Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(7): 206, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755297

RESUMO

The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.


Assuntos
Células 3T3-L1 , Anticolesterolemiantes , Bacillus amyloliquefaciens , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Obesidade , RNA Ribossômico 16S , Ratos Wistar , Animais , Bacillus amyloliquefaciens/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Obesidade/microbiologia , Ratos , Anticolesterolemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , RNA Ribossômico 16S/genética , Masculino , Modelos Animais de Doenças , Colesterol/metabolismo , Lipase/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos
2.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745279

RESUMO

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Assuntos
Arachis , Secas , Estresse Fisiológico , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/fisiologia , Prolina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Microbiologia do Solo , Pressão Osmótica , Betaína/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Acinetobacter/metabolismo , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/fisiologia , Cianeto de Hidrogênio/metabolismo , Trealose/metabolismo
3.
Toxins (Basel) ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38133178

RESUMO

Zearalenone (ZEN) is a mycotoxin produced by Fusarium spp., which commonly and severely contaminate food/feed. ZEN severely affects food/feed safety and reduces economic losses owing to its carcinogenicity, genotoxicity, reproductive toxicity, endocrine effects, and immunotoxicity. To explore efficient methods to detoxify ZEN, we identified and characterized an efficient ZEN-detoxifying microbiota from the culturable microbiome of Pseudostellaria heterophylla rhizosphere soil, designated Bacillus amyloliquefaciens D-1. Its highest ZEN degradation rate reached 96.13% under the optimal condition. And, D-1 can almost completely remove ZEN (90 µg·g-1) from coix semen in 24 h. Then, the D-1 strain can detoxify ZEN to ZEM, which is a new structural metabolite, through hydrolyzation and decarboxylation at the ester group in the lactone ring and amino acid esterification at C2 and C4 hydroxy. Notably, ZEM has reduced the impact on viability, and the damage of cell membrane and nucleus DNA and can significantly decrease the cell apoptosis in the HepG2 cell and TM4 cell. In addition, it was found that the D-1 strain has no adverse effect on the HepG2 and TM4 cells. Our findings can provide an efficient microbial resource and a reliable reference strategy for the biological detoxification of ZEN.


Assuntos
Bacillus amyloliquefaciens , Coix , Probióticos , Zearalenona , Zearalenona/análise , Bacillus amyloliquefaciens/metabolismo , Coix/metabolismo , Sementes/química
4.
Biosci Rep ; 42(10)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36052710

RESUMO

The ComPA two-component signal transduction system (TCS) is essential in Bacillus spp. However, the molecular mechanism of the histidine kinase ComP remains unclear. Here, we predicted the structure of ComP from Bacillus amyloliquefaciens Q-426 (BaComP) using an artificial intelligence approach, analyzed the structural characteristics based on the molecular docking results and compared homologous proteins, and then investigated the biochemical properties of BaComP. We obtained a truncated ComPS protein with high purity and correct folding in solution based on the predicted structures. The expression and purification of BaComP proteins suggested that the subdomains in the cytoplasmic region influenced the expression and stability of the recombinant proteins. ComPS is a bifunctional enzyme that exhibits the activity of both histidine kinase and phosphotransferase. We found that His571 played an obligatory role in the autophosphorylation of BaComP based on the analysis of the structures and mutagenesis studies. The molecular docking results suggested that the HATPase_c domain contained an ATP-binding pocket, and the ATP molecule was coordinated by eight conserved residues from the N, G1, and G2 boxes. Our study provides novel insight into the histidine kinase BaComP and its homologous proteins.


Assuntos
Bacillus amyloliquefaciens , Histidina Quinase/genética , Histidina Quinase/metabolismo , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Simulação de Acoplamento Molecular , Inteligência Artificial , Proteínas Quinases/metabolismo , Proteínas de Bactérias/metabolismo , Fosforilação , Trifosfato de Adenosina/metabolismo
5.
Int J Biol Macromol ; 220: 852-865, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985398

RESUMO

To search for novel proteases from environmental isolates which can induce apoptosis in cancer cells, we have purified subtilisin from Bacillus amyloliquefaciens and studied its anti-cancer properties. Subtilisin induced apoptosis in colon (HT29) and breast (MCF7) cancer cells but showed no effect on mouse peritoneal macrophages and normal breast cells (MCF10A). Western blot analysis showed that Bax, Bcl-2 level remained unchanged but tubulin level decreased significantly. Subtilisin does not induce the intrinsic pathway of apoptosis, rather it induced tubulin degradation in MCF-7 cells, whereas in normal cells (MCF-10A) tubulin degradation was not observed. Subtilisin activates ubiquitination and proteasomal-mediated tubulin degradation which was completely restored in presence of proteasome inhibitor MG-132. We further observed PARKIN, one of the known E3-ligase, is overexpressed and interacts with tubulin in subtilisin treated cells. Knockdown of PARKIN effectively downregulates ubiquitination and inhibits degradation of tubulin. PARKIN activation and tubulin degradation lead to ER-stress which in turn activates caspase-7 and PARP cleavage, thus guiding the subtilisin treated cells towards apoptosis. To our knowledge this is the first report of subtilisin induced apoptosis in cancer cells by proteasomal degradation of tubulin.


Assuntos
Bacillus amyloliquefaciens , Neoplasias , Animais , Apoptose , Bacillus amyloliquefaciens/metabolismo , Caspase 7 , Camundongos , Neoplasias/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Subtilisina , Tubulina (Proteína)/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína X Associada a bcl-2
6.
Viruses ; 14(8)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016452

RESUMO

The application of microbe-derived products as natural biocontrol agents to boost systemic disease resistance to virus infections in plants is a prospective strategy to make agriculture more sustainable and environmentally friendly. In the current study, the rhizobacterium Bacillus amyloliquefaciens strain TBorg1 was identified based on 16S rRNA, rpoB, and gyrA gene sequences, and evaluated for its efficiency in conferring protection of tomato from infection by Tobacco mosaic virus (TMV). Under greenhouse circumstances, foliar sprays of TBorg1 culture filtrate (TBorg1-CF) promoted tomato growth, lowered disease severity, and significantly decreased TMV accumulation in systemically infected leaves of treated plants relative to untreated controls. TMV accumulation was reduced by 90% following the dual treatment, applied 24 h before and after TMV infection. Significant increases in levels of total soluble carbohydrates, proteins, and ascorbic acid were also found. In addition, a significant rise in activities of enzymes capable of scavenging reactive oxygen species (PPO and POX), as well as decreased levels of non-enzymatic oxidative stress markers (H2O2 and MDA) were observed, compared to untreated plants. Enhanced systemic resistance to TMV was indicated by significantly increased transcript accumulation of polyphenolic pathway (C4H, HCT, and CHI) and pathogenesis-related (PR-1 and PR-5) genes. Out of the 15 compounds identified in the GC-MS analysis, 1,2-benzenedicarboxylic acid mono(2-ethylhexyl) ester and phenol, 2,4-bis(1,1-dimethylethyl), as well as L-proline, N-valeryl-, and heptadecyl ester were present in the highest concentrations in the ethyl acetate extract of TBorg1-CF. In addition, significant amounts of n-hexadecanoic acid, pyrrolo [1,2-a] pyrazine-1,4-dione hexahydro-3-(2-methylpropyl)-, nonane, 5-butyl-, and eicosane were also detected. These compounds may act as inducers of systemic resistance to viral infection. Our findings indicate that the newly isolated B. amyloliquefaciens strain TBorg1 could be a potentially useful rhizobacterium for promoting plant growth and a possible source of biocontrol agents for combating plant virus infections.


Assuntos
Bacillus amyloliquefaciens , Solanum lycopersicum , Vírus do Mosaico do Tabaco , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Ésteres/metabolismo , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Fenóis , Doenças das Plantas , Proteínas de Plantas/genética , RNA Ribossômico 16S/genética , Nicotiana , Vírus do Mosaico do Tabaco/genética
7.
Nutrients ; 14(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35565934

RESUMO

Fermented camel's milk has various health beneficial prebiotics and probiotics. This study aimed to evaluate the preventive efficacy of Bacillus amyloliquefaciens enriched camel milk (BEY) in 2-, 4- and 6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis mice models. To this end, the immune modulatory effects of Bacillus amyloliquefaciens (BA) on TNF-α challenged HT29 colon cells were estimated using the cell proliferation and cytokines ELISA method. BEY was prepared using the incubation method and nutritional value was quantified by comparing it to commercial yogurt. Furthermore, TNBS-induced colitis was established and the level of disease index, pathological scores, and inflammatory markers of BEY-treated mice using macroscopic and microscopic examinations, qPCR and immunoblot were investigated. The results demonstrate that BA is non-toxic to HT29 colon cells and balanced the inflammatory cytokines. BEY reduced the colitis disease index, and improved the body weight and colon length of the TNBS-induced mice. Additionally, Myeloperoxidase (MPO) and pro-inflammatory cytokines (IL1ß, IL6, IL8 and TNF-α) were attenuated by BEY treatment. Moreover, the inflammatory progress mRNA and protein markers nuclear factor kappa B (NFκB), phosphatase and tensin homolog (PTEN), proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2) and occludin were significantly down-regulated by BEY treatment. Interestingly, significant suppression of PCNA was observed in colonic tissues using the immunohistochemical examination. Treatment with BEY increased the epigenetic (microRNA217) interactions with PCNA. In conclusion, the BEY clearly alleviated the colitis symptoms and in the future could be used to formulate a probiotic-based diet for the host gut health and control the inflammatory bowel syndrome in mammals.


Assuntos
Bacillus amyloliquefaciens , Colite , Animais , Bacillus amyloliquefaciens/metabolismo , Camelus/metabolismo , Colite/induzido quimicamente , Colite/prevenção & controle , Colo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos , Leite/metabolismo , Peroxidase/metabolismo , Antígeno Nuclear de Célula em Proliferação , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
8.
Molecules ; 26(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443655

RESUMO

To identify and analyze the characteristics of the microorganisms involved in the formation of the desirable flavor of Doenjang, a total of 179 strains were isolated from ninety-four Doenjang collected from six regions in South Korea, and fourteen strains were selected through a sensory evaluation of the aroma of each culture. The enzyme activities of amylase, protease and lipase was shown in the various strains. Bacillus sp.-K3, Bacillus sp.-K4 and Bacillus amyloliquefaciens-J2 showed relatively high protease activity, at 317.1 U, 317.3 U and 319.5 U, respectively. The Bacillus sp.-K1 showed the highest lipase activity at 2453.6 U. In the case of amylase, Bacillus subtilis-H6 showed the highest activity at 4105.5 U. The results of the PCA showed that Bacillus subtilis-H2, Bacillus subtilis-H3, and Bacillus sp.-K2 were closely related to the production of 3-hydroxy-2-butanone (23.51%~43.37%), and that Bacillus subtilis-H5 and Bacillus amyloliquefaciens-J2 were significantly associated with the production of phenethyl alcohol (0.39% and 0.37%). The production of peptides was observed to vary among the Bacillus cultures such as Val-Val-Pro-Pro-Phe-Leu and Pro-Ala-Glu-Val-Leu-Asp-Ile. These peptides are precursors of related volatile flavor compounds created in Doenjang via the enzymatic or non-enzymatic route; it is expected that these strains could be used to enhance the flavor of Doenjang.


Assuntos
Fermentação , Glycine max/microbiologia , Peptídeo Hidrolases/genética , Alimentos de Soja/microbiologia , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/metabolismo , Biossíntese Peptídica/genética , Peptídeo Hidrolases/química , Peptídeos/química , Peptídeos/genética , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Glycine max/metabolismo
9.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299554

RESUMO

The present work reports the biobleaching effect on OPEFB pulp upon utilisation of extracellular xylano-pectinolytic enzymes simultaneously yielded from Bacillus amyloliquefaciens ADI2. The impacts of different doses, retention times, pH, and temperatures required for the pulp biobleaching process were delineated accordingly. Here, the OPEFB pulp was subjected to pre-treatment with xylano-pectinolytic enzymes generated from the same alkalo-thermotolerant isolate that yielded those of higher quality. Remarkable enhanced outcomes were observed across varying pulp attributes: for example, enzyme-treated pulp treated to chemical bleaching sequence generated improved brightness of 11.25%. This resulted in 11.25% of less chlorine or chemical consumption required for obtaining pulp with optical attributes identical to those generated via typical chemical bleaching processes. Ultimately, the reduced consumption of chlorine would minimise the organochlorine compounds found in an effluent, resulting in a lowered environmental effect of paper-making processes overall as a consequence. This will undoubtedly facilitate such environmentally-friendly technology incorporation in the paper pulp industry of today.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Frutas/metabolismo , Óleo de Palmeira/metabolismo , Concentração de Íons de Hidrogênio , Papel , Poligalacturonase/metabolismo , Temperatura
10.
Int J Biol Macromol ; 185: 562-571, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34216658

RESUMO

The exopolysaccharide preparation of Bacillus amyloliquefaciens amy-1 (EPS) regulates glycemic levels and promotes glucagon-like peptide 1 (GLP-1) secretion in vivo and in vitro. This study aimed to identify the molecular mechanism underlying EPS-induced GLP-1 secretion. HEK293T cells stably expressing human Gα-gustducin were used as a heterologous system for expressing the genes of human bitter taste receptor (T2R) 10, 14, 30, 38 (PAV), 38 (AVI), 43, and 46, which were expressed as recombinant proteins with an N-terminal tag composed of a Lucy peptide and a human somatostatin receptor subtype 3 fragment for membrane targeting and a C-terminal red fluorescent protein for expression monitoring. EPS induced a dose-dependent calcium response from the human NCI-H716 enteroendocrine cell line revealed by fluorescent calcium imaging, but inhibitors of the G protein-coupled receptor pathway suppressed the response. EPS activated heterologously expressed T2R14 and T2R38 (PAV). shRNAs of T2R14 effectively inhibited EPS-induced calcium response and GLP-1 secretion in NCI-H716 cells, suggesting the involvement of T2R14 in these effects. The involvement of T2R38 was not characterized because NCI-H716 cells express T2R38 (AVI). In conclusion, the activation of T2Rs mediates EPS-induced GLP-1 secretion from enteroendocrine cells, and T2R14 is a critical target activated by EPS in these cells.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Polissacarídeos Bacterianos/farmacologia , Receptores Acoplados a Proteínas G/genética , Cálcio/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Somatostatina/química , Receptores de Somatostatina/genética
11.
Biotechnol Lett ; 43(6): 1211-1219, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33646457

RESUMO

Cytidine is an important raw material for nucleic acid health food and genetic engineering research. In recent years, it has shown irreplaceable effects in anti-virus, anti-tumor, and AIDS drugs. Its biosynthetic pathway is complex and highly regulated. In this study, overexpression of uracil permease and a nucleoside transporter from Bacillus amyloliquefaciens related to cell membrane transport in Escherichia coli strain BG-08 was found to increase cytidine production in shake flask cultivation by 1.3-fold (0.91 ± 0.03 g/L) and 1.8-fold (1.26 ± 0.03 g/L) relative to that of the original strain (0.70 ± 0.03 g/L), respectively. Co-overexpression of uracil permease and a nucleoside transporter further increased cytidine yield by 2.7-fold (1.59 ± 0.05 g/L) compared with that of the original strain. These results indicate that the overexpressed uracil permease and nucleoside transporter can promote the accumulation of cytidine, and the two proteins play a synergistic role in the secretion of cytidine in Escherichia coli.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Citidina/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Transporte de Nucleosídeos/metabolismo , Bacillus amyloliquefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas/instrumentação , Técnicas de Cultura Celular por Lotes , Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Engenharia de Proteínas
12.
J Sci Food Agric ; 101(13): 5348-5358, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33650220

RESUMO

BACKGROUND: The increase of peptide yield contributed to reducing the usage of antibiotics in solid-state fermented feed. Ultrasound technology is used in the field of liquid-state fermentation to improve yield of fermented products but has not been utilized in the field of solid-state fermentation (SSF). The main objective of this study was to investigate the feasibility of improving peptide yield in SSF products through ultrasound-treated bacterial strain. RESULTS: The highest peptides content in soybean meal SSF products reached 153.28 mg g-1 , which increased by 15.05% compared with the control. This content value was acquired through treating the bacteria of Bacillus amyloliquefaciens by ultrasound before inoculating into soybean meal under the optimized mode and parameters (simultaneous dual-frequency ultrasound mode, frequency combination of 40/60 kHz, total power density of 40 W L-1 , time of 20 min, pulse-on and pulse-off times of 40 and 60 s, delayed inoculation time of 0 h). Fermenting with ultrasound-treated bacterial strain can effectively increase peptide yield, biomass and protease activity of soybean meal fermented products during the SSF prophase. After treating by ultrasound, the latent phase and logarithmic phase of the bacterial strain shortened by 1 and 3 h while the generation time reduced by 23.64%. In qualitative test of protease activity, diameter ratio (DR) value of ultrasound-treated bacterial cells enlarged by 12.0% compared with the control. CONCLUSION: Peptide yield of soybean meal SSF products can be improved through ultrasound-treated bacterial inoculum, which attributed to the promoting effect of ultrasound treatment on growth activity and protease production capability of bacterial cells. © 2021 Society of Chemical Industry.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/efeitos da radiação , Glycine max/microbiologia , Peptídeos/metabolismo , Bacillus amyloliquefaciens/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Biomassa , Fermentação , Peptídeo Hidrolases/metabolismo , Glycine max/metabolismo , Ultrassom
13.
J Agric Food Chem ; 69(1): 267-274, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356220

RESUMO

Spermidine is a biologically active polyamine with extensive application potential in functional foods. However, previously reported spermidine titers by biosynthesis methods are relatively low, which hinders its industrial application. To improve the spermidine titer, key genes affecting the spermidine production were mined to modify Bacillus amyloliquefaciens. Genes of S-adenosylmethionine decarboxylase (speD) and spermidine synthase (speE) from different microorganisms were expressed and compared in B. amyloliquefaciens. Therein, the speD from Escherichia coli and speE from Saccharomyces cerevisiae were confirmed to be optimal for spermidine synthesis, respectively. Gene and amino acid sequence analysis further confirmed the function of speD and speE. Then, these two genes were co-expressed to generate a recombinant strain B. amyloliquefaciens HSAM2(PDspeD-SspeE) with a spermidine titer of 105.2 mg/L, improving by 11.0-fold compared with the control (HSAM2). Through optimization of the fermentation medium, the spermidine titer was increased to 227.4 mg/L, which was the highest titer among present reports. Moreover, the consumption of the substrate S-adenosylmethionine was consistent with the accumulation of spermidine, which contributed to understanding its synthesis pattern. In conclusion, two critical genes for spermidine synthesis were obtained, and an engineering B. amyloliquefaciens strain was constructed for enhanced spermidine production.


Assuntos
Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Espermidina/biossíntese , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Metabólica , Análise de Sequência , Espermidina Sintase/genética , Espermidina Sintase/metabolismo
14.
Microb Cell Fact ; 19(1): 223, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287813

RESUMO

BACKGROUND: Genome reduction and metabolic engineering have emerged as intensive research hotspots for constructing the promising functional chassis and various microbial cell factories. Surfactin, a lipopeptide-type biosurfactant with broad spectrum antibiotic activity, has wide application prospects in anticancer therapy, biocontrol and bioremediation. Bacillus amyloliquefaciens LL3, previously isolated by our lab, contains an intact srfA operon in the genome for surfactin biosynthesis. RESULTS: In this study, a genome-reduced strain GR167 lacking ~ 4.18% of the B. amyloliquefaciens LL3 genome was constructed by deleting some unnecessary genomic regions. Compared with the strain NK-1 (LL3 derivative, ΔuppΔpMC1), GR167 exhibited faster growth rate, higher transformation efficiency, increased intracellular reducing power level and higher heterologous protein expression capacity. Furthermore, the chassis strain GR167 was engineered for enhanced surfactin production. Firstly, the iturin and fengycin biosynthetic gene clusters were deleted from GR167 to generate GR167ID. Subsequently, two promoters PRsuc and PRtpxi from LL3 were obtained by RNA-seq and promoter strength characterization, and then they were individually substituted for the native srfA promoter in GR167ID to generate GR167IDS and GR167IDT. The best mutant GR167IDS showed a 678-fold improvement in the transcriptional level of the srfA operon relative to GR167ID, and it produced 311.35 mg/L surfactin, with a 10.4-fold increase relative to GR167. CONCLUSIONS: The genome-reduced strain GR167 was advantageous over the parental strain in several industrially relevant physiological traits assessed and it was highlighted as a chassis strain for further genetic modification. In future studies, further reduction of the LL3 genome can be expected to create high-performance chassis for synthetic biology applications.


Assuntos
Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Genoma Bacteriano , Lipopeptídeos/biossíntese , Engenharia Metabólica , Peptídeos Cíclicos/biossíntese , Bacillus amyloliquefaciens/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipopeptídeos/química , Óperon , Oxirredução , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/química , Regiões Promotoras Genéticas , Tensoativos , Transformação Bacteriana
15.
J Agric Food Chem ; 68(50): 14709-14727, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33280382

RESUMO

Bacillus amyloliquefaciens belongs to the genus Bacillus and family Baciliaceae. It is ubiquitously found in food, plants, animals, soil, and in different environments. In this review, the application of B. amyloliquefaciens in probiotic and prebiotic microbes in fermentation, synthesis, and hydrolysis of food compounds is discussed as well as further insights into its potential application and gaps. B. amyloliquefaciens is also a potential microbe in the synthesis of bioactive compounds including peptides and exopolysaccharides. In addition, it can synthesize antimicrobial compounds (e.g., Fengycin, and Bacillomycin Lb), which makes its novelty in the food sector greater. Moreover, it imparts and improves the functional, sensory, and shelf life of the end products. The hydrolysis of complex compounds including insoluble proteins, carbohydrates, fibers, hemicellulose, and lignans also shows that B. amyloliquefaciens is a multifunctional and potential microbe which can be applied in the food industry and in functional food processing.


Assuntos
Anti-Infecciosos/metabolismo , Bacillus amyloliquefaciens/química , Prebióticos/análise , Probióticos/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bacillus amyloliquefaciens/metabolismo , Fermentação , Alimento Funcional/análise , Humanos
16.
J Agric Food Chem ; 68(37): 10071-10080, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32815728

RESUMO

Zearalenone (ZEA), a nonsteroidal estrogenic mycotoxin produced by Fusarium graminearum, induces hyperestrogenic responses in mammals and can cause reproductive disorders in farm animals. In this study, a transcriptome analysis of Bacillus amyloliquefaciens H6, which was previously identified as a ZEA-degrading bacterium, was conducted with high-throughput sequencing technology, and the differentially expressed genes were subjected to gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses. Among the 16 upregulated genes, BAMF_RS30125 was predicted to be the key gene responsible for ZEA degradation. The protein encoded by BAMF_RS30125 was then expressed in Escherichia coli, and this recombinant protein (named ZTE138) significantly reduced the ZEA content, as determined by the enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), and decreased the proliferating activity of ZEA in MCF-7 cells. What is more, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) results showed that the relative molecular mass and the structure of ZEA also changed. Sequence alignment of the ZTE138 protein showed that it is a protease that belongs to the YBGC/FADM family of coenzyme A thioesterases, and thus, the protein can presumably cleave the ZEA lactone bond and break down its macrolide ring.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , Proteínas de Bactérias/metabolismo , Tioléster Hidrolases/metabolismo , Zearalenona/metabolismo , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Espectrometria de Massas em Tandem , Tioléster Hidrolases/genética , Transcriptoma , Zearalenona/química
17.
Biotechnol Lett ; 42(11): 2293-2298, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32577851

RESUMO

OBJECTIVES: To improve the S-adenosylmethionine (SAM) production in methionine-free medium, effects of deleting genes of SAM decarboxylase (speD) and homoserine kinase (thrB) on SAM titers were investigated, and the SAM synthetase gene (SAM2) was also overexpressed. RESULTS: In B. amyloliquefaciens HSAM2, deleting speD to block the SAM utilization pathway significantly reduced the SAM titer. After knockout of thrB to block the branched pathway, the resulted mutant HSAM4 produced 143.93 mg/L SAM, increasing by 42% than HSAM2. Further plasmid-based expression of SAM2 improved the SAM titer to 226.92 mg/L, and final optimization of key fermentation parameters resulted in the maximum SAM titer of 412.01 mg/L in flasks batch fermentation. CONCLUSIONS: Deleting thrB and overexpressing SAM2 gene were efficient for enhanced SAM production in B. amyloliquefaciens. The maximum SAM titer in flasks batch fermentation was much higher than that of previous reports.


Assuntos
Bacillus amyloliquefaciens/crescimento & desenvolvimento , Metionina Adenosiltransferase/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , S-Adenosilmetionina/metabolismo , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes , Fermentação , Deleção de Genes , Expressão Gênica , Plasmídeos/genética
18.
Molecules ; 25(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443519

RESUMO

Soybean (Glycine max L.) is a good source of natural antioxidants and commonly consumed as fermented products such as cheonggukjang, miso, tempeh, and sufu in Asian countries. The aim of the current study was to examine the influence of novel endophytic bacterial strain, Bacillus amyloliquefaciens RWL-1 as a starter for soybean fermentation. During fermentation, the cooked soybeans were inoculated with different concentrations (1%, 3%, and 5%) of B. amyloliquefaciens RWL-1. The changes in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, total phenolic contents, isoflavones (Daidzin, Genistin, Glycitin, Daidzein, Glycitein, and Genistein), amino acids (aspartic acid, threonine, serine, glutamic acid, glycine, alanine, cysteine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, and proline) composition, and minerals (calcium, copper, iron, potassium, magnesium, manganese, sodium, nickel, lead, arsenic, and zinc) were investigated. The level of antioxidants, total phenolic contents, isoflavones, and total amino acids were higher in fermented soybean inoculated with 1% B. amyloliquefaciens RWL-1 after 60 h of fermentation as compared to control, 3% and 5% B. amyloliquefaciens RWL-1. Additionally, fermented soybean inoculated with 5% B. amyloliquefaciens RWL-1 showed the highest values for mineral contents. Changes in antioxidant activities and bioactive compounds depended on the concentration of the strain used for fermentation. From these results, we conclude that fermented soybean has strong antioxidant activity, probably due to its increased total phenolic contents and aglycone isoflavone that resulted from fermentation. Such natural antioxidants could be used in drug and food industries and can be considered to alleviate oxidative stress.


Assuntos
Antioxidantes/química , Bacillus amyloliquefaciens/metabolismo , Glycine max/química , Fenóis/química , Aminoácidos/química , Antioxidantes/metabolismo , Fermentação , Hipersensibilidade Alimentar/prevenção & controle , Genisteína/química , Genisteína/metabolismo , Isoflavonas/química , Isoflavonas/metabolismo , Valor Nutritivo , Fenóis/metabolismo , Glycine max/metabolismo , Glycine max/microbiologia
19.
J Microbiol Methods ; 172: 105907, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32240706

RESUMO

Despite menaquinones (MKs)-4 and - 7 being known to have extensive biological activities and applications, less attention has been paid to the other MKs. Thus, to obtain a range of MKs to further explore their pharmacological activities, structure-activity relationships, and applications, a chemical screening method for MK-producing strains was established based on high-performance liquid chromatography-ultraviolet (HPLC-UV) technology. Considering that Bacillus strains have proven to be an important MK-producing bioresource, twenty-nine putative Bacillus isolates previously sought from a fermented soybean sample were used for the validation of the chemical screening method, which ultimately led to the discovery of sixteen MK-producing strains. Among them, Bacillus subtilis DC-1 presented excellent ability to produce MKs. Another, a purchased strain of B. amyloliquefaciens was discovered to be an MK-producing strain. These results indicated this screening method was simple and highly efficient for the discovery of MK-producing strains, especially those producing a range of MK structures.


Assuntos
Bacillus/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Programas de Rastreamento/métodos , Vitamina K 2/metabolismo , Bacillus/isolamento & purificação , Bacillus amyloliquefaciens/isolamento & purificação , Bacillus amyloliquefaciens/metabolismo , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Fermentação , Alimentos Fermentados/microbiologia , Glycine max
20.
J Agric Food Chem ; 68(46): 13168-13178, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32079403

RESUMO

We determined that consuming chungkookjang fermented by Bacillus subtilis (BS) or Bacillus amyloliquefaciens (BA) alleviated hyperglycemia in partially pancreatectomized (Px) rats, an Asian type 2 diabetic (T2D) animal model. Px rats had deteriorated glucose metabolism with decreased glucose-stimulated insulin secretion and insulin sensitivity. Insulin secretion capacity was improved in the ascending order of the Px-control, positive control (3 mg of metformin/kg of body weight), BS (4.5% BS diet), BA (4.5% BA diet), and normal-control (sham-operated rats). BA and BS increased ß-cell mass and decreased malondialdehyde contents and tumor necrosis factor α expression in the islets. BA increased hepatic peroxisome proliferator-activated receptor (PPAR)-α and PPAR-ß similar to the positive control. Bacillales, Lactobacillales, and Verrucomicrobiales (Akkermensia muciniphila) increased and Enterobacteriales decreased in the BA and BS compared to the Px-control. BA prevented the decrease in the villi area and the number of goblet cells in intestinal tissues. In conclusion, BA improved glucose regulation by potentiating insulin secretion and reducing insulin resistance while maintaining gut mucin contents by improving gut microbiota in lean T2D rats.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Microbioma Gastrointestinal , Glycine max/metabolismo , Hipoglicemiantes/metabolismo , Insulina/metabolismo , Isoflavonas/metabolismo , Proteínas de Soja/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Fermentação , Humanos , Secreção de Insulina , Masculino , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR beta/genética , PPAR beta/metabolismo , Ratos , Ratos Sprague-Dawley , Alimentos de Soja/análise , Alimentos de Soja/microbiologia , Glycine max/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA