Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 79, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755437

RESUMO

A nitrogen-fixing strain designated SG130T was isolated from paddy soil in Fujian Province, China. Strain SG130T was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130T showed the highest 16S rRNA gene sequence similarities with the type strains Dendrosporobacter quercicolus DSM 1736T (91.7%), Anaeroarcus burkinensis DSM 6283T (91.0%) and Anaerospora hongkongensis HKU 15T (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130T clustered with members of the family Sporomusaceae and was distinguished from other genera within this family. Growth of strain SG130T was observed at 25-45 °C (optimum 30 °C), pH 6.0-9.5 (optimum 7.0) and 0-1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C13:0 3OH (26.6%), iso-C17:1 (15.6%) and iso-C15:1 F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130T possessed core genes (nifHDK) involved in nitrogen fixation, and nitrogenase activity (106.38 µmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the above results, strain SG130T is confirmed to represent a novel genus of the family Sporomusaceae, for which the name Azotosporobacter soli gen. nov., sp. nov. is proposed. The type strain is SG130T (= GDMCC 1.3312T = JCM 35641T).


Assuntos
Composição de Bases , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Técnicas de Tipagem Bacteriana , China , Fosfolipídeos/análise , Fixação de Nitrogênio , Análise de Sequência de DNA , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/metabolismo
2.
Sci Rep ; 9(1): 19401, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852991

RESUMO

The Deepwater Horizon (DWH) oil spill contaminated coastlines from Louisiana to Florida, burying oil up to 70 cm depth in sandy beaches, posing a potential threat to environmental and human health. The dry and nutrient-poor beach sand presents a taxing environment for microbial growth, raising the question how the biodegradation of the buried oil would proceed. Here we report the results of an in-situ experiment that (i) characterized the dominant microbial communities contained in sediment oil agglomerates (SOAs) of DWH oil buried in a North Florida sandy beach, (ii) elucidated the long-term succession of the microbial populations that developed in the SOAs, and (iii) revealed the coupling of SOA degradation to nitrogen fixation. Orders of magnitude higher bacterial abundances in SOAs compared to surrounding sands distinguished SOAs as hotspots of microbial growth. Blooms of bacterial taxa with a demonstrated potential for hydrocarbon degradation (Gammaproteobacteria, Alphaproteobacteria, Actinobacteria) developed in the SOAs, initiating a succession of microbial populations that mirrored the evolution of the petroleum hydrocarbons. Growth of nitrogen-fixing prokaryotes or diazotrophs (Rhizobiales and Frankiales), reflected in increased abundances of nitrogenase genes (nifH), catalyzed biodegradation of the nitrogen-poor petroleum hydrocarbons, emphasizing nitrogen fixation as a central mechanism facilitating the recovery of sandy beaches after oil contamination.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Petróleo/toxicidade , Alphaproteobacteria/metabolismo , Praias , Florida , Gammaproteobacteria/metabolismo , Sedimentos Geológicos/química , Humanos , Louisiana , Nitrogênio/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos
3.
World J Microbiol Biotechnol ; 35(7): 99, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222505

RESUMO

The purpose of this study was to develop an effective bacterial consortium and determine their ability to overcome nitrogen limitation for the enhanced remediation of diesel-contaminated soils. Towards this, various bacterial consortia were constructed using oil-degrading and nitrogen-fixing microbes. The diesel removal efficiency of various developed consortia was evaluated by delivering the bacterial consortia to the diesel-contaminated soils. The consortium Acinetobacter sp. K-6 + Rhodococcus sp. Y2-2 + NH4NO3 resulted in the highest removal (85.3%) of diesel from the contaminated soil. The consortium containing two different oil-degrading microbes (K-6 + Y2-2) and one nitrogen-fixing microbe Azotobacter vinelandii KCTC 2426 removed 83.1% of the diesel from the soil after 40 days of treatment. The total nitrogen content analysis revealed higher amounts of nitrogen in soil treated with the nitrogen-fixing microbe when compared with that of the soil supplemented with exogenous inorganic nitrogen. The findings in this present study reveal that the consortium containing the nitrogen-fixing microbe degraded similar amounts of diesel to that degraded by the consortium supplemented with exogenous inorganic nitrogen. This suggests that the developed consortium K-6 + Y2-2 + KCTC 2426 compensated for the nitrogen limitation and eliminated the need for exogenous nitrogen in bioremediation of diesel-contaminated soils.


Assuntos
Gasolina/análise , Bactérias Fixadoras de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Poluentes do Solo/química , Acinetobacter/metabolismo , Azotobacter vinelandii/metabolismo , Biodegradação Ambiental , Rhodococcus/metabolismo , Solo/química
4.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31034011

RESUMO

Climate warming and subsequent permafrost thaw may result in organic carbon and nutrient stores being metabolized by microbial communities, resulting in a positive feedback loop of greenhouse gas (GHG) soil emissions. As the third most important GHG, understanding nitrous oxide (N2O) flux in Arctic mineral ice-wedge polygon cryosols and its relationship to the active microbial community is potentially a key parameter for understanding future GHG emissions and climatic warming potential. In the present study, metatranscriptomic analyses of active layer Arctic cryosols, at a representative ice-wedge polygon site, identified active nitrogen-fixing and denitrifying bacteria that included members of Rhizobiaceae, Nostocaceae, Cyanothecaceae, Rhodobacteraceae, Burkholderiaceae, Chloroflexaceae, Azotobacteraceae and Ectothiorhodospiraceae. Unique microbial assemblages with higher proportion of Rhodobacteriales and Rhocyclales were identified by targeted functional gene sequencing at locations with higher (P = 0.053) N2O emissions in the wetter trough soils compared with the dryer polygon interior soils. This coincided with a higher relative abundance of the denitrification nirS gene and higher nitrate/nitrite concentrations in trough soils. The elevated N2O flux observed from wetter trough soils compared with drier polygon interior soils is concerning from a climate warming perspective, since the Arctic is predicted to become warmer and wetter.


Assuntos
Gelo/análise , Bactérias Fixadoras de Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Pergelissolo/microbiologia , Regiões Árticas , Desnitrificação , Microbiota , Nitratos/metabolismo , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Óxido Nitroso/análise , Pergelissolo/química , Filogenia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA