Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Sci Rep ; 14(1): 19304, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164280

RESUMO

First time compared the different metals doped ZnS nanoparticles for antibacterial and liver cancer cell line. In this study, copper, aluminum and nickel doped ZnS NPs were synthesized via co-precipitation method. The XRD analysis was confirmed the presence of cubic crystal structure and crystallite size decreased from 6 to 3 nm with doping elements. While as SEM micro-grains were revealed slightly irregular and agglomerated morphology with the presence of dopant elements. The presence of different dopant elements such as Cu, Al and Ni in ZnS NPs was identified via EDX analysis. The FTIR results demonstrate various vibrational stretching and bending modes attached to the surface of ZnS nanomaterials. After that the well diffusion method was used to conduct in-vitro bioassays for evaluation of antibacterial and anticancer activities against E.coli and B.cereus, as well as HepG2 liver cancer cell line. Our findings unveil exceptional results with maximum inhibition zone of approximately 9 to 23 mm observed against E.coli and 12 to 27 mm against B.cereus, respectively. In addition, the significant reduction in cell viability was achieved against the HepG2 liver cancer cell line. These favorable results highlight the potential of Ni doped ZnS NPs for various biomedical applications. In future, the doped ZnS nanomaterials will be suitable for hyperthermia therapy and wound healing process.


Assuntos
Alumínio , Antibacterianos , Antineoplásicos , Cobre , Escherichia coli , Níquel , Sulfetos , Compostos de Zinco , Humanos , Níquel/química , Antibacterianos/farmacologia , Antibacterianos/química , Sulfetos/química , Sulfetos/farmacologia , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Alumínio/química , Compostos de Zinco/química , Escherichia coli/efeitos dos fármacos , Células Hep G2 , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanopartículas/química
2.
Foodborne Pathog Dis ; 21(7): 447-457, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985570

RESUMO

Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 µg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 µg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 µg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 µg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.


Assuntos
Monoterpenos Acíclicos , Bacillus cereus , Biofilmes , Monoterpenos Acíclicos/farmacologia , Anti-Infecciosos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/ultraestrutura , Esporos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oryza/microbiologia , Potenciais da Membrana/efeitos dos fármacos , Espaço Intracelular/enzimologia , Trifosfato de Adenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microscopia Eletrônica de Varredura , Microbiologia de Alimentos
3.
Sci Rep ; 14(1): 16590, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025896

RESUMO

Aflatoxins (AFs) are hazardous carcinogens and mutagens produced by some molds, particularly Aspergillus spp. Therefore, the purpose of this study was to isolate and identify endophytic bacteria, extract and characterize their bioactive metabolites, and evaluate their antifungal, antiaflatoxigenic, and cytotoxic efficacy against brine shrimp (Artemia salina) and hepatocellular carcinoma (HepG2). Among the 36 bacterial strains isolated, ten bacterial isolates showed high antifungal activity, and thus were identified using biochemical parameters and MALDI-TOF MS. Bioactive metabolites were extracted from two bacterial isolates, and studied for their antifungal activity. The bioactive metabolites (No. 4, and 5) extracted from Bacillus cereus DSM 31T DSM, exhibited strong antifungal capabilities, and generated volatile organic compounds (VOCs) and polyphenols. The major VOCs were butanoic acid, 2-methyl, and 9,12-Octadecadienoic acid (Z,Z) in extracts No. 4, and 5 respectively. Cinnamic acid and 3,4-dihydroxybenzoic acid were the most abundant phenolic acids in extracts No. 4, and 5 respectively. These bioactive metabolites had antifungal efficiency against A. flavus and caused morphological alterations in fungal conidiophores and conidiospores. Data also indicated that both extracts No. 4, and 5 reduced AFB1 production by 99.98%. On assessing the toxicity of bioactive metabolites on A. salina the IC50 recorded 275 and 300 µg/mL, for extracts No. 4, and 5 respectively. Meanwhile, the effect of these extracts on HepG2 revealed that the IC50 of extract No. 5 recorded 79.4 µg/mL, whereas No. 4 showed no cytotoxic activity. It could be concluded that bioactive metabolites derived from Bacillus species showed antifungal and anti-aflatoxigenic activities, indicating their potential use in food safety.


Assuntos
Antifúngicos , Artemia , Antifúngicos/farmacologia , Antifúngicos/química , Animais , Humanos , Artemia/efeitos dos fármacos , Células Hep G2 , Bacillus/metabolismo , Aflatoxinas/metabolismo , Aflatoxinas/toxicidade , Metabolismo Secundário , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/metabolismo , Testes de Sensibilidade Microbiana
4.
Environ Sci Pollut Res Int ; 31(27): 39714-39734, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831144

RESUMO

Bacillus genera, especially among rhizobacteria, are known for their ability to promote plant growth and their effectiveness in alleviating several stress conditions. This study aimed to utilize indigenous Bacillus cereus PM38 to degrade four organophosphate pesticides (OPs) such as chlorpyrifos (CP), profenofos (PF), monocrotophos (MCP), and dimethoate (DMT) to mitigate the adverse effects of these pesticides on cotton crop growth. Strain PM38 exhibited distinct characteristics that set it apart from other Bacillus species. These include the production of extracellular enzymes, hydrogen cyanide, exopolysaccharides, Indol-3-acetic acid (166.8 µg/mL), siderophores (47.3 µg/mL), 1-aminocyclopropane-1-carboxylate deaminase activity (32.4 µg/mL), and phosphorus solubilization (162.9 µg/mL), all observed at higher concentrations. This strain has also shown tolerance to salinity (1200 mM), drought (20% PEG-6000), and copper and cadmium (1200 mg/L). The amplification of multi-stress-responsive genes, such as acdS, ituC, czcD, nifH, sfp, and pqqE, further confirmed the plant growth regulation and abiotic stress tolerance capability in strain PM38. Following the high-performance liquid chromatography (HPLC) analysis, the results showed striking compatibility with the first kinetic model. Strain PM38 efficiently degraded CP (98.4%), PF (99.7%), MCP (100%), and DMT (95.5%) at a concentration of 300 ppm over 48 h at 35 °C under optimum pH conditions, showing high coefficients of determination (R2) of 0.974, 0.967, 0.992, and 0.972, respectively. The Fourier transform infrared spectroscopy (FTIR) analysis and the presence of opd, mpd, and opdA genes in the strain PM38 further supported the potential to degrade OPs. In addition, inoculating cotton seedlings with PM38 improved root length under stressful conditions. Inoculation of strain PM38 reduces stress by minimizing proline, thiobarbituric acid-reactive compounds, and electrolyte leakage. The strain PM38 has the potential to be a good multi-stress-tolerant option for a biological pest control agent capable of improving global food security and managing contaminated sites.


Assuntos
Bacillus cereus , Clorpirifos , Monocrotofós , Clorpirifos/metabolismo , Clorpirifos/toxicidade , Bacillus cereus/metabolismo , Monocrotofós/toxicidade , Dimetoato/toxicidade , Gossypium , Biodegradação Ambiental , Organotiofosfatos , Rizosfera , Fosforamidas
5.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930951

RESUMO

The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Muco , Peptídeos , Antibacterianos/farmacologia , Antibacterianos/química , Muco/química , Peptídeos/farmacologia , Peptídeos/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Animais , Propionibacterium acnes/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos
6.
J Agric Food Chem ; 72(23): 13228-13239, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38810088

RESUMO

Limited alliinase resources cause difficulties in the biosynthesis of thiosulfinates (e.g., allicin), restricting their applications in the agricultural and food industries. To effectively biosynthesize thiosulfinates, this study aimed to excavate bacterial alliinase resources and elucidate their catalytic properties. Two bacterial cystathionine ß-lyases (MetCs) possessing high alliinase activity (>60 U mg -1) toward L-(-)-alliin were identified from Allium sativum rhizosphere isolates. Metagenomic exploration revealed that cystathionine ß-lyase from Bacillus cereus (BcPatB) possessed high activity toward both L-(±)-alliin and L-(+)-alliin (208.6 and 225.1 U mg -1), respectively. Although these enzymes all preferred l-cysteine S-conjugate sulfoxides as substrates, BcPatB had a closer phylogenetic relationship with Allium alliinases and shared several similar features with A. sativum alliinase. Interestingly, the Trp30Ile31Ala32Asp33 Met34 motif in a cuspate loop of BcPatB, especially sites 31 and 32 at the top of the motif, was modeled to locate near the sulfoxide of L-(+)-alliin and is important for substrate stereospecificity. Moreover, the stereoselectivity and activity of mutants I31V and A32G were higher toward L-(+)-alliin than those of mutant I31L/D33E toward L-(-)-alliin. Using bacterial alliinases and chemically synthesized substrates, we obtained thiosulfinates with high antimicrobial and antinematode activities that could provide insights into the protection of crops and food.


Assuntos
Proteínas de Bactérias , Alho , Especificidade por Substrato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Alho/química , Alho/enzimologia , Alho/genética , Ácidos Sulfínicos/química , Ácidos Sulfínicos/metabolismo , Bacillus cereus/enzimologia , Bacillus cereus/genética , Bacillus cereus/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Filogenia , Estereoisomerismo , Sequência de Aminoácidos , Bactérias/enzimologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Cinética , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/química , Cisteína/análogos & derivados
7.
Sci Rep ; 14(1): 7755, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565929

RESUMO

Cellulose-degrading microorganisms hold immense significance in utilizing cellulose resources efficiently. The screening of natural cellulase bacteria and the optimization of fermentation conditions are the hot spots of research. This study meticulously screened cellulose-degrading bacteria from mixed soil samples adopting a multi-step approach, encompassing preliminary culture medium screening, Congo red medium-based re-screening, and quantification of cellulase activity across various strains. Particularly, three robust cellulase-producing strains were identified: A24 (MT740356.1 Brevibacillus borstelensis), A49 (MT740358.1 Bacillus cereus), and A61 (MT740357.1 Paenibacillus sp.). For subsequent cultivation experiments, the growth curves of the three obtained isolates were monitored diligently. Additionally, optimal CMCase production conditions were determined, keeping CMCase activity as a key metric, through a series of single-factor experiments: agitation speed, cultivation temperature, unit medium concentration, and inoculum volume. Maximum CMCase production was observed at 150 rpm/37 °C, doubling the unit medium addition, and a 5 mL inoculation volume. Further optimization was conducted using the selected isolate A49 employing response surface methodology. The software model recommended a 2.21fold unit medium addition, 36.11 °C temperature, and 4.91 mL inoculant volume for optimal CMCase production. Consequently, three parallel experiments were conducted based on predicted conditions consistently yielding an average CMCase production activity of 15.63 U/mL, closely aligning with the predicted value of 16.41 U/mL. These findings validated the reliability of the model and demonstrated the effectiveness of optimized CMCase production conditions for isolate A49.


Assuntos
Celulase , Paenibacillus , Bacillus cereus/metabolismo , Celulose/metabolismo , Reprodutibilidade dos Testes , Celulase/metabolismo , Paenibacillus/metabolismo , Fermentação
8.
Fitoterapia ; 175: 105949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583636

RESUMO

Aristolochia plants are emblematic from an ethnopharmacological viewpoint and are know to possess numerous biological properties, including antiseptic. However, the medicinal potential of these species is debatable because of their representative chemical constituents, aristolochic acids (AAs) and aristolactams (ALs), which are associated, for instance, with nephropathy and cancer. These contrasting issues have stimulated the development of approaches intended to detoxification of aristoloquiaceous biomasses, among which is included the bioconversion method using larvae of the specialist phytophagous insect Battus polydamas, previously shown to be viable for chemical diversification and to reduce toxicity. Thus, eleven Aristolochia spp. were bioconverted, and the antimicrobial activities of the plant methanolic extracts and its respective bioconversion products were evaluated. The best results were found for Aristolochia esperanzae, Aristolochia gibertii, and Aristolochia ringens against Bacillus cereus, with MIC ranging from 7.8 to 31.25 µg/mL. These three species were selected for chemical, antioxidant, cytotoxic, hemolytic, and mutagenic analyses. Chemical analysis revealed 65 compounds, 21 of them possible bioconversion products. The extracts showed potential to inhibit the formation and degradation of B. cereus biofilms. Extracts of A. gibertii and its bioconverted biomass showed antioxidant activity comparable to dibutylhydroxytoluene (BHT) standard. Bioconversion decreased the hemolytic activity of A. esperanzae and the cytotoxicities of A. esperanzae and A. gibertii. None of the extracts was found to be mutagenic. The bioactivities of the fecal extracts were maintained, and biocompatibility was improved. Therefore, the results obtained in this study reveal positive expectations about the natural detoxification process of the Aristolochia species.


Assuntos
Aristolochia , Extratos Vegetais , Aristolochia/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Testes de Sensibilidade Microbiana , Humanos , Antioxidantes/farmacologia , Bacillus cereus/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Mariposas/efeitos dos fármacos
9.
Phytochemistry ; 222: 114078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574958

RESUMO

Six undescribed infrequent eremophilane derivatives including diaportheremopholins A - F and its previously undescribed side chain (E)-2-methyloct-2-enoic acid, together with three known compounds (testacein, xestodecalactones B and C), were isolated from the endophytic fungus Diaporthe sp. BCC69512. The chemical structures were determined based on NMR spectroscopic information in conjunction with the evidence from NOESY spectrum, Mosher's application, and chemical reactions for corroborating the absolute configurations. The isolated compounds were evaluated for biological properties such as antimalarial, anti-TB, anti-phytopathogenic fungal, antibacterial activities and for cytotoxicity against malignant (MCF-7 and NCI-H187) and non-malignant (Vero) cells. Diaportheremopholins B (2) and E (5) possessed broad antimicrobial activity against Mycobacterium tuberculosis, Bacillus cereus, Alternaria brassicicola and Colletotrichum acutatum with MICs in a range of 25.0-50.0 µg/mL. Testacein (7) exhibited strong anti-A. brassicicola and anti-C. acutatum activities with equal MIC values of 3.13 µg/mL. Moreover, diaportheremopholin F (6) and compound 8 displayed antitubercular activity with equal MIC values of 50.0 µg/mL. All tested compounds were non-cytotoxic against MCF-7, NCI-H187, and Vero cells, except those compounds 2 and 5-7 exhibited weak cytotoxicity against both malignant and non-malignant cells with IC50 values in a range of 15.5-115.5 µM.


Assuntos
Alternaria , Ascomicetos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Humanos , Ascomicetos/química , Chlorocebus aethiops , Alternaria/química , Células Vero , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Animais , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Colletotrichum/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Relação Estrutura-Atividade , Células MCF-7 , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Relação Dose-Resposta a Droga
10.
Environ Sci Pollut Res Int ; 31(22): 32225-32245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644425

RESUMO

The ubiquitous proximity of the commonly used microplastic (MP) particles particularly polyethylene (PE), polypropylene (PP), and polystyrene (PS) poses a serious threat to the environment and human health globally. Biological treatment as an environment-friendly approach to counter MP pollution has recent interest when the bio-agent has beneficial functions in their ecosystem. This study aimed to utilize beneficial floc-forming bacteria Bacillus cereus SHBF2 isolated from an aquaculture farm in reducing the MP particles (PE, PP, and PS) from their environment. The bacteria were inoculated for 60 days in a medium containing MP particle as a sole carbon source. On different days of incubation (DOI), the bacterial growth analysis was monitored and the MP particles were harvested to examine their weight loss, surface changes, and alterations in chemical properties. After 60 DOI, the highest weight loss was recorded for PE, 6.87 ± 0.92%, which was further evaluated to daily reduction rate (k), 0.00118 day-1, and half-life (t1/2), 605.08 ± 138.52 days. The OD value (1.74 ± 0.008 Abs.) indicated the higher efficiency of bacteria for PP utilization, and so for the colony formation per define volume (1.04 × 1011 CFU/mL). Biofilm formation, erosions, cracks, and fragments were evident during the observation of the tested MPs using the scanning electron microscope (SEM). The formation of carbonyl and alcohol group due to the oxidation and hydrolysis by SHBF2 strain were confirmed using the Fourier transform infrared spectroscopic (FTIR) analysis. Additionally, the alterations of pH and CO2 evolution from each of the MP type ensures the bacterial activity and mineralization of the MP particles. The findings of this study have confirmed and indicated a higher degree of biodegradation for all of the selected MP particles. B. cereus SHBF2, the floc-forming bacteria used in aquaculture, has demonstrated a great potential for use as an efficient MP-degrading bacterium in the biofloc farming system in the near future to guarantee a sustainable green aquaculture production.


Assuntos
Bacillus cereus , Biodegradação Ambiental , Microplásticos , Polietileno , Polipropilenos , Poliestirenos , Bacillus cereus/metabolismo , Aquicultura , Poluentes Químicos da Água/metabolismo
11.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611747

RESUMO

In this study, the effect of various immobilization methods on the biochemical properties of phospholipase C (PLC) from Bacillus cereus obtained from the oily soil located in Sfax, Tunisia, was described. Different supports were checked: octyl sepharose, glyoxyl agarose in the presence of N-acetyl cysteine, and Q-sepharose. In the immobilization by hydrophobic adsorption, a hyperactivation of the PLCBc was obtained with a fold of around 2 times. The recovery activity after immobilization on Q-sepharose and glyoxyl agarose in the presence of N-acetyl cysteine was 80% and 58%, respectively. Furthermore, the biochemical characterization showed an important improvement in the three immobilized enzymes. The performance of the various immobilized PLCBc was compared with the soluble enzyme. The derivatives acquired using Q-sepharose, octyl sepharose, and glyoxyl agarose were stable at 50 °C, 60 °C, and 70 °C. Nevertheless, the three derivatives were more stable in a large range of pH than the soluble enzyme. The three derivatives and the free enzyme were stable in 50% (v/v) ethanol, hexane, methanol, and acetone. The glyoxyl agarose derivative showed high long-term storage at 4 °C, with an activity of 60% after 19 days. These results suggest the sustainable biotechnological application of the developed immobilized enzyme.


Assuntos
Acetilcisteína , Bacillus cereus , Glioxilatos , Sefarose , Enzimas Imobilizadas , Fosfolipases Tipo C
12.
Nat Struct Mol Biol ; 31(8): 1243-1250, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627580

RESUMO

As one of the most prevalent anti-phage defense systems in prokaryotes, Gabija consists of a Gabija protein A (GajA) and a Gabija protein B (GajB). The assembly and function of the Gabija system remain unclear. Here we present cryo-EM structures of Bacillus cereus GajA and GajAB complex, revealing tetrameric and octameric assemblies, respectively. In the center of the complex, GajA assembles into a tetramer, which recruits two sets of GajB dimer at opposite sides of the complex, resulting in a 4:4 GajAB supramolecular complex for anti-phage defense. Further biochemical analysis showed that GajA alone is sufficient to cut double-stranded DNA and plasmid DNA, which can be inhibited by ATP. Unexpectedly, the GajAB displays enhanced activity for plasmid DNA, suggesting a role of substrate selection by GajB. Together, our study defines a framework for understanding anti-phage immune defense by the GajAB complex.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Microscopia Crioeletrônica , Modelos Moleculares , Bacillus cereus/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Multimerização Proteica , Plasmídeos/metabolismo , Plasmídeos/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química
13.
Nature ; 629(8011): 467-473, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471529

RESUMO

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Bacteriófagos , Microscopia Crioeletrônica , Imunidade Inata , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Apoproteínas/química , Apoproteínas/imunologia , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/imunologia , DNA/metabolismo , DNA/química , Clivagem do DNA , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Viabilidade Microbiana , Bacillus cereus/química , Bacillus cereus/imunologia , Bacillus cereus/metabolismo , Bacillus cereus/ultraestrutura , Estrutura Quaternária de Proteína , DNA Primase/química , DNA Primase/metabolismo , DNA Primase/ultraestrutura , DNA Topoisomerases/química , DNA Topoisomerases/metabolismo , DNA Topoisomerases/ultraestrutura
14.
Prep Biochem Biotechnol ; 54(7): 982-1000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38349742

RESUMO

Terminalia bellirica (T. bellirica) (Gaertn.) Roxb. is a well-known traditional medicinal plants that show promising treatment because of fewer side effects in humans. In the present study, the total phenol, flavonoid, condensed and hydrolyzable tannins extracted and analyzed from cold macerated (CM) T. bellirica (Gaertn.) Roxb. fruit (TBF) and leaves (TBL) extract with the identification of bioactive compounds using GC-MS/MS technique. The highest amount of bioactive content was found in ethanolic extract than toluene. Current experimental data of TBF extract shows the maximum and significant biological activity like free radical scavenging activity against DPPH and FRAP assays with IC50 values of 51.07 ± 0.52 µg/ml and 63.14 ± 0.59 µg/ml respectively. However, IC50 cytotoxicity values of TBF extract on MCF-7 cells for 24 hrs was found to be 6.34 ± 0.72 µg/ml. Minimum inhibitory concentration (MIC) for infectious pathogens Escherichia coli and Bacillus cereus was >12.5 µg/ml and >100 µg/ml respectively, however, anti-inflammatory activity was demonstrated as an IC50 value of 509.1 ± 1.72 µg/ml. Cold macerated fruit extract revealed threatening inhibitory potential against the α-amylase and α-glucosidase enzymes, with IC50 of 50.98 ± 0.23 µg/ml and 46.70 ± 1.38 µg/ml respectively. Finally, the outcome of this study showed that T. bellirica (Gaertn.) Roxb. fruit extract could be an effective source of bioactives with efficient biomedical properties.


Assuntos
Frutas , Extratos Vegetais , Terminalia , Terminalia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Frutas/química , Humanos , Células MCF-7 , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/química , Folhas de Planta/química , Temperatura Baixa
15.
Ecotoxicol Environ Saf ; 272: 116012, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290308

RESUMO

Heavy metal pollution of agricultural soils, especially from cadmium (Cd) contaminationcaused serious problems in both food security and economy. Sorghum bicolor (L.) showed a great potential in phytoremediation of Cd contamination due to its fast growth, high yield and easy harvesting. However, the growth of S. bicolor plants tends to be inhibited under Cd exposure, which limited its application for Cd remediation. Plant growth-promoting rhizobacteria may enhance the Cd resistance of S. bicolor and thus improve its Cd removal efficiency. In this study, three Cd-resistant bacteria were screened based on Cd and acid tolerance and identified as Bacillus velezensis QZG6, Enterobacter cloacae QZS3 and Bacillus cereus QZS8, by 16S rRNA sequencing. Inoculation of hydroponic plants with strains QZG6, QZS3 or QZS8 significantly promoted the biomass of sorghum plants by 31.52%, 50.20% and 26.93%, respectively, compared with those of uninoculated plants under Cd exposure. The activity of SOD, POD and MDA content in Cd-stressed S. bicolor plants were reduced of 65.74%, 31.52%, and 80.91%, respectively, when inoculated with the strains QZS3. For pot experiment, strains QZG6, QZS3 and QZS8 significantly promoted the biomass of sorghum plants by 47.30%, 19.27% and 58.47%, compared with those of uninoculated plants under Cd exposure. The activity of SOD, POD and MDA content in Cd-stressed S. bicolor plants were reduced of 67.20%, 22.40%, and 40.65%, respectively, when inoculated with the strains QZS3. All these three strains significantly increased the Cd removal efficiency of the plants by 42.16% (QZG6), 18.76% (QZS3) and 21.06% (QZS8). To investigate the bacterial characteristics associated with growth promotion of S. bicolor plants, the ability on nitrogen fixation, phosphorus solubilization, siderophores production, and phytohormones production were determined. All the strains were able to fix nitrogen. Phosphorus release was observed for strains QZG6 (inorganic or organic phosphorus) and QZS3 (inorganic phosphorus). Both QZG6 and QZS8 were able to produce siderophores, while only QZG6 was positive for ACC deaminase. All the strains produced IAA, SA and GA. These results indicated that the three strains promoted the plant growth under Cd stress, probably through Cd detoxification by siderophores, as well as through growth regulation by N/P nutrient supply and phytohormone. The present study showed a great potential of the three Cd-resistant strains combined with S. bicolor plants in the remediation of Cd-polluted soils, which may provide a new insight into combining the advantages of microbes and plants to improve the remediation of Cd-contaminated soils.


Assuntos
Poluentes do Solo , Sorghum , Cádmio/toxicidade , Cádmio/análise , Sorghum/genética , RNA Ribossômico 16S/genética , Reguladores de Crescimento de Plantas , Biodegradação Ambiental , Solo , Bacillus cereus , Sideróforos , Fósforo , Superóxido Dismutase , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
16.
Sci Total Environ ; 918: 170499, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38296101

RESUMO

Polypropylene based medical devices significantly increased production and usage in COVID-19 pandemic states, and this material is very resilient in the environment. Thus, more than ever, rapid action is needed to reduce this pollution. This study focuses on the degradation of polypropylene microplastics (PP MPs) by unique marine bacterial strains obtained from the Thoundi (Bacillus tropicus, Bacillus cereus, Stenotrophomonas acidaminiphila, and Brucella pseudintermedia) and Rameshwaram coasts (Bacillus cereus). Those above five bacterial strains were chosen after preliminary screening of their hydrophobicity, biofilm-forming capabilities, and responsiveness to the zone of clearance technique. During the biodegradation process (28 days), the growth, metabolic activity, and viability of these five isolates were all raised. After the post-biodegradation process, the weight loss percentages of the mentioned bacterial strains treated with PP MPs gradually decreased, with values of 51.5 ± 0.5 %, 47.5 ± 0.5 %, 33 ± 1 %, 28.5 ± 0.5 and 35.5 ± 0.5 %, respectively. UV-Vis DRS and SEM analysis confirmed that bacterial strains adhering to MPs cause cracks and cavities on their surface. The degradation of PP MPs can be inferred from alterations in the FT-IR spectrum, specifically in the carbonyl group range of 1100-1700 cm-1, as well as changes in the 1H NMR spectrum, including chemical shift and proton peak pattern alterations. Bacterial strains facilitated the degradation of PP MPs through the secretion of hydrolase-categorized enzymes of protease, lipase, and esterase. The findings of this study indicate that marine bacteria may possess distinctive characteristics that facilitate the degradation of plastic waste and contribute to environmental conservation.


Assuntos
Polipropilenos , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Pandemias , Biodegradação Ambiental , Bacillus cereus/metabolismo , Poluentes Químicos da Água/análise
17.
World J Microbiol Biotechnol ; 40(2): 58, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165488

RESUMO

Bacillus biocontrol agent(s) BCA(s) such as Bacillus cereus, Bacillus thuringiensis and Bacillus subtilis have been widely applied to control insects' pests of plants and pathogenic microbes, improve plant growth, and facilitate their resistance to environmental stresses. In the last decade, researchers have shown that, the application of Bacillus biocontrol agent(s) BCA(s) optimized agricultural production yield, and reduced disease risks in some crops. However, these bacteria encountered various abiotic stresses, among which ultraviolet (UV) radiation severely decrease their efficiency. Researchers have identified several strategies by which Bacillus biocontrol agents resist the negative effects of UV radiation, including transcriptional response, UV mutagenesis, biochemical and artificial means (addition of protective agents). These strategies are governed by distinct pathways, triggered by UV radiation. Herein, the impact of UV radiation on Bacillus biocontrol agent(s) BCA(s) and their mechanisms of resistance were discussed.


Assuntos
Bacillus thuringiensis , Bacillus , Raios Ultravioleta , Bacillus cereus , Bacillus subtilis
18.
Parasitol Res ; 123(1): 72, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38148420

RESUMO

Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 µL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.


Assuntos
Probióticos , Esquistossomose mansoni , Esquistossomose , Feminino , Animais , Camundongos , Esquistossomose mansoni/parasitologia , Bacillus cereus , Schistosoma mansoni , Esquistossomose/parasitologia , Fígado/parasitologia
19.
Braz. j. biol ; 83: 1-9, 2023. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468915

RESUMO

Many soil microorganisms' i.e., bacteria and fungi produce secondary metabolites called antibiotics. These are used for the treatment of some of the bacterial, fungal and protozoal diseases of humans. There is a need for isolation of a broad spectrum of antibiotics from microorganisms due to the emergence of antibiotic resistance. In the present study two antibiotic producing bacteria Klebsiella pneumoniae and Bacillus cereus were isolated from pharmaceutical and poultry feed industry of Hattar, Haripur Pakistan. Total 10 waste samples were collected from different industries (Marble, Ghee, Soap, Mineral, Steel, Poultry Feed, Pharmaceutical, Qarshi, Cosmetic and Glass). Thirty-three bacterial strains were isolated from industrial wastes of these ten different industries. Fourteen out of thirty-three bacterial strains exhibited antimicrobial activities against at least one of the test microbes considered in this study including Escherchia coli, Staphylococcus aureus and Salmonella typhi. The bacteria were isolated by standard serial dilution spread plate technique. Morphological characterization of the isolates was done by Gram staining. Nine bacterial isolates out of fourteen were initially identified as B. cereus and five as K. pneumoniae through biochemical characterization. The antibacterial activities were tested by well diffusion method. Maximum number of antibiotic producing bacteria were isolated from pharmaceutical and poultry feed industry based on the results of primary screening, the most potential isolates S9, S19, S20, S22 and S23 were selected for secondary screening. The maximum activity against E. coli and S. aureus was recorded by bacterial isolate S19 i.e zones of inhibition of 6.5mm and 9mm while S20 showed 7.5mm and 6mm zones respectively. Molecular identification was carried out on the basis of 16S rRNA sequence [...].


Muitos microrganismos do solo, ou seja, bactérias e fungos produzem metabólitos secundários chamados antibióticos. Eles são usados para tratamento de algumas doenças bacterianas, fúngicas e protozoárias em humanos. Há necessidade de isolamento de um amplo espectro de antibióticos de microrganismos devido ao surgimento de resistência aos antibióticos. No presente estudo, duas bactérias produtoras de antibióticos, Klebsiella pneumoniae e Bacillus cereus, foram isoladas da indústria farmacêutica e de ração avícola de Hattar, Haripur, Paquistão. Um total de 10 amostras de resíduos foi coletado de diferentes indústrias (mármore, ghee, sabão, mineral, aço, ração para aves, farmacêutica, Qarshi, cosmética e vidro). Trinta e três cepas bacterianas foram isoladas de resíduos industriais dessas dez diferentes indústrias. Quatorze das 33 cepas bacterianas exibiram atividades antimicrobianas contra pelo menos um dos micróbios de teste considerados neste estudo, incluindo Escherchia coli, Staphylococcus aureus e Salmonella typhi. As bactérias foram isoladas pela técnica de placa de diluição em série padrão. A caracterização morfológica dos isolados foi feita por coloração de gram. Nove isolados bacterianos de 14 foram inicialmente identificados como B. cereus e cinco como K. pneumoniae por meio de caracterização bioquímica. As atividades antibacterianas foram testadas pelo método de difusão em poço. O número máximo de bactérias produtoras de antibióticos foi isolado da indústria farmacêutica e de ração avícola com base nos resultados da triagem primária, os isolados mais potenciais S9, S19, S20, S22 e S23 foram selecionados para a triagem secundária. A atividade máxima contra E. coli e S. aureus foi registrada pelo isolado bacteriano S19, ou seja, zonas de inibição de 6,5 mm e 9 mm, enquanto S20 mostrou zonas de 7,5 mm e 6 mm, respectivamente. A identificação molecular foi realizada com base na análise da sequência 16S [...].


Assuntos
Antibacterianos/síntese química , Bacillus cereus/isolamento & purificação , Klebsiella/isolamento & purificação , Ração Animal/análise , Resíduos Industriais/análise
20.
Biosci. j. (Online) ; 38: e38088, Jan.-Dec. 2022. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1397494

RESUMO

Riboflavin is an essential, water-soluble vitamin (B2) and a component of basic cellular metabolism. The aim of the present study is to isolate and characterize riboflavin producing bacteria from different food sources. Ten different riboflavin enriched food sources were collected from Vellore district. Totally 72 bacterial strains were isolated and cultured on nutrient agar plates. Out of these, 43 strains were identified as riboflavin producers. Isolated bacterial strains HDS27, HDS07, HDS14, HDS18, HDS38 and HDS54 isolated from milk, mushroom, spinach, lamb kidney, beef liver and mackerel fish were found to be potent riboflavin producers. Based on morphological, biochemical and molecular characterization, the potent strains were identified as Lactobacillus plantarum (HDS27), Bacillus cereus (HDS07), Delftia tsuruhatensis (HDS14), Citrobacter freundii (HDS18), Enterobacter cloacae (HDS38) and Bacillus cereus (HDS54). The selected potent isolates HDS27 from milk and HDS07 from mushroom showed a maximum riboflavin production of 3.69 mg/L and 2.9mg/L respectively. The present study explores the riboflavin producing novel bacteria from different food sources. This is the first report that the Enterobacter cloacae isolated from beef liver, Delftia tsuruhatensis from spinach and Citrobacter freundii from lamb kidney has the ability to produce riboflavin. These potent strains could be a better starter for substituting the conventional bacteria for large scale production of riboflavin in industry.


Assuntos
Riboflavina , Bacillus cereus , Citrobacter freundii , Lactobacillus plantarum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA