Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951147

RESUMO

BACKGROUND: Bacopa monnieri (BM) is traditionally used in human diseases for its antioxidant, anti-inflammatory and neuroprotective effects. However, its anticancer potential has been poorly understood. AIM: The aim of this study was to explore the detailed anticancer mechanism of BM against oral cancer and to identify the bioactive BM fraction for possible cancer therapeutics. RESULTS: We performed bioactivity-guided fractionation and identified that the aqueous fraction of the ethanolic extract of BM (BM-AF) had a potent anticancer potential in both in vitro and in vivo oral cancer models. BM-AF inhibited cell viability, colony formation, cell migration and induced apoptotic cell death in Cal33 and FaDu cells. BM-AF at low doses promoted mitophagy and BM-AF mediated mitophagy was PARKIN dependent. In addition, BM-AF inhibited arecoline induced reactive oxygen species production in Cal33 cells. Moreover, BM-AF supressed arecoline-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation through mitophagy in Cal33 cells. The in vivo antitumor effect of BM-AF was further validated in C57BL/6J mice through a 4-nitroquinolin-1-oxide and arecoline-induced oral cancer model. The tumor incidence was significantly reduced in the BM-AF treated group. Further, data obtained from western blot and immunohistochemistry analysis showed increased expression of apoptotic markers and decreased expression of inflammasome markers in the tongue tissue obtained from BM-AF treated mice in comparison with the non-treated tumor bearing mice. CONCLUSION: In conclusion, BM-AF exhibited potent anticancer activity through apoptosis induction and mitophagy-dependent inhibition of NLRP3 inflammasome activation in both in vitro and in vivo oral cancer models. Moreover, we have investigated apoptosis and mitophagy-inducing compounds from this plant extract having anticancer activity against oral cancer cells.


Assuntos
Bacopa , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia , Bacopa/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Arecolina/farmacologia , Neoplasias Bucais/tratamento farmacológico , Camundongos Endogâmicos C57BL , Apoptose , Espécies Reativas de Oxigênio/metabolismo
2.
CNS Neurol Disord Drug Targets ; 22(3): 441-451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35021981

RESUMO

BACKGROUND: To date, much evidence has shown the increased interest in natural molecules and traditional herbal medicine as alternative bioactive compounds to fight many inflammatory conditions, both in relation to immunomodulation and in terms of their wound healing potential. Bacopa monnieri is a herb that is used in the Ayurvedic medicine tradition for its anti-inflammatory activity. OBJECTIVE: In this study, we evaluate the anti-inflammatory and regenerative properties of the Bacopa monnieri extract (BME) in vitro model of neuroinflammation. METHODS: Neuronal SH-SY5Y cells were stimulated with TNFα and IFNγ and used to evaluate the effect of BME on cell viability, cytotoxicity, cytokine gene expression, and healing rate. RESULTS: Our results showed that BME protects against the Okadaic acid-induced cytotoxicity in SH-SY5Y cells. Moreover, in TNFα and IFNγ primed cells, BME reduces IL-1ß, IL-6, COX-2, and iNOS, mitigates the mechanical trauma injury-induced damage, and accelerates the healing of wounds. CONCLUSION: This study indicates that BME might become a promising candidate for the treatment of neuroinflammation.


Assuntos
Bacopa , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Bacopa/metabolismo , Doenças Neuroinflamatórias , Anti-Inflamatórios/farmacologia , Fármacos Neuroprotetores/farmacologia
3.
Appl Microbiol Biotechnol ; 106(5-6): 1799-1811, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35201388

RESUMO

Bacopa monnieri (L.) Wettst. (BM), also known as 'Brahmi' or 'Water Hyssop', has been utilized as a brain tonic, memory enhancer, sensory organ revitalizer, cardiotonic, anti-anxiety, antidepressant and anticonvulsant agent in the Indian system of medicine Ayurveda for centuries. BM is beneficial in the treatment of Parkinson's disease, Alzheimer's disease, epileptic seizures and schizophrenia in recent pharmacological research. Dammarane-type triterpenoid saponins containing jujubogenin and pseudojujubogenin as aglycones, also known as bacosides, are the principal chemical ingredients identified and described from BM. Bacosides have been shown to have anti-ageing, anticancer, anticonvulsant, antidepressant, anti-emetic, anti-inflammatory and antibacterial properties in a variety of pre-clinical and clinical studies. The pharmaceutical industry's raw material comes from wild sources; nevertheless, the concentration of bacosides varies in different regions of the plants, as well as seasonal and genotypic variation. Cell and tissue cultures are appealing alternatives for the long-term manufacture of bioactive chemicals, and attempts to produce bacosides using in vitro cultures have been made. This review discusses the biotechnological approaches used to produce bacosides, as well as the limitations and future potential. KEY POINTS: • Bacosides extracted from Bacopa monnieri are important pharmaceutical compounds. • The current review provides insight into biotechnological interventions for the production of bacosides using in vitro cultures. • Highlights the prospects improvement of bacoside production through metabolic engineering.


Assuntos
Bacopa , Saponinas , Triterpenos , Bacopa/química , Bacopa/metabolismo , Ayurveda , Técnicas de Cultura de Órgãos , Extratos Vegetais/metabolismo , Saponinas/química , Triterpenos/química
4.
Nutr Cancer ; 73(11-12): 2166-2176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33148034

RESUMO

The intermingled interrelationship of Bacopa monnieri and human health dates backs to the ancient times in the history of ayurveda making the plant an enriched source of alternative drug development in a nontoxic manner. In recent years, research on the biological effects of Bacopa monnieri has flourished as promising neuroprotective, memory boosting and more importantly as both chemopreventive and anti-neoplastic agent. Each naturally synthesized chemical constituent identified from Bacopa monnieri leaf extract with different solvents, has significant anti-metastatic, anti-angiogenic and anti-proliferative activity on different type of cancer cells. In this context, a substantial literature survey allows a deep understanding of the involvement of specific bioactive molecules along with the whole plant extract of Bacopa monnieri with their divergent effective molecular pathways. This comprehensive review covers literature up to the year 2020 highlighting all the anticancer efficacy along with signaling pathways activated by secondary metabolites found in bacopa plant.


Assuntos
Bacopa , Bacopa/química , Bacopa/metabolismo , Humanos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
5.
Plant Signal Behav ; 15(1): 1699265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31797719

RESUMO

Bacopa monnieri known as 'Brahmi' is a well-known medicinal plant belonging to Scrophulariaceae family for its nootropic properties. To the best of our knowledge, no characterization data is available on the potential role of micro RNAs (miRNAs) from this plant till date. We present here the first report of computational characterizations of miRNAs from B. monnieri. Owing to the high conservation of miRNAs in nature, new and potential miRNAs can be identified in plants using in silico techniques. Using the plant miRNA sequences present in the miRBase repository, a total of 12 miRNAs were identified from B. monnieri which pertained to 11 miRNA families from the shoot and root transcriptome data. Furthermore, gene ontology analysis of the identified 68 human target genes exhibited significance in various biological processes. These human target genes were associated with signaling pathways like NF-kB and MAPK with TRAF2, CBX1, IL1B, ITGA4 and ITGB1BP1 as the top five hub nodes. This cross-kingdom study provides initial insights about the potential of miRNA-mediated cross-kingdom regulation and unravels the essential target genes of human with implications in numerous human diseases including cancer.


Assuntos
Bacopa/genética , Bacopa/metabolismo , MicroRNAs/metabolismo , Transcriptoma/genética , Homólogo 5 da Proteína Cromobox , Ontologia Genética , Humanos , MicroRNAs/genética
6.
Environ Toxicol ; 28(8): 419-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21656644

RESUMO

Widespread contamination of arsenic (As) is recognized as a global problem due to its well-known accumulation by edible and medicinal plants and associated health risks for the humans. In this study, phytotoxicity imposed upon exposure to arsenate [As(V); 0-250 µM for 1-7 days] and ensuing biochemical responses were investigated in a medicinal herb Bacopa monnieri L. vis-à-vis As accumulation. Plants accumulated substantial amount of As (total 768 µg g(-1) dw at 250 µM As(V) after 7 days) with the maximum As retention being in roots (60%) followed by stem (23%) and leaves (17%). The level of cysteine and total nonprotein thiols (NP-SH) increased significantly at all exposure concentrations and durations. Besides, the level of metalloid binding ligands viz., glutathione (GSH) and phytochelatins (PCs) increased significantly at the studied concentrations [50 and 250 µM As(V)] in both roots and leaves. The activities of various enzymes viz., arsenate reductase (AR), glutathione reductase (GR), superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and catalase (CAT) showed differential but coordinated stimulation in leaves and roots to help plants combat As toxicity up to moderate exposure concentrations (50 µM). However, beyond 50 µM, biomass production was found to decrease along with photosynthetic pigments and total soluble proteins, whereas lipid peroxidation increased. In conclusion, As accumulation potential of Bacopa may warrant its use as a phytoremediator but if Bacopa growing in contaminated areas is consumed by humans, it may prove to be toxic for health.


Assuntos
Arseniatos/toxicidade , Bacopa/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Arseniatos/metabolismo , Ascorbato Peroxidases/metabolismo , Bacopa/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidase/metabolismo , Fotossíntese , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Superóxido Dismutase/metabolismo
7.
Ecotoxicol Environ Saf ; 72(2): 585-95, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18706694

RESUMO

Iron-induced oxidative stress in plants of Bacopa monnieri L., a macrophyte with medicinal value, was investigated using the chemometric approach. Cluster analysis (CA) rendered two distinct clusters of roots and shoots. Discriminant analysis (DA) identified discriminating variables (NP-SH and APX) between the root and shoot tissues. Principal component analysis (PCA) results suggested that protein, superoxide dismutase (SOD), ascorbic acid, proline, and Fe uptake are dominant in root tissues, whereas malondialdehyde (MDA), guaiacol peroxidase (POD), cysteine, and non-protein thiol (NP-SH) in shoot of the stress plant. Discriminant partial-least squares (DPLS) results further confirmed that SOD and ascorbic acid contents dominated in root tissues, while NP-SH, cysteine, POD, ascorbate peroxidase (APX), and MDA in shoot. MDA and NP-SH were identified as most pronounced variables in plant during the highest exposure time. The chemometric approach allowed for the interpretation of the induced biochemical changes in plant tissues exposed to iron.


Assuntos
Bacopa/efeitos dos fármacos , Ferro/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Plantas Medicinais , Ascorbato Peroxidases , Bacopa/química , Bacopa/metabolismo , Análise por Conglomerados , Cisteína/análise , Cisteína/metabolismo , Análise Discriminante , Análise dos Mínimos Quadrados , Estresse Oxidativo/fisiologia , Peroxidase/análise , Peroxidase/metabolismo , Peroxidases/análise , Peroxidases/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Análise de Componente Principal , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo , Fatores de Tempo
9.
Chemosphere ; 62(8): 1340-50, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16219336

RESUMO

The effect of Fe was investigated in medicinally important plant, Bacopa monnieri L. and the response on malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) was found different in roots and leaves of the metal treated plants. Iron induced stress was observed as indicated by high level of lipid peroxidation, being more steep increase in leaves than roots. In roots, SOD activity was found to increase in metal treated plants except 80 and 160 microM at 72 h, whereas, it decreased in leaves except 10 and 40 microM after 48 h as compared to their respective controls. Among H2O2 eliminating enzymes, POD activity increased in roots, however, it decreased in leaves except at 10 and 40 microM Fe after 48 h as compared to control. At 24 and 48 h, APX activity and ascorbic acid content followed the similar trend and were found to increase in both parts of the metal treated plants as compared to their respective controls. The level of cysteine content in the roots increased at initial period of exposure; however, no marked change in its content was noticed in leaves. In both roots and leaves, non-protein thiol content was found to increase except at higher metal concentrations at 72 h. The data of proline content have shown significant (p<0.01) increase at 40 microM onwards in both part of the plants after 48 and 72 h. Correlation coefficient was evaluated between metal accumulations with various parameters and also between different antioxidant parameters with MDA. Since the level of bacoside-A (active constituent) content in metal treated plants increases, therefore, it is advisable to assess the biological activity of the plants before using for medicinal purposes, particularly in developing countries.


Assuntos
Antioxidantes/metabolismo , Bacopa/efeitos dos fármacos , Ferro/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Saponinas/análise , Triterpenos/análise , Bacopa/química , Bacopa/metabolismo , Malondialdeído/metabolismo , Peroxidases/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Medicinais/química , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/metabolismo , Superóxido Dismutase/metabolismo
10.
Chemosphere ; 62(2): 233-46, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15993469

RESUMO

Bacopa monnieri L. plants exposed to 10, 50, 100 and 200 microM cadmium (Cd) for 48, 96 and 144 h were analysed with reference to the accumulation of metal and its influence on various enzymatic and non-enzymatic antioxidants, thiobarbituric acid reactive substances (TBARS), photosynthetic pigments and protein content. The accumulation of Cd was found to be increased in a concentration and duration dependent manner with more Cd being accumulated in the root. TBARS content of the treated roots and leaves increased with increase in Cd concentration and exposure periods, indicating the occurrence of oxidative stress. Induction in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) was recorded in metal treated roots and leaves of B. monnieri. In contrast, a significant reduction in catalase activity in Cd treated B. monnieri was observed. An increase was also noted in the levels of cysteine and non-protein thiol contents of the roots of B. monnieri followed by a decline. However, in leaves, cysteine and non-protein thiol contents were found to be enhanced at all the Cd concentrations and exposure periods. A significant reduction in the level of ascorbic acid was observed in a concentration and duration dependent manner. The total chlorophyll and protein content of B. monnieri decreased with increase in Cd concentration at all the exposure periods. Results suggest that toxic concentrations of Cd caused oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, B. monnieri is able to combat metal induced oxidative injury involving a mechanism of activation of various enzymatic and non-enzymatic antioxidants.


Assuntos
Antioxidantes/metabolismo , Bacopa/crescimento & desenvolvimento , Cádmio/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Bacopa/efeitos dos fármacos , Bacopa/metabolismo , Cádmio/farmacocinética , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA