúria Renal Aguda/terapia , Animais , Bacillus/crescimento & desenvolvimento , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Fermentação , Glutationa Peroxidase/metabolismo , Humanos , Rim/lesões , Rim/microbiologia , Camundongos , Estresse Oxidativo/genética , Superóxido Dismutase/metabolismo , Ácido Úrico/sangue , Zearalenona/toxicidadeRESUMO
Abstract Bacteria are important sources of cellulases with various industrial and biotechnological applications. In view of this, a non-hemolytic bacterial strain, tolerant to various environmental pollutants (heavy metals and organic solvents), showing high cellulolytic index (7.89) was isolated from cattle shed soil and identified as Bacillus sp. SV1 (99.27% pairwise similarity with Bacillus korlensis). Extracellular cellulases showed the presence of endoglucanase, total cellulase and β-glucosidase activities. Cellulase production was induced in presence of cellulose (3.3 times CMCase, 2.9 times FPase and 2.1 times β-glucosidase), and enhanced (115.1% CMCase) by low-cost corn steep solids. An in silico investigation of endoglucanase (EC 3.2.1.4) protein sequences of three Bacillus spp. as query, revealed their similarities with members of nine bacterial phyla and to Eukaryota (represented by Arthropoda and Nematoda), and also highlighted of a convergent and divergent evolution from other enzymes of different substrate [(1,3)-linked beta-d-glucans, xylan and chitosan] specificities. Characteristic conserved signature indels were observed among members of Actinobacteria (7 aa insert) and Firmicutes (9 aa insert) that served as a potential tool in support of their relatedness in phylogenetic trees.
Assuntos
Animais , Bovinos , Bacillus/enzimologia , Celulase/genética , Celulase/metabolismo , Evolução Molecular , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Celulose/metabolismo , Biologia Computacional , Fezes/microbiologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mutação INDEL , Análise de Sequência de DNA , Homologia de Sequência , Especificidade por Substrato , Zea mays/metabolismoRESUMO
AIMS: Four commercially available robotic vacuum cleaners were assessed for sampling efficiency of wet disseminated Bacillus atrophaeus spores on carpet, polyvinyl chloride (PVC) and laminate flooring. Furthermore, their operability was evaluated and decontamination efficiency of one robot was assessed, using a sodium hypochlorite solution. METHODS AND RESULTS: In an environmental chamber, robots self-navigated around 4 m2 of flooring containing a single contaminated 0·25 m2 tile (c. 104 spores per cm2 ). Contamination levels at predetermined locations were assessed by macrofoam swabs (PVC and laminate) or water soluble tape (carpet), before and after sampling. Robots were dismantled postsampling and spore recoveries assessed. Aerosol contamination was also measured during sampling. Robot sampling efficiencies were variable, however, robots recovered most spores from laminate (up to 17·1%), then PVC and lastly the carpet. All robots spread contamination from the 'hotspot' (all robots spread <0·6% of the contamination to other areas) and became surface contaminated. Spores were detected at low levels during air sampling (<5·6 spores per litre). Liquid decontamination inactivated 99·1% of spores from PVC. CONCLUSIONS: Robotic vacuum cleaners show promise for both sampling and initial decontamination of indoor flooring. SIGNIFICANCE AND IMPACT OF THE STUDY: In the event of a bioterror incident, e.g. deliberate release of Bacillus anthracis spores, areas require sampling to determine the magnitude and extent of contamination, and to establish decontamination efficacy. In this study, we investigate robotic sampling methods against high concentrations of bacterial spores applied by wet deposition to different floorings, contamination spread to other areas, potential transfer of spores to the operators and assessment of a wet vacuum robot for spore inactivation. The robots' usability was evaluated and how they can be employed in real life scenarios. This will help to reduce the economic cost of sampling and the risk to sampling/decontamination teams.