Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Microbiome ; 12(1): 94, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790030

RESUMO

BACKGROUND: Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS: Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS: This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.


Assuntos
Bactérias , Bacteriófagos , Aprendizado Profundo , Metagenoma , Metagenômica , Peptídeos , Ribossomos , Peptídeos/metabolismo , Peptídeos/genética , Bacteriófagos/genética , Metagenômica/métodos , Ribossomos/metabolismo , Ribossomos/genética , Bactérias/genética , Bactérias/metabolismo , Bactérias/virologia , Bactérias/classificação , Microbiota/genética , Processamento de Proteína Pós-Traducional , Água do Mar/microbiologia , Água do Mar/virologia , Oceanos e Mares
2.
Nature ; 627(8003): 431-436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383786

RESUMO

To survive bacteriophage (phage) infections, bacteria developed numerous anti-phage defence systems1-7. Some of them (for example, type III CRISPR-Cas, CBASS, Pycsar and Thoeris) consist of two modules: a sensor responsible for infection recognition and an effector that stops viral replication by destroying key cellular components8-12. In the Thoeris system, a Toll/interleukin-1 receptor (TIR)-domain protein, ThsB, acts as a sensor that synthesizes an isomer of cyclic ADP ribose, 1''-3' glycocyclic ADP ribose (gcADPR), which is bound in the Smf/DprA-LOG (SLOG) domain of the ThsA effector and activates the silent information regulator 2 (SIR2)-domain-mediated hydrolysis of a key cell metabolite, NAD+ (refs. 12-14). Although the structure of ThsA has been solved15, the ThsA activation mechanism remained incompletely understood. Here we show that 1''-3' gcADPR, synthesized in vitro by the dimeric ThsB' protein, binds to the ThsA SLOG domain, thereby activating ThsA by triggering helical filament assembly of ThsA tetramers. The cryogenic electron microscopy (cryo-EM) structure of activated ThsA revealed that filament assembly stabilizes the active conformation of the ThsA SIR2 domain, enabling rapid NAD+ depletion. Furthermore, we demonstrate that filament formation enables a switch-like response of ThsA to the 1''-3' gcADPR signal.


Assuntos
Bactérias , Proteínas de Bactérias , Bacteriófagos , Adenosina Difosfato Ribose/análogos & derivados , Adenosina Difosfato Ribose/biossíntese , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/química , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica , Hidrólise , NAD/metabolismo , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica
3.
Mol Microbiol ; 120(2): 122-140, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254295

RESUMO

Overcoming lysogenization defect (OLD) proteins are a conserved family of ATP-powered nucleases that function in anti-phage defense. Recent bioinformatic, genetic, and crystallographic studies have yielded new insights into the structure, function, and evolution of these enzymes. Here we review these developments and propose a new classification scheme to categorize OLD homologs that relies on gene neighborhoods, biochemical properties, domain organization, and catalytic machinery. This taxonomy reveals important similarities and differences between family members and provides a blueprint to contextualize future in vivo and in vitro findings. We also detail how OLD nucleases are related to PARIS and Septu anti-phage defense systems and discuss important mechanistic questions that remain unanswered.


Assuntos
Bactérias , Bacteriófagos , Esterases , Bacteriófagos/fisiologia , Bactérias/enzimologia , Bactérias/virologia , Esterases/química , Exodesoxirribonuclease V , Adenosina Trifosfatases/química
4.
Cell Rep ; 42(4): 112305, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952342

RESUMO

Programmed cell suicide of infected bacteria, known as abortive infection (Abi), serves as an immune defense strategy to prevent the propagation of bacteriophage viruses. Many Abi systems utilize bespoke cyclic nucleotide immune messengers generated upon infection to mobilize cognate death effectors. Here, we identify a family of bacteriophage nucleotidyltransferases (NTases) that synthesize competitor cyclic dinucleotide (CDN) ligands and inhibit TIR NADase effectors activated via a linked STING CDN sensor domain (TIR-STING). Through a functional screen of NTase-adjacent phage genes, we uncover candidate inhibitors of cell suicide induced by heterologous expression of tonically active TIR-STING. Among these, we demonstrate that a virus MazG-like nucleotide pyrophosphohydrolase, Atd1, depletes the starvation alarmone (p)ppGpp, revealing a potential role for the alarmone-activated host toxin MazF as an executioner of TIR-driven Abi. Phage NTases and counterdefenses like Atd1 preserve host viability to ensure virus propagation and represent tools to modulate TIR and STING immune responses.


Assuntos
Bacteriófagos , Guanosina Pentafosfato , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/fisiologia , Fosfatos de Dinucleosídeos/metabolismo , Imunidade , Nucleotídeos , Nucleotidiltransferases/metabolismo
5.
Nature ; 616(7956): 326-331, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848932

RESUMO

cGAS is an evolutionarily conserved enzyme that has a pivotal role in immune defence against infection1-3. In vertebrate animals, cGAS is activated by DNA to produce cyclic GMP-AMP (cGAMP)4,5, which leads to the expression of antimicrobial genes6,7. In bacteria, cyclic dinucleotide (CDN)-based anti-phage signalling systems (CBASS) have been discovered8-11. These systems are composed of cGAS-like enzymes and various effector proteins that kill bacteria on phage infection, thereby stopping phage spread. Of the CBASS systems reported, approximately 39% contain Cap2 and Cap3, which encode proteins with homology to ubiquitin conjugating (E1/E2) and deconjugating enzymes, respectively8,12. Although these proteins are required to prevent infection of some bacteriophages8, the mechanism by which the enzymatic activities exert an anti-phage effect is unknown. Here we show that Cap2 forms a thioester bond with the C-terminal glycine of cGAS and promotes conjugation of cGAS to target proteins in a process that resembles ubiquitin conjugation. The covalent conjugation of cGAS increases the production of cGAMP. Using a genetic screen, we found that the phage protein Vs.4 antagonized cGAS signalling by binding tightly to cGAMP (dissociation constant of approximately 30 nM) and sequestering it. A crystal structure of Vs.4 bound to cGAMP showed that Vs.4 formed a hexamer that was bound to three molecules of cGAMP. These results reveal a ubiquitin-like conjugation mechanism that regulates cGAS activity in bacteria and illustrates an arms race between bacteria and viruses through controlling CDN levels.


Assuntos
Bactérias , Proteínas de Bactérias , Bacteriófagos , Nucleotidiltransferases , Ubiquitina , Animais , Bactérias/enzimologia , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/imunologia , Nucleotídeos Cíclicos/biossíntese , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Virais/metabolismo , Interações entre Hospedeiro e Microrganismos
6.
Nature ; 614(7946): 168-174, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36423657

RESUMO

CRISPR defence systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes1,2. The latter orchestrates a complex antiviral response that is initiated through the synthesis of cyclic oligoadenylates after recognition of foreign RNA3-5. Among the large set of proteins that are linked to type III systems and predicted to bind cyclic oligoadenylates6,7, a CRISPR-associated Lon protease (CalpL) stood out to us. CalpL contains a sensor domain of the SAVED family7 fused to a Lon protease effector domain. However, the mode of action of this effector is unknown. Here we report the structure and function of CalpL and show that this soluble protein forms a stable tripartite complex with two other proteins, CalpT and CalpS, that are encoded on the same operon. After activation by cyclic tetra-adenylate (cA4), CalpL oligomerizes and specifically cleaves the MazF homologue CalpT, which releases the extracytoplasmic function σ factor CalpS from the complex. Our data provide a direct connection between CRISPR-based detection of foreign nucleic acids and transcriptional regulation. Furthermore, the presence of a SAVED domain that binds cyclic tetra-adenylate in a CRISPR effector reveals a link to the cyclic-oligonucleotide-based antiphage signalling system.


Assuntos
Bactérias , Bacteriófagos , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Nucleotídeos Cíclicos , Protease La , Bactérias/enzimologia , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , AMP Cíclico/análogos & derivados , AMP Cíclico/química , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Nucleotídeos Cíclicos/imunologia , Nucleotídeos Cíclicos/metabolismo , Óperon , Protease La/química , Protease La/metabolismo , RNA Viral , Fator sigma , Transcrição Gênica
7.
Science ; 377(6614): eadc8969, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36048923

RESUMO

Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.


Assuntos
ADP-Ribosil Ciclase , Proteínas Adaptadoras de Transporte Vesicular , Bactérias , Proteínas de Bactérias , ADP-Ribose Cíclica , Imunidade Vegetal , Receptores Toll-Like , ADP-Ribosil Ciclase/química , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , ADP-Ribose Cíclica/biossíntese , ADP-Ribose Cíclica/química , Isomerismo , NAD/metabolismo , Domínios Proteicos , Receptores de Interleucina-1/química , Transdução de Sinais , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Triptofano/química , Triptofano/genética
8.
Nature ; 603(7900): 315-320, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197633

RESUMO

Colibactin is a chemically unstable small-molecule genotoxin that is produced by several different bacteria, including members of the human gut microbiome1,2. Although the biological activity of colibactin has been extensively investigated in mammalian systems3, little is known about its effects on other microorganisms. Here we show that colibactin targets bacteria that contain prophages, and induces lytic development through the bacterial SOS response. DNA, added exogenously, protects bacteria from colibactin, as does expressing a colibactin resistance protein (ClbS) in non-colibactin-producing cells. The prophage-inducing effects that we observe apply broadly across different phage-bacteria systems and in complex communities. Finally, we identify bacteria that have colibactin resistance genes but lack colibactin biosynthetic genes. Many of these bacteria are infected with predicted prophages, and we show that the expression of their ClbS homologues provides immunity from colibactin-triggered induction. Our study reveals a mechanism by which colibactin production could affect microbiomes and highlights a role for microbial natural products in influencing population-level events such as phage outbreaks.


Assuntos
Bactérias , Toxinas Bacterianas , Peptídeos , Policetídeos , Prófagos , Ativação Viral , Bactérias/efeitos dos fármacos , Bactérias/virologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Bacteriólise/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/fisiologia , Resposta SOS em Genética/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos
9.
Science ; 375(6577): 221-225, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025633

RESUMO

Gasdermin proteins form large membrane pores in human cells that release immune cytokines and induce lytic cell death. Gasdermin pore formation is triggered by caspase-mediated cleavage during inflammasome signaling and is critical for defense against pathogens and cancer. We discovered gasdermin homologs encoded in bacteria that defended against phages and executed cell death. Structures of bacterial gasdermins revealed a conserved pore-forming domain that was stabilized in the inactive state with a buried lipid modification. Bacterial gasdermins were activated by dedicated caspase-like proteases that catalyzed site-specific cleavage and the removal of an inhibitory C-terminal peptide. Release of autoinhibition induced the assembly of large and heterogeneous pores that disrupted membrane integrity. Thus, pyroptosis is an ancient form of regulated cell death shared between bacteria and animals.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriófagos/fisiologia , Piroptose , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Bactérias/metabolismo , Bactérias/virologia , Bradyrhizobium/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Cytophagaceae/química , Modelos Moleculares , Myxococcales/química , Fragmentos de Peptídeos/metabolismo , Peptídeo Hidrolases/metabolismo , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos
10.
Nucleic Acids Res ; 49(19): 10868-10878, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34606606

RESUMO

To provide protection against viral infection and limit the uptake of mobile genetic elements, bacteria and archaea have evolved many diverse defence systems. The discovery and application of CRISPR-Cas adaptive immune systems has spurred recent interest in the identification and classification of new types of defence systems. Many new defence systems have recently been reported but there is a lack of accessible tools available to identify homologs of these systems in different genomes. Here, we report the Prokaryotic Antiviral Defence LOCator (PADLOC), a flexible and scalable open-source tool for defence system identification. With PADLOC, defence system genes are identified using HMM-based homologue searches, followed by validation of system completeness using gene presence/absence and synteny criteria specified by customisable system classifications. We show that PADLOC identifies defence systems with high accuracy and sensitivity. Our modular approach to organising the HMMs and system classifications allows additional defence systems to be easily integrated into the PADLOC database. To demonstrate application of PADLOC to biological questions, we used PADLOC to identify six new subtypes of known defence systems and a putative novel defence system comprised of a helicase, methylase and ATPase. PADLOC is available as a standalone package (https://github.com/padlocbio/padloc) and as a webserver (https://padloc.otago.ac.nz).


Assuntos
Antibiose/genética , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , Software , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Archaea/classificação , Archaea/metabolismo , Archaea/virologia , Proteínas Arqueais/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/crescimento & desenvolvimento , Sistemas CRISPR-Cas , DNA Helicases/genética , DNA Helicases/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Cadeias de Markov , Filogenia , Terminologia como Assunto
11.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644530

RESUMO

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Assuntos
Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , CMP Cíclico/metabolismo , Nucleotídeos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Burkholderia/enzimologia , CMP Cíclico/química , Ciclização , Escherichia coli/enzimologia , Modelos Moleculares , Mutação/genética , Nucleotídeos Cíclicos/química , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
12.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493685

RESUMO

Anaerobic membrane bioreactor (AnMBR) for wastewater treatment has attracted much interest due to its efficacy in providing high-quality effluent with minimal energy costs. However, membrane biofouling represents the main bottleneck for AnMBR because it diminishes flux and necessitates frequent replacement of membranes. In this study, we assessed the feasibility of combining bacteriophages and UV-C irradiation to provide a chemical-free approach to remove biofoulants on the membrane. The combination of bacteriophage and UV-C resulted in better log cells removal and ca. 2× higher extracellular polymeric substance (EPS) concentration reduction in mature biofoulants compared to either UV-C or bacteriophage alone. The cleaning mechanism behind this combined approach is by 1) reducing the relative abundance of Acinetobacter spp. and selected bacteria (e.g., Paludibacter, Pseudomonas, Cloacibacterium, and gram-positive Firmicutes) associated with the membrane biofilm and 2) forming cavities in the biofilm to maintain water flux through the membrane. When the combined treatment was further compared with the common chemical cleaning procedure, a similar reduction on the cell numbers was observed (1.4 log). However, the combined treatment was less effective in removing EPS compared with chemical cleaning. These results suggest that the combination of UV-C and bacteriophage have an additive effect in biofouling reduction, representing a potential chemical-free method to remove reversible biofoulants on membrane fitted to an AnMBR.


Assuntos
Bacteriófagos/fisiologia , Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Reatores Biológicos/microbiologia , Membranas/química , Raios Ultravioleta , Purificação da Água/métodos , Anaerobiose , Bactérias/virologia , Biofilmes/efeitos da radiação , Membranas/efeitos da radiação , Membranas/virologia , Águas Residuárias/química
13.
Rev. medica electron ; 43(4): 1029-1044, 2021. tab, graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1341533

RESUMO

RESUMEN Introducción: la diseminación de microorganismos multirresistentes en el hospital, constituye un importante problema epidemiológico y terapéutico que afecta especialmente a pacientes de la Unidad de Cuidados Intensivos. Objetivo: escribir el comportamiento de las infecciones nosocomiales y la resistencia antimicrobiana en la Unidad de Cuidados Intensivos. Materiales y métodos: se realizó un estudio de tipo descriptivo, observacional y prospectivo en la Unidad de Cuidados Intensivos del Hospital Universitario Clínico Quirúrgico Comandante Faustino Pérez Hernández, durante el primer semestre de 2020. El universo estuvo constituido por 102 pacientes que ingresaron en la Unidad de Cuidados Intensivos en el período estudiado, a los que se les realizó estudios microbiológicos. Las variables analizas fueron: causas de ingreso, edad, infecciones nosocomiales, neumonía en ventilados, gérmenes, resistencia antimicrobiana y mortalidad. Se expresaron en tablas y gráficos porcentuales. Resultados: el sexo masculino presentó mayor número de infección nosocomial respecto al femenino, en edades diferentes de la vida. La causa más frecuente de ingreso fue el politrauma. El sitio más común de infección nosocomial fue la vía respiratoria. Predominaron gérmenes como los bacilos gramnegativos fermentadores y las enterobacterias. Antibióticos como los inhibidores de las betalactamasas, otras penicilinas, quinolonas, cefalosporinas, aminoglucósidos y meropenen han adquirido un mayor porciento de resistencia. Conclusiones: la infección nosocomial por bacterias multirresistentes a los antibióticos estratégicos, es un problema dentro de la Unidad de Cuidados Intensivos asociado a la ventilación mecánica, que provoca una elevada mortalidad (AU).


ABSTRACT Introduction: the spread of multi-resistant microorganisms in the hospital is a major epidemiological and therapeutic problem that particularly affects critical patients admitted to the Intensive Care Unit. Objective: to describe the behavior of nosocomial infections and antimicrobial resistance in the Intensive Care Unit. Materials and Methods: a descriptive, observational and prospective study was carried out in the Intensive Care Unit of the Teaching Clinic-Surgical Hospital Faustino Pérez Hernández, during the first half of 2020. The universe was formed by 102 patients who entered the Intensive Care Unit during the studied period, to whom microbiological studies were carried out. The analyzed variables were the following: causes of admission, age, nosocomial infections, ventilator-associated pneumonia, germs, antimicrobial resistance and mortality. The results were expressed in tables and percentage charts. Results: Male sex showed the highest number of nosocomial infection compared to the female, at different ages of life. The most common cause of admission was polytrauma. The most common site of nosocomial infection was the airway. Germs like fermentative Gram-negative bacilli and enterobacteria predominated. Antibiotics such as beta-lactamase inhibitors, other kinds of penicillin, quinolones, cephalosporin, aminoglycosides and meropenen have acquired a higher percent of resistance. Conclusions: nosocomial infection caused by bacteria that have developed multi-resistance to strategic antibiotics is a problem within the Intensive Care Unit, associated to mechanical ventilation, and leads to high mortality (AU).


Assuntos
Humanos , Masculino , Feminino , Infecção Hospitalar/complicações , Cuidados Críticos/métodos , Bactérias/virologia , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/mortalidade , Infecção Hospitalar/tratamento farmacológico , Hospitais
14.
NPJ Biofilms Microbiomes ; 7(1): 23, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727564

RESUMO

New long read sequencing technologies offer huge potential for effective recovery of complete, closed genomes from complex microbial communities. Using long read data (ONT MinION) obtained from an ensemble of activated sludge enrichment bioreactors we recover 22 closed or complete genomes of community members, including several species known to play key functional roles in wastewater bioprocesses, specifically microbes known to exhibit the polyphosphate- and glycogen-accumulating organism phenotypes (namely Candidatus Accumulibacter and Dechloromonas, and Micropruina, Defluviicoccus and Candidatus Contendobacter, respectively), and filamentous bacteria (Thiothrix) associated with the formation and stability of activated sludge flocs. Additionally we demonstrate the recovery of close to 100 circularised plasmids, phages and small microbial genomes from these microbial communities using long read assembled sequence. We describe methods for validating long read assembled genomes using their counterpart short read metagenome-assembled genomes, and assess the influence of different correction procedures on genome quality and predicted gene quality. Our findings establish the feasibility of performing long read metagenome-assembled genome recovery for both chromosomal and non-chromosomal replicons, and demonstrate the value of parallel sampling of moderately complex enrichment communities to obtaining high quality reference genomes of key functional species relevant for wastewater bioprocesses.


Assuntos
Bactérias/classificação , Reatores Biológicos/microbiologia , Biologia Computacional/métodos , Esgotos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Genoma Bacteriano , Glicogênio/metabolismo , Metagenoma , Plasmídeos/genética , Polifosfatos/metabolismo
15.
Acta sci., Health sci ; 43: e52932, Feb.11, 2021.
Artigo em Inglês | LILACS | ID: biblio-1368494

RESUMO

Unravelling the efficacy of gut biome has a major impact on health. An unbalanced microbiome composition is linked to many common illnesses such as gut dysbiosis, mental deformities and immunological imbalance. An optimistic influence on the gut biome can be made by consumingprobiotics. This would stimulate neuroprotection and immunomodulation intended by heavy metals pollution. Lead is a major source of neurotoxin that can induce neural deformities. Lactobacillusspecies isolated from curd were characterized to confirm its specificity. Zebra fish was reared at standard conditions and preclinical assessment on the intensity of induced neurotoxin lead was performed. The embryo toxic assay, immunomodulation effects and animal behavioural models endorsed the consequence of neurotoxicity. Different concentrations of bacterial isolate with standard antidepressant was considered for analysing the vigour of toxicity and its influence on cognitive behaviour by novel tank diving method. The restrain in the animal behaviour was also conferred by all the test samples with a decreased bottom dwelling time which was authenticated with haematology and histopathological studies. The alterations in morphology of the lymphocytes were balanced by the treated test samples. This study paves a twofold potential of probiotic as neuroprotectant and immune modulator against heavy metal toxicity.


Assuntos
Animais , Bactérias/patogenicidade , Peixe-Zebra , Probióticos/análise , Neuroproteção/imunologia , Eixo Encéfalo-Intestino/imunologia , Chumbo/análise , Bactérias/virologia , Anormalidades Congênitas/virologia , Linfócitos/microbiologia , Metais Pesados/análise , Toxicidade , Imunomodulação/imunologia , Disbiose/microbiologia , Lactobacillus/imunologia
16.
Viruses ; 13(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430116

RESUMO

Virus research has advanced significantly since the discovery of the tobacco mosaic virus (TMV), the characterization of its infection mechanisms and the factors that determine their pathogenicity. However, most viral research has focused on pathogenic viruses to humans, animals and plants, which represent only a small fraction in the virosphere. As a result, the role of most viral genes, and the mechanisms of coevolution between mutualistic viruses, their host and their environment, beyond pathogenicity, remain poorly understood. This review focuses on general aspects of viruses that interact with extremophile organisms, characteristics and examples of mechanisms of adaptation. Finally, this review provides an overview on how knowledge of extremophile viruses sheds light on the application of new tools of relevant use in modern molecular biology, discussing their value in a biotechnological context.


Assuntos
Biotecnologia , Microbiologia Ambiental , Extremófilos/virologia , Animais , Vírus de Archaea/fisiologia , Bactérias/virologia , Humanos , Nanomedicina
17.
STAR Protoc ; 1(2): 100084, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33111117

RESUMO

The gut microbiome is dominated by lysogens, bacteria that carry bacterial viruses (phages). Uncovering the function of phages in the microbiome and observing interactions between phages, bacteria, and mammalian cells in real time in specific cell types are limited by the difficulty of engineering fluorescent markers into large, lysogenic phage genomes. Here, we present a method to multiplex the engineering of life-cycle reporters into lysogenic phages and how to infect macrophages with engineered lysogens to study these interactions at the single-cell level. For complete details on the use and execution of this protocol, please refer to Bodner et al. (2020).


Assuntos
Bacteriófagos/genética , Macrófagos/virologia , Análise de Célula Única/métodos , Bactérias/virologia , Bioengenharia/métodos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Engenharia Genética/métodos , Lisogenia , Prófagos/genética , Ativação Viral/fisiologia
18.
Nature ; 586(7829): 429-433, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32877915

RESUMO

Stimulator of interferon genes (STING) is a receptor in human cells that senses foreign cyclic dinucleotides that are released during bacterial infection and in endogenous cyclic GMP-AMP signalling during viral infection and anti-tumour immunity1-5. STING shares no structural homology with other known signalling proteins6-9, which has limited attempts at functional analysis and prevented explanation of the origin of cyclic dinucleotide signalling in mammalian innate immunity. Here we reveal functional STING homologues encoded within prokaryotic defence islands, as well as a conserved mechanism of signal activation. Crystal structures of bacterial STING define a minimal homodimeric scaffold that selectively responds to cyclic di-GMP synthesized by a neighbouring cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzyme. Bacterial STING domains couple the recognition of cyclic dinucleotides with the formation of protein filaments to drive oligomerization of TIR effector domains and rapid NAD+ cleavage. We reconstruct the evolutionary events that followed the acquisition of STING into metazoan innate immunity, and determine the structure of a full-length TIR-STING fusion from the Pacific oyster Crassostrea gigas. Comparative structural analysis demonstrates how metazoan-specific additions to the core STING scaffold enabled a switch from direct effector function to regulation of antiviral transcription. Together, our results explain the mechanism of STING-dependent signalling and reveal the conservation of a functional cGAS-STING pathway in prokaryotic defence against bacteriophages.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Evolução Molecular , Proteínas de Membrana , Sistemas do Segundo Mensageiro , Animais , Bactérias/química , Bactérias/virologia , Proteínas de Bactérias/química , Bacteriófagos , Cristalografia por Raios X , GMP Cíclico/metabolismo , Proteínas de Membrana/química , Modelos Moleculares , NAD/metabolismo , Nucleotidiltransferases/metabolismo
19.
Science ; 369(6507): 1077-1084, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32855333

RESUMO

Bacteria and archaea are frequently attacked by viruses and other mobile genetic elements and rely on dedicated antiviral defense systems, such as restriction endonucleases and CRISPR, to survive. The enormous diversity of viruses suggests that more types of defense systems exist than are currently known. By systematic defense gene prediction and heterologous reconstitution, here we discover 29 widespread antiviral gene cassettes, collectively present in 32% of all sequenced bacterial and archaeal genomes, that mediate protection against specific bacteriophages. These systems incorporate enzymatic activities not previously implicated in antiviral defense, including RNA editing and retron satellite DNA synthesis. In addition, we computationally predict a diverse set of other putative defense genes that remain to be characterized. These results highlight an immense array of molecular functions that microbes use against viruses.


Assuntos
Adenosina Desaminase/química , Archaea/virologia , Vírus de Archaea/imunologia , Bactérias/virologia , Bacteriófagos/imunologia , Sistemas CRISPR-Cas , Edição de RNA , Adenosina Desaminase/classificação , Adenosina Desaminase/genética , Archaea/enzimologia , Proteínas Arqueais , Bactérias/enzimologia , Proteínas de Bactérias , Genes Arqueais , Genes Bacterianos , Domínios Proteicos
20.
J Mol Biol ; 432(13): 3771-3789, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32305462

RESUMO

Molecular chaperones maintain cellular protein homeostasis by acting at almost every step in protein biogenesis pathways. The DnaK/HSP70 chaperone has been associated with almost every known essential chaperone functions in bacteria. To act as a bona fide chaperone, DnaK strictly relies on essential co-chaperone partners known as the J-domain proteins (JDPs, DnaJ, Hsp40), which preselect substrate proteins for DnaK, confer its specific cellular localization, and stimulate both its weak ATPase activity and substrate transfer. Remarkably, genome sequencing has revealed the presence of multiple JDP/DnaK chaperone/co-chaperone pairs in a number of bacterial genomes, suggesting that certain pairs have evolved toward more specific functions. In this review, we have used representative sets of bacterial and phage genomes to explore the distribution of JDP/DnaK pairs. Such analysis has revealed an unexpected reservoir of novel bacterial JDPs co-chaperones with very diverse and unexplored function that will be discussed.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Domínios Proteicos/genética , Adenosina Trifosfatases/genética , Bactérias/virologia , Bacteriófagos/genética , Escherichia coli/virologia , Humanos , Redes e Vias Metabólicas/genética , Chaperonas Moleculares/genética , Biossíntese de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA