Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Sep Sci ; 47(19): e202400325, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39375897

RESUMO

The present study aimed at synthesizing fatty acid methyl esters in a combined enzymatic method by applying degumming and transesterification of soybean oil. A soluble lipase from Serratia sp. W3 and a recombinant phosphatidylcholine-preferring phospholipase C (PC-PLC) from Bacillus thuringiensis were used in a consecutive manner for phosphorus removal and conversion into methyl esters. By applying 1% of recombinant PC-PLC almost 83% of phosphorus was removed (final content of 21.01 mg/kg). Moreover, a sensitive and selective high-performance liquid chromatography method coupled to tandem mass spectrometry was applied to obtain a comprehensive lipid profile for the simultaneous evaluation of phospholipids removal and diacylglycerol (DAG) increase. A significant increase for all the monitored DAG species, up to 138.42%, was observed by using the enzymatic degumming, in comparison to the crude sample, resulting in an increased oil yield. Serratia sp. W3 lipase was identified as a suitable biocatalyst for biodiesel production, converting efficiently the acylglycerols. The results regarding the physical-chemical characteristics show that the cetane level, density and pour point of the obtained biodiesel are close to current regulation requirements. These findings highlight the potential of a two-step process implementation, based on the combination of lipase and phospholipase, as a suitable alternative for biodiesel production.


Assuntos
Biocombustíveis , Lipase , Serratia , Óleo de Soja , Lipase/metabolismo , Lipase/química , Biocombustíveis/análise , Serratia/enzimologia , Serratia/metabolismo , Serratia/química , Óleo de Soja/química , Óleo de Soja/metabolismo , Esterificação , Cromatografia Líquida de Alta Pressão , Bacillus thuringiensis/enzimologia , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Fosfolipases/metabolismo , Fosfolipases/química , Espectrometria de Massas em Tandem
2.
J Agric Food Chem ; 72(36): 19689-19698, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39189874

RESUMO

Synergistic factors can enhance the toxicity of Bt toxins and delay the development of Bt resistance. Previous research has demonstrated that a Helicoverpa armigera cadherin fragment (HaCad-TBR) increased the toxicity of Cry1Ac in Plutella xylostella larvae but did not have a synergistic effect on Cry1B, Cry1C, and Cry1F toxins. In this study, a fusion protein (HaCad-TBR-2D3 VL) derived from HaCad-TBR and a Bt Cry1-specific antibody peptide was expressed in Escherichia coli. The HaCad-TBR-2D3 VL enhanced Cry1Ac toxicity more efficiently in insects and Sf9 cells than HaCad-TBR and also significantly increased the toxicity of Cry1B, Cry1C, and Cry1F toxins in insects. Further investigation indicated that the improved stability in insect midguts and higher binding capacity with Bt toxins contributed to the enhanced synergism of HaCad-TBR-2D3 VL over HaCad-TBR. This study suggested that Bt antibody fragments can potentially broaden the synergistic range of Bt receptor fragments, providing a theoretical foundation for developing broad-spectrum synergists for other biopesticides.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Caderinas , Endotoxinas , Proteínas Hemolisinas , Proteínas de Insetos , Larva , Mariposas , Proteínas Recombinantes de Fusão , Animais , Caderinas/genética , Caderinas/metabolismo , Caderinas/imunologia , Caderinas/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/genética , Endotoxinas/imunologia , Endotoxinas/química , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Endotoxinas/genética , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/farmacologia , Mariposas/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Insetos/imunologia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Peptídeos/química , Peptídeos/imunologia , Peptídeos/farmacologia , Anticorpos/imunologia , Anticorpos/química , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inseticidas/química , Inseticidas/farmacologia , Controle Biológico de Vetores
3.
J Agric Food Chem ; 72(33): 18708-18719, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106049

RESUMO

The extensive use of Bacillus thuringiensis (Bt) in pest management has driven the evolution of pest resistance to Bt toxins, particularly Cry1Ac. Effective management of Bt resistance necessitates a good understanding of which pest proteins interact with Bt toxins. In this study, we screened a Helicoverpa armigera larval midgut cDNA library and captured 208 potential Cry1Ac-interacting proteins. Among these, we further examined the interaction between Cry1Ac and a previously unknown Cry1Ac-interacting protein, HaDALP (H. armigera death-associated LIM-only protein), as well as its role in toxicology. The results revealed that HaDALP specifically binds to both the Cry1Ac protoxin and activated toxin, significantly enhancing cell and larval tolerance to Cry1Ac. Additionally, HaDALP was overexpressed in a Cry1Ac-resistant H. armigera strain. These findings reveal a greater number of Cry1Ac-interacting proteins than previously known and demonstrate, for the first time, that HaDALP reduces Cry1Ac toxicity by sequestering both the protoxin and activated toxin.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Proteínas de Insetos , Inseticidas , Larva , Mariposas , Animais , Toxinas de Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/toxicidade , Toxinas de Bacillus thuringiensis/química , Endotoxinas/metabolismo , Endotoxinas/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/genética , Mariposas/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/genética , Inseticidas/toxicidade , Inseticidas/farmacologia , Inseticidas/química , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Resistência a Inseticidas/genética , Controle Biológico de Vetores , Helicoverpa armigera
4.
Proteins ; 91(11): 1487-1495, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37401522

RESUMO

Parasporins of Bacillus thuringiensis (Bt) exhibit specific toxicity to cancer cells. PCR based mining has identified apoptosis inducing parasporin in KAU41 Bt isolate from the Western Ghats of India. The study aimed to clone and overexpress the parasporin of native KAU41 Bt isolate for determining structural and functional characteristics of the protein. Parasporin gene was cloned in pGEM-T, sequenced, sub-cloned in pET30+ and overexpressed in Escherichia coli. The expressed protein was characterized by SDS-PAGE and in silico methods. Cytotoxicity of cleaved peptide was assessed by MTT assay. SDS-PAGE displayed a 31 kDa protein (rp-KAU41) overexpressed. Upon proteinase K digestion, the protein was cleaved into 29 kDa peptide which was found to be cytotoxic to HeLa cells. The protein has a deduced sequence of 267 amino acids with ß-strands folding pattern of crystal protein. Even though rp-KAU41 shared a 99.15% identity to chain-A of non-toxic crystal protein, it only showed a less similarity to the existing parasporins like PS4 (38%) and PS5 (24%) in UPGMA analysis, emphasizing the novelty of rp-KAU41. The protein is predicted to have more similarity to the pore forming toxins of Aerolysin superfamily and an additional loop in rp-KAU41 may be contributing towards its cytotoxicity. The molecular docking with caspase 3 resulted in higher Z dock and Z rank score substantiating its role in the activation of intrinsic pathway of apoptosis. The recombinant parasporin protein, rp-KAU41 is presumed to belong to the Aerolysin superfamily. An interaction with caspase 3 substantiates its role in activating the intrinsic pathway of apoptosis in cancer cells.


Assuntos
Bacillus thuringiensis , Humanos , Células HeLa , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Caspase 3/metabolismo , Simulação de Acoplamento Molecular , Endotoxinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Peptídeos/metabolismo , Proteínas de Bactérias/química
5.
Exp Parasitol ; 249: 108522, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011803

RESUMO

The GP526 strain of Bacillus thuringiensis has been referred as an in vitro helminthicide on various stages of Dipylidium caninum and Centrocestus formosanus. Our study addresses the in vitro ovicidal activity of GP526 strain spore-crystal complex on Taenia pisiformis eggs, evaluating induced damage microscopically. The eggs exposed to the total extract containing spores and crystals show damage after 24 hours, with loss of integrity on the eggshell, and an ovicidal activity of 33% at 1mg/ml. The destruction of the embryophore was observed after 120 h with a 72% of ovicidal activity at 1 mg/ml. The LC50 was 609.6 µg/ml, dose that causes a 50% of lethality on the hexacanth embryo, altering the oncosphere membrane. The spore-crystal proteins were extracted, and the protein profile was obtained by electrophoresis, finding a major band of 100 kDa suggestive of an S-layer protein, since an S-layer was immunodetected in both, spores and extracted proteins. The protein fraction containing the S-layer protein presents adhesion to the T. pisiformis eggs, and 0.4 mg/ml of the protein induces a lethality of 21.08% at 24 h. The characterization of molecular mechanisms of ovicidal activity will be an important contribution, so the characterization of the proteins that make up the extract of the GP526 strain, would be useful to support the biological potential for control of this cestodiasis and other parasitosis. B. thuringiensis is shown as a potent helminthicide on eggs, with useful potential for biological control of this cestodiasis.


Assuntos
Bacillus thuringiensis , Infecções por Cestoides , Animais , Bacillus thuringiensis/química , Cysticercus/metabolismo , Proteínas de Bactérias/metabolismo
6.
Int J Biol Macromol ; 213: 871-879, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35690160

RESUMO

Bacillus thuringiensis Cry and Vip proteins are highly effective at controlling agricultural pests and could be used in pyramided transgenic crops. However, the molecular mechanism underlying the Cry1Ah and Vip3Aa19 synergistic interaction has never been investigated at the molecular level in Yellow peach moth (YPM) Conogethes punctiferalis. Binding affinity and synergism of Cry1Ah and Vip3Aa19 proteins with ABC transporter subfamily C receptors ABCC1, ABCC2 and ABCC3 proteins from the midgut of YPM larva by using surface plasmon resonance (SPR) and pull-down assays. Both assays revealed that Cry1Ah could interact with ABCC1, ABCC2, and ABCC3, whereas Vip3Aa19 only interacts with ABCC1 and ABCC3, but not with ABCC2. Hence, when compared to the Vip3Aa19 protein, Cry1Ah had a higher binding affinity for ABCC1, ABCC2, and ABCC3. Furthermore, competitive binding assay between Cry1Ah and Vip3Aa19 protein with ABC transporter subfamily C receptors resulted in the final eluted protein samples displaying vibrant blue bands of Cry1Ah and very faint bands of Vip3Aa19. Suggesting that Cry and Vip proteins could deliver a synergistic effect after cleaving the midgut proteases. Therefore, this finding indicated that the Cry1Ah and Vip3Aa19 do not compete for interacting with midgut receptors and thus provide strong synergism against YPM.


Assuntos
Bacillus thuringiensis , Mariposas , Trifosfato de Adenosina/metabolismo , Animais , Bacillus thuringiensis/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Larva/metabolismo , Mariposas/metabolismo
7.
Biochemistry ; 61(9): 752-766, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35438971

RESUMO

The G-protein-coupled receptor BT-R1 in the moth Manduca sexta represents a class of single-membrane-spanning α-helical proteins within the cadherin family that regulate intercellular adhesion and contribute to important signaling activities that control cellular homeostasis. The Cry1A toxins, Cry1Aa, Cry1Ab, and Cry1Ac, produced by Bacillus thuringiensis bind BT-R1 very tightly (Kd = 1.1 nM) and trigger a Mg2+-dependent signaling pathway that involves the stimulation of G-protein α-subunit, which subsequently launches a coordinated signaling cascade, resulting in insect death. The three Cry1A toxins compete for the same binding site on BT-R1, and the pattern of inhibition of insecticidal activity against M. sexta is strikingly similar for all three toxins. The binding domain is localized in the 12th cadherin repeat (EC12: Asp1349 to Arg1460, 1349DR1460) in BT-R1 and to various truncation fragments derived therefrom. Fine mapping of EC12 revealed that the smallest fragment capable of binding is a highly conserved 94-amino acid polypeptide bounded by Ile1363 and Ser1456 (1363IS1456), designated as the toxin-binding site (TBS). Logistical regression analysis revealed that binding of an EC12 truncation fragment containing the TBS is antagonistic to each of the Cry1A toxins and completely inhibits the insecticidal activity of all three. Elucidation of the EC12 motif of the TBS by X-ray crystallography at a 1.9 Å resolution combined with results of competitive binding analyses, live cell experiments, and whole insect bioassays substantiate the exclusive involvement of BT-R1 in initiating insect cell death and demonstrate that the natural receptor BT-R1 contains a single TBS.


Assuntos
Bacillus thuringiensis , Inseticidas , Manduca , Animais , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Sítios de Ligação , Caderinas/metabolismo , Endotoxinas , Proteínas Hemolisinas/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Inseticidas/farmacologia , Larva/metabolismo , Manduca/metabolismo , Receptores de Superfície Celular/química , Receptores Acoplados a Proteínas G/metabolismo
8.
Biochimie ; 192: 83-90, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34653542

RESUMO

Bacillus thuringiensis (Bt) is a ubiquitous bacterium that produces several proteins that are toxic to different invertebrates such as insects, nematodes, mites, and also some protozoans. Among these, Cry and Cyt proteins are most explored as biopesticides for their action against agricultural pests and vectors of human diseases. In 2000, a group of researchers from Japan isolated parasporal inclusion proteins from B. thuringiensis, and reported their cytotoxic action against human leukemia. Later, other proteins with similar antitumor properties were also isolated from this bacterium and these cytotoxic proteins with specific activity against human cancer cells were named parasporins. At present, nineteen different parasporins are registered and classified in six families. These parasporins have been described to have specific in vitro antitumor activity against several cancer cell lines. The antitumor activity makes parasporins possible candidates as anticancer agents. Various research groups around the world are involved in isolating and characterizing in vitro antitumor activity of these proteins and many articles reporting such activities in detail have been published. However, there are virtually no data regarding the antitumor activity of parasporins in vivo. This review summarizes the properties of these potentially useful antitumor agents of natural origin, focusing on their in vivo activity thus also highlighting the importance of testing these proteins in animal models for a possible application in clinical oncology.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias , Citotoxinas , Endotoxinas , Corpos de Inclusão Intranuclear/química , Leucemia/tratamento farmacológico , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/uso terapêutico , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/uso terapêutico , Endotoxinas/química , Endotoxinas/uso terapêutico , Humanos , Leucemia/metabolismo , Controle Biológico de Vetores
9.
Arch Biochem Biophys ; 704: 108891, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901485

RESUMO

A few Bacillus thuringiensis Cry proteins, known as parasporins, have demonstrated cell proliferation inhibition of human cancer cells in vitro after protease activation. In this work, eight peptides derived from the Cry11Bb protoxin produced by B. thuringiensis subsp. medellin were selected and evaluated to investigate their membrane permeabilization and cytolytic activities, using red blood cells and cancer cell lines A549, MCF-7 and Caco-2, respectively. The most active peptides permeabilized red blood cells in a membrane potential-dependent manner. Half maximal inhibitory concentration in cancer cells was in the range 0.78-7.63 µM. At the same time, at peptides concentration of 25 µM, the hemolysis percentage varied in the range of 4.6-32.4%. The peptides BTM-P1 and BTM-P4 in D form had the lowest IC50 values on the MCF-7 cell line and they are considered as the most promising peptides among the evaluated. Fluorescence microscopy using AnnexinV-FLUOS staining indicates that the possible cause of MCF-7 cell death by peptide BTM-P1, is apoptosis. Real time PCR analysis showed an increased transcription of p53 in MCF-7 cells, thus confirming the probable pro-apoptotic effect of the peptide BTM-P1. In general, this study suggests that the cytolytic activity of the polycationic peptides derived from the Cry11Bb protoxin could be mediated by a pro-apoptotic mechanism that might include potential-dependent membrane permeabilization. Further studies might be accomplished to establish whether the peptides are cytolytic to other cancer cell lines and to solid tumors.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Citotoxinas , Membrana Eritrocítica/metabolismo , Hemólise/efeitos dos fármacos , Peptídeos , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/biossíntese , Células A549 , Células CACO-2 , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Células MCF-7 , Peptídeos/química , Peptídeos/farmacologia
10.
J Biol Chem ; 295(28): 9606-9617, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32444494

RESUMO

Bacillus thuringiensis subsp. israelensis produces crystal inclusions composed of three-domain Cry proteins and cytolytic Cyt toxins, which are toxic to different mosquito larvae. A key component is the Cyt toxin, which synergizes the activity of the other Cry toxins, thereby resulting in high toxicity. The precise mechanism of action of Cyt toxins is still debated, and two models have been proposed: the pore formation model and the detergent effect. Here, we performed a systematic structural characterization of the Cyt toxin interaction with different membranes, including in Aedes aegypti larval brush border membrane vesicles, small unilamellar vesicle liposomes, and rabbit erythrocytes. We examined Cyt1Aa insertion into these membranes by analyzing fluorescence quenching in solution and in the membrane-bound state. For this purpose, we constructed several Cyt1Aa variants having substitutions with a single cysteine residue in different secondary structures, enabling Cys labeling with Alexa Fluor 488 for quenching analysis using I-soluble quencher in solution and in the membrane-bound state. We identified the Cyt1Aa residues exposed to the solvent upon membrane insertion, predicting a possible topology of the membrane-inserted toxin in the different membranes. Moreover, toxicity assays with these variants revealed that Cyt1Aa exerts its insecticidal activity and hemolysis through different mechanisms. We found that Cyt1Aa exhibits variable interactions with each membrane system, with deeper insertion into mosquito larva membranes, supporting the pore formation model, whereas in the case of erythrocytes and small unilamellar vesicles, Cyt1Aa's insertion was more superficial, supporting the notion that a detergent effect underlies its hemolytic activity.


Assuntos
Aedes/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Bacillus thuringiensis/química , Endotoxinas/farmacologia , Membrana Eritrocítica/metabolismo , Proteínas Hemolisinas/farmacologia , Animais , Larva , Lipossomos , Coelhos
11.
Int J Biol Macromol ; 153: 88-99, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32135253

RESUMO

Phenoloxidase (PO) is a crucial enzyme in the Arthropods melanization process, in which synthesized melanin rapidly acts at the site of injury and infection. In this study, we observed significant changes in humoral and cellular responses after exposing susceptible and resistant strains to a sub-lethal concentration of Cry1Ah toxin. Based on STRING v 11.0 computational protein-protein interaction analysis, we selected seven immune genes namely Prophenoloxidase PPO1b, PP03, Serpin-3, Serpin-5, Beta-1,3-glucan recognition protein, Immulectin-3 and Serine protease SP105 reported in Asian corn borer. Quantitative real-time PCR gene expression studies showed Cry1Ah resistant strain had higher expression of PPO1b, PP03, Serpin-3, Beta-1,3-glucan recognition protein, Immulectin-3 and Serine protease SP105 genes in midgut and hemocyte samples. This study also investigated and found that the level of prophenoloxidation (proPO) activity in Cry1Ah resistant strains was significantly higher than susceptible strains. Cry1Ah toxin significantly increased the resistant strain's immune responses, the difference was observed through assays of bacterial agglutination and phagocytosis. Additionally, immune response induced by Cry1Ah toxin influences the microbiome composition associated with the host system. These parameters seem to explain the contribution of PO/PO regulating proteins render the host to resist the Cry1Ah toxin.


Assuntos
Toxinas de Bacillus thuringiensis/farmacologia , Bacillus thuringiensis/química , Catecol Oxidase/metabolismo , Resistência a Medicamentos , Endotoxinas/farmacologia , Precursores Enzimáticos/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/metabolismo , Mariposas/enzimologia , Zea mays/parasitologia , Animais , Toxinas de Bacillus thuringiensis/química , Endotoxinas/química , Proteínas Hemolisinas/química
12.
Breast Dis ; 39(1): 37-42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32065785

RESUMO

BACKGROUND: Bacillus thuringiensis (Bt) is a Gram-positive bacterium that is known worldwide for its entomopathogenic properties. Recent studies indicate that bacteria produces protein inclusions called parasporins (PSs) that have anti-cancer activity against several types of tumor cells. OBJECTIVE: The present work aimed to select a Bt strain that produces an active PS against MCF-7 breast cancer cells, and to provide an initial quantification of its toxicity and protein concentration. METHODS: Two batches of Bt strains were fermented, and the parasporins were produced and isolated. In vitro tests were performed in 96-well plates and analyzed by a spectrophotometer. RESULTS: Most peptides did not have any cytopathic effect, but the A14d2 strain produces a PS with high toxicity to cancer cells. In the MTT test, the A14d2 strain PS was efficient with an LD50 of 14.83 µg/mL and a protein concentration of 520 µg/mL. At the end of the experiments, this PS was added to bacterial cells that produce other biologically active bacterial toxins against MCF-7 cells, which allowed it to be produced by a safe and inert microorganism to humans. CONCLUSION: PSs represent a potential tool to treat this form of breast cancer by providing peptides that may be useful in therapy.


Assuntos
Antineoplásicos/farmacologia , Bacillus thuringiensis/química , Sobrevivência Celular/efeitos dos fármacos , Endotoxinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Endotoxinas/biossíntese , Feminino , Humanos , Células MCF-7
13.
Insect Biochem Mol Biol ; 119: 103317, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31978588

RESUMO

Bacillus thuringiensis (Bt) Cyt1Aa toxin shows toxicity to mosquitoes, to certain coleopteran pests and also to red blood cells (RBC). However, its mode of action in the different target cells is not well defined. This protein is a single α-ß domain pore-forming toxin, where a ß sheet is wrapped by two α-helices layers. The Cyt1Aa α-helix hairpin in the N-terminal has been proposed to be involved in initial membrane binding and oligomerization, while the ß sheet inserts into the membrane to form a pore that lyze the cells. To determine the role of the N-terminal α-helix hairpin region of Cyt1Aa in its mode of action, we characterized different single point mutations located in helices α-1 and α-2. Eight cysteine substitutions in different residues were produced in Bt, and we found that three of them: Cyt1AaA65C, Cyt1AaL85C and Cyt1AaN89C, lost insecticidal toxicity against Aedes aegypti larvae but retained similar or increased hemolytic activity towards rabbit RBC. Analysis of toxin binding and oligomerization using Ae. aegypti midgut brush border membrane vesicles showed that the three Cyt1Aa mutants non-toxic to Ae. aegypti were affected in oligomerization. However, these mutants were still hemolytic. Our data shows that oligomerization of Cyt1Aa toxin is essential for its toxicity to Ae. aegypti but not for its toxicity against RBC indicating that the mode of action of Cyt1Aa is different in these distinct target membranes.


Assuntos
Aedes/efeitos dos fármacos , Proteínas de Bactérias/química , Endotoxinas/química , Eritrócitos/efeitos dos fármacos , Proteínas Hemolisinas/química , Inseticidas/química , Aedes/crescimento & desenvolvimento , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Polimerização , Coelhos
14.
Curr Microbiol ; 77(3): 405-414, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31844934

RESUMO

Parasporins (PS), a class of non-insecticidal and non-hemolytic crystal proteins of Bacillus thuringiensis (Bt), are being explored as promising anti-cancer agents due to their specific toxicity to cancer cells. This work is considered as a first initiative aiming at investigating Algerian soil Bt isolates' activity and cytotoxic potential against cancer cells. A total of 48 Bacillus spp. were isolated from different sites in Algeria. Phenotypic and biochemical tests, 16S rDNA molecular identification, and microscopic observation of crystal have confirmed the identification of Bt for ten strains. A screening for non-hemolytic crystalline proteins was performed. Extraction, purification, and activation of non-hemolytic proteins by chromatographic analysis yielded several polypeptides of different molecular weights. A purified PS1, with pro-protein of 81 kDa and several peptides with different molecular weights (18-58 kDa) after activation by trypsin, has been identified from the strain BDzG. The NH2-terminal sequence deciphered in BLAST analysis showed homology to a Bt PS1 protein. Moreover, the screening of parasporin-1 (PS1) gene has also been performed. Cytocidal activity against human epithelial type 2 (HEp2) cells, considered to originate from a human laryngeal carcinoma, was observed with an IC50 equal to 2.33 µg/ml, while moderate cytotoxicity against adenocarcinomic human alveolar basal epithelial (A549) cells has been shown with IC50 equal to 18.54 µg/ml. No cytotoxicity against normal cells was noted. Fluorescence microscopy revealed a condensed or fragmented chromatin indicating the apoptotic death of HEp2 cells. Thus, Bt PS-producer isolated from Algerian soil might have a potential to join the arsenal of natural anti-cancer drugs with high therapeutic potential.


Assuntos
Antineoplásicos/farmacologia , Bacillus thuringiensis/química , Sobrevivência Celular/efeitos dos fármacos , Endotoxinas/farmacologia , Células A549 , Argélia , Bacillus thuringiensis/genética , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neoplasias Laríngeas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Microbiologia do Solo
15.
Toxicon ; 167: 123-133, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31181295

RESUMO

Bacillus thuringiensis crystal (Cry) proteins, used for decades as insecticidal toxins, are well known to be toxic to certain insects, but not to mammals. A novel group of Cry toxins called parasporins possess a strong cytocidal activity against some human cancer cells. Cry41Aa, or parasporin3, closely resembles commercially used insecticidal toxins and yet is toxic to the human hepatic cancer cell line HepG2, disrupting membranes of susceptible cells, similar to its insecticidal counterparts. In this study, we explore the protective effect that the common divalent metal chelator EGTA exerts on Cry41Aa's activity on HepG2 cells. Our results indicate that rather than interfering with a signalling pathway as a result of chelating cations in the medium, the chelator prevented the toxin's interaction with the membrane, and thus the subsequent steps of membrane damage and p38 phosphorylation, by removing cations bound to plasma membrane components. BAPTA and DTPA also inhibited Cry41Aa toxicity but at higher concentrations. We also show for the first time that Cry41Aa induces pore formation in planar lipid bilayers. This activity is not altered by EGTA, consistent with a biological context of chelation. Salt supplementation assays identified Ca2+, Mn2+ and Zn2+ as being able to reinstate Cry41Aa activity. Our data suggest the existence of one or more metal cation-dependent receptors in the Cry41Aa mechanism of action.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Membrana Celular/efeitos dos fármacos , Quelantes/farmacologia , Ácido Egtázico/farmacologia , Bicamadas Lipídicas/química , Substâncias Protetoras/farmacologia , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Membrana Celular/química , Células Hep G2 , Humanos , Íons , Modelos Moleculares , Técnicas de Patch-Clamp
16.
Insect Mol Biol ; 28(4): 520-527, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30719783

RESUMO

Insecticidal crystal (Cry) proteins produced by the bacterium Bacillus thuringiensis (Bt) are toxic to a diverse range of insects. Transgenic rice expressing Cry1A, Cry2A and Cry1C toxins have been developed that are lethal to Chilo suppressalis, a devastating insect pest of rice in China. Identifying the mechanisms underlying the interactions of Cry toxins with susceptible hosts will improve both our understanding of Cry protein toxicology and long-term efficacy of Bt crops. In this study, we tested the hypothesis that V-ATPase subunit A contributes to the action of Cry1Ab/1Ac, Cry2Aa and Cry1Ca toxins in C. suppressalis. The full-length V-ATPase subunit A transcript was initially cloned from the C. suppressalis larval midgut and then used to generate double-stranded RNA (dsRNA)-producing bacteria. Toxicity assays using transgenic rice lines TT51 (Cry1Ab and Cry1Ac fusion genes), T2A-1 (Cry2Aa), and T1C-19 (Cry1Ca) in conjunction with V-ATPase subunit A dsRNA-treated C. suppressalis larvae revealed significantly reduced larval susceptibility to T2A-1 and T1C-19 transgenic rice, but not to TT51 rice. These results suggest that the V-ATPase subunit A plays a crucial role in mediating Cry2Aa and Cry1Ca toxicity in C. suppressalis. These findings will have significant implications on the development of future resistance management tools.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas de Insetos/genética , Mariposas/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Sequência de Bases , Cadeia Alimentar , Controle de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Oryza/química , Filogenia , Plantas Geneticamente Modificadas/química
17.
Molecules ; 24(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30708936

RESUMO

Currently, global efforts are being intensified towards the discovery of local Bacillus thuringiensis (Bt) isolates with unique anticancer properties. Parasporins (PS) are a group of Bt non-insecticidal crystal proteins with potential and specific in vitro anticancer activity. However, despite the significant therapeutic potential of PS-producing Bt strains, our current knowledge on the effects of these proteins is limited. Hence, the main objective of this study was to screen Bt-derived parasporal toxins for cytotoxic activities against colon (HT-29) and cervical (HeLa) cancerous cell lines. Nine non-larvicidal and non-hemolytic Bt strains, native to Saudi Arabia, were employed for the isolation of their parasporal toxins. 16S rDNA sequencing revealed a 99.5% similarity with a reference Bt strain. While PCR screening results indicated the absence of selected Cry (Cry4A, Cry4B, Cry10 and Cry11), Cyt (Cyt1 and Cyt2) and PS (PS2, PS3 and PS4) genes, it concluded presence of the PS1 gene. SDS-PAGE analysis revealed that proteolytically-cleavaged PS protein profiles exhibit patterns resembling those observed with PS1Aa1, with major bands at 56 kDa and 17 kDa (Bt7), and 41 kDa and 16 kDa (Bt5). Solubilized and trypsinized PS proteins from all Bt strains exhibited a marked and dose-dependent cytotoxicity against HeLa cancerous cells but not against HT-29 cells. IC50 values ranged from 3.2 (Bt1) to 14.2 (Bt6) with an average of 6.8 µg/mL. The observed cytotoxicity of PS proteins against HeLa cells was specific as it was not evident against normal uterus smooth muscle cells. RT-qPCR analysis revealed the overexpression of caspase 3 and caspase 9 by 3.7, and 4.2 folds, respectively, indicative of the engagement of intrinsic pathway of apoptosis. To the best of our knowledge, this is the first report exploring and exploiting the versatile repertoire of Saudi Arabian environmental niches for the isolation of native and possibly novel Saudi Bt strains with unique and specific anticancer activity. In conclusion, native Saudi Bt-derived PS proteins might have a potential to join the arsenal of natural anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Bacillus thuringiensis/química , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Bacillus thuringiensis/classificação , Bacillus thuringiensis/citologia , Bacillus thuringiensis/ultraestrutura , Toxinas de Bacillus thuringiensis , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Tipagem Molecular , RNA Ribossômico 16S/genética , Ativação Transcricional
18.
Acta Trop ; 193: 158-162, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30562476

RESUMO

A novel mosquito active strain, Bacillus thuringiensis (VCRC B474) sharing the antigens of 2 serotypes, namely israelensis &tochigiensis was characterized by scanning electron microscopy and SDS-PAGE. The spherical and ovoid crystals present in this strain was composed of major polypeptides the size of 28, 65, and 130 kDa respectively. The sporulated cell mass was formulated into water dispersible powder (WDP) formulations with different carrier materials and checked for activity against Culex quinquefasciatus larvae at monthly intervals for up to a year. The formulation containing chalk was the most effective with LC50 values ranging between 0.274-0.523 µg/ml compared to the formulations containing bentonite (0.335-0.775) µg/ml and talc (0.348-0.808 µg/ml). The decline in the activity of these formulations with storage period was as follows: 3 months -14%, 22%, 20% respectively, 6 months - 25%, 35%, 37% respectively, 9 months - 39%, 50%, 47% respectively and 12 months -52%, 43%, 40% respectively. This study demonstrated that wet biomass of bacterial isolates could be simply mixed with carrier materials, dried and used for mosquito larval control without significant loss of activity for up to 6 months at room temperature. Further, this strain of Bacillus thuringiensis var. israelensis/tochigiensis (H14/19) can be a prospective candidate for use in mosquito control programs.


Assuntos
Bacillus thuringiensis/química , Bacillus thuringiensis/patogenicidade , Culex/microbiologia , Larva/microbiologia , Controle de Mosquitos/métodos , Animais , Bacillus thuringiensis/ultraestrutura , Proteínas de Bactérias/química , Bentonita , Agentes de Controle Biológico , Carbonato de Cálcio , Controle Biológico de Vetores/métodos , Talco , Fatores de Tempo , Água
19.
J Biosci ; 43(2): 407-416, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29872027

RESUMO

Parasporins, a class of non-insecticidal crystal proteins of Bacillus thuringiensis (Bt) are being explored as promising anticancer agents due to their specific toxicity to cancer cells. The present study has identified 25 Bt isolates harbouring parasporin genes from Western Ghats region, the hotspot of biodiversity in India. Among these, the isolate, KAU 41 (Kerala Agricultural University isolate 41) contained non-hemolytic homogenous crystals showing specific cytotoxicity towards cancer cells. SDS-PAGE analysis of this crystal, isolated by aqueous biphasic separation, revealed a 31 kDa sized peptide. The N-terminal sequence deciphered in BLAST analysis showed homology to a hypothetical Bt protein. Upon proteolysis, a 29 kDa active peptide was generated which exhibited heterogenic cytotoxic spectrum on various cancer cells. HeLa cells were highly susceptible to this peptide with IC 50 1 lg/mL and showed characteristics of apoptosis. RT-qPCR analysis revealed the overexpression of APAF1, caspase 3 and 9 by 14.9, 8 and 7.4 fold, respectively which indicates the activation of intrinsic pathway of apoptosis. However, at higher concentrations of peptide (greater than 3 lg/mL), necrotic death was prominent. The results suggest that the 31 kDa protein from Bt isolate, KAU 41 is a parasporin that may have high therapeutic potential.


Assuntos
Apoptose/efeitos dos fármacos , Endotoxinas/genética , Endotoxinas/isolamento & purificação , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Bacillus thuringiensis/química , Endotoxinas/química , Endotoxinas/uso terapêutico , Células HeLa , Humanos , Índia/epidemiologia , Neoplasias/genética , Neoplasias/patologia
20.
Sci Rep ; 8(1): 7215, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740112

RESUMO

Although the cultivation of transgenic plants expressing toxins of Bacillus thuringiensis (Bt) represents a successful pest management strategy, the rapid evolution of resistance to Bt plants in several lepidopteran pests has threatened the sustainability of this practice. By exhibiting a favorable safety profile and allowing integration with pest management initiatives, plant essential oils have become relevant pest control alternatives. Here, we assessed the potential of essential oils extracted from a Neotropical plant, Siparuna guianensis Aublet, for improving the control and resistance management of key lepidopteran pests (i.e., Spodoptera frugiperda and Anticarsia gemmatalis). The essential oil exhibited high toxicity against both lepidopteran pest species (including an S. frugiperda strain resistant to Cry1A.105 and Cry2Ab Bt toxins). This high insecticidal activity was associated with necrotic and apoptotic effects revealed by in vitro assays with lepidopteran (but not human) cell lines. Furthermore, deficits in reproduction (e.g., egg-laying deterrence and decreased egg viability), larval development (e.g., feeding inhibition) and locomotion (e.g., individual and grouped larvae walking activities) were recorded for lepidopterans sublethally exposed to the essential oil. Thus, by similarly and efficiently controlling lepidopteran strains susceptible and resistant to Bt toxins, the S. guianensis essential oil represents a promising management tool against key lepidopteran pests.


Assuntos
Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Laurales/química , Mariposas/efeitos dos fármacos , Óleos Voláteis/farmacologia , Spodoptera/efeitos dos fármacos , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Linhagem Celular , Endotoxinas/isolamento & purificação , Endotoxinas/farmacologia , Proteínas Hemolisinas/isolamento & purificação , Proteínas Hemolisinas/farmacologia , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Larva/fisiologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Mariposas/fisiologia , Óleos Voláteis/isolamento & purificação , Controle Biológico de Vetores/métodos , Spodoptera/fisiologia , Zigoto/efeitos dos fármacos , Zigoto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA