Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
J Microbiol Biotechnol ; 34(4): 795-803, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38303126

RESUMO

Microorganisms usually coexist as a multifaceted polymicrobial community in the natural habitats and at mucosal sites of the human body. Two opportunistic human pathogens, Pseudomonas aeruginosa and Staphylococcus aureus commonly coexist in the bacterial infections for hospitalized and/or immunocompromised patients. Here, we observed that autolysis of the P. aeruginosa quorum-sensing (QS) mutant (lasRmvfR) was suppressed by the presence of the S. aureus cells in vitro. The QS mutant still displayed killing against S. aureus cells, suggesting the link between the S. aureus-killing activity and the autolysis suppression. Independent screens of the P. aeruginosa transposon mutants defective in the S. aureus-killing and the S. aureus transposon mutants devoid of the autolysis suppression revealed the genetic link between both phenotypes, suggesting that the iron-dependent metabolism involving S. aureus exoproteins might be central to both phenotypes. The autolysis was suppressed by iron treatment as well. These results suggest that the interaction between P. aeruginosa and S. aureus might be governed by mechanisms that necessitate the QS circuitry as well as the metabolism involving the extracellular iron resources during the polymicrobial infections in the human airway.


Assuntos
Ferro , Mutação , Pseudomonas aeruginosa , Percepção de Quorum , Staphylococcus aureus , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Ferro/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Bacteriólise , Interações Microbianas , Elementos de DNA Transponíveis
2.
Nature ; 603(7900): 315-320, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197633

RESUMO

Colibactin is a chemically unstable small-molecule genotoxin that is produced by several different bacteria, including members of the human gut microbiome1,2. Although the biological activity of colibactin has been extensively investigated in mammalian systems3, little is known about its effects on other microorganisms. Here we show that colibactin targets bacteria that contain prophages, and induces lytic development through the bacterial SOS response. DNA, added exogenously, protects bacteria from colibactin, as does expressing a colibactin resistance protein (ClbS) in non-colibactin-producing cells. The prophage-inducing effects that we observe apply broadly across different phage-bacteria systems and in complex communities. Finally, we identify bacteria that have colibactin resistance genes but lack colibactin biosynthetic genes. Many of these bacteria are infected with predicted prophages, and we show that the expression of their ClbS homologues provides immunity from colibactin-triggered induction. Our study reveals a mechanism by which colibactin production could affect microbiomes and highlights a role for microbial natural products in influencing population-level events such as phage outbreaks.


Assuntos
Bactérias , Toxinas Bacterianas , Peptídeos , Policetídeos , Prófagos , Ativação Viral , Bactérias/efeitos dos fármacos , Bactérias/virologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Bacteriólise/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/fisiologia , Resposta SOS em Genética/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos
3.
Nat Commun ; 12(1): 6116, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675204

RESUMO

Critical cancer pathways often cannot be targeted because of limited efficiency crossing cell membranes. Here we report the development of a Salmonella-based intracellular delivery system to address this challenge. We engineer genetic circuits that (1) activate the regulator flhDC to drive invasion and (2) induce lysis to release proteins into tumor cells. Released protein drugs diffuse from Salmonella containing vacuoles into the cellular cytoplasm where they interact with their therapeutic targets. Control of invasion with flhDC increases delivery over 500 times. The autonomous triggering of lysis after invasion makes the platform self-limiting and prevents drug release in healthy organs. Bacterial delivery of constitutively active caspase-3 blocks the growth of hepatocellular carcinoma and lung metastases, and increases survival in mice. This success in targeted killing of cancer cells provides critical evidence that this approach will be applicable to a wide range of protein drugs for the treatment of solid tumors.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Caspase 3/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/prevenção & controle , Neoplasias Pulmonares/tratamento farmacológico , Salmonella/genética , Animais , Bacteriólise , Carcinoma Hepatocelular/fisiopatologia , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sistemas de Liberação de Medicamentos/instrumentação , Feminino , Humanos , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Salmonella/fisiologia , Salmonella typhimurium
4.
J Immunol ; 207(7): 1776-1784, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34497151

RESUMO

Acquired neutrophil dysfunction frequently develops during critical illness, independently increasing the risk for intensive care unit-acquired infection. PI3Kδ is implicated in driving neutrophil dysfunction and can potentially be targeted pharmacologically. The aims of this study were to determine whether PI3Kδ inhibition reverses dysfunction in neutrophils from critically ill patients and to describe potential mechanisms. Neutrophils were isolated from blood taken from critically ill patients requiring intubation and mechanical ventilation, renal support, or blood pressure support. In separate validation experiments, neutrophil dysfunction was induced pharmacologically in neutrophils from healthy volunteers. Phagocytosis and bacterial killing assays were performed, and activity of RhoA and protein kinase A (PKA) was assessed. Inhibitors of PI3Kδ, 3-phosphoinositide-dependent protein kinase-1 (PDK1), and PKA were used to determine mechanisms of neutrophil dysfunction. Sixty-six patients were recruited. In the 27 patients (40.9%) with impaired neutrophil function, PI3Kδ inhibition consistently improved function and significantly increased bacterial killing. These findings were validated in neutrophils from healthy volunteers with salbutamol-induced dysfunction and extended to demonstrate that PI3Kδ inhibition restored killing of clinical isolates of nine pathogens commonly associated with intensive care unit-acquired infection. PI3Kδ activation was associated with PDK1 activation, which in turn phosphorylated PKA, which drove phosphorylation and inhibition of the key regulator of neutrophil phagocytosis, RhoA. These data indicate that, in a significant proportion of critically ill patients, PI3Kδ inhibition can improve neutrophil function through PDK1- and PKA-dependent processes, suggesting that therapeutic use of PI3Kδ inhibitors warrants investigation in this setting.


Assuntos
COVID-19/imunologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Estado Terminal , Neutrófilos/imunologia , Pneumonia/imunologia , SARS-CoV-2/fisiologia , Sepse/imunologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carga Bacteriana , Bacteriólise , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fagocitose , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Insuficiência Respiratória , Risco
5.
J Immunol ; 207(7): 1911-1925, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34462313

RESUMO

The major role of chemokines is to act as a chemoattractant to guide the migration of immune cells to the infectious sites. In the current study, we found that CiCXCL20a, a teleost-specific chemokine from grass carp (Ctenopharyngodon idella), demonstrates broad-spectrum, potent, direct bactericidal activity and immunomodulatory functions to bacterial infections, apart from the chemotaxis. CiCXCL20a kills bacteria by binding, mainly targeting acid lipids, perforating bacterial membrane, resulting in bacterial cytoplasm leakage and death. CiCXCL20a aggregates and neutralizes LPS, agglutinates Gram-negative bacteria, and binds to peptidoglycan and Gram-positive bacteria, but not agglutinate them. All the complexes may be phagocytized and cleared away. CiCXCL20a chemoattracts leukocytes, facilitates phagocytosis of myeloid leukocytes, not lymphoid leukocytes, and enhances the bacteria-killing ability in leukocytes. We further identified its receptor CiCXCR3.1b1. Furthermore, we investigated the physiological roles of CiCXCL20a against Aeromonas hydrophila infection in vivo. The recombinant CiCXCL20a increases the survival rate and decreases the tissue bacterial loads, edema, and lesions. Then, we verified this function by purified CiCXCL20a Ab blockade, and the survival rate decreases, and the tissue bacterial burdens increase. In addition, zebrafish (Danio rerio) DrCXCL20, an ortholog of CiCXCL20a, was employed to verify the bactericidal function and mechanism. The results indicated that DrCXCL20 also possesses wide-spectrum, direct bactericidal activity through membrane rupture mechanism. The present study, to our knowledge, provides the first evidence that early vertebrate chemokine prevents from bacterial infections by direct bactericidal and phagocytosis-killing-promoting manners. The results also demonstrate the close functional relationship between chemokines and antimicrobial peptides.


Assuntos
Aeromonas hydrophila/fisiologia , Carpas/imunologia , Quimiocinas CXC/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Peixe-Zebra/imunologia , Animais , Bacteriólise , Quimiocinas CXC/genética , Quimiotaxia , Clonagem Molecular , Citotoxicidade Imunológica , Proteínas de Peixes/genética , Fagocitose
6.
Viruses ; 13(1)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375201

RESUMO

Atopic dermatitis is accompanied by the abnormal overgrowth of Staphylococcus aureus, a common cause of skin infections and an opportunistic pathogen. Although administration of antibiotics is effective against S. aureus, the resulting reduction in healthy microbiota and the emergence of drug-resistant bacteria are of concern. We propose that phage therapy can be an effective strategy to treat atopic dermatitis without perturbing the microbiota structure. In this study, we examined whether the S. aureus phage SaGU1 could be a tool to counteract the atopic exacerbation induced by S. aureus using an atopic mouse model. Administration of SaGU1 to the back skin of mice reduced both S. aureus counts and the disease exacerbation caused by S. aureus. Furthermore, the S. aureus-mediated exacerbation of atopic dermatitis with respect to IgE plasma concentration and histopathological findings was ameliorated by the application of SaGU1. We also found that Staphylococcus epidermidis, a typical epidermal symbiont in healthy skin, significantly attenuated the emergence of SaGU1-resistant S. aureus under co-culture with S. aureus and S. epidermidis in liquid culture infection experiments. Our results suggest that phage therapy using SaGU1 could be a promising clinical treatment for atopic dermatitis.


Assuntos
Dermatite Atópica/etiologia , Dermatite Atópica/terapia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia , Staphylococcus epidermidis/fisiologia , Antibiose , Bacteriólise , Biópsia , Terapia Combinada , Dermatite Atópica/patologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Humanos , Terapia por Fagos , Infecções Estafilocócicas/patologia
7.
Nat Chem Biol ; 16(1): 24-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686030

RESUMO

Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.


Assuntos
Lisostafina/química , Peptidoglicano/química , Staphylococcus aureus/química , Bacteriólise/efeitos dos fármacos , Biofilmes , Parede Celular/química , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Glicina/química , Ligantes , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Peptídeos/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Domínios de Homologia de src
8.
Viruses ; 11(8)2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387285

RESUMO

Streptococcus suis (S. suis) is a gram-positive bacterium and zoonotic pathogen. Currently it poses a serious problem in the swine industry due to the emergence of antibiotic-resistant bacteria. Thus, novel antimicrobials against S. suis infections are urgently needed. In the previous study, a cell wall hydrolase or lysin derived from Streptococcus prophage phi5218, termed Ply5218, was identified. This lysin showed strong bacteriolytic activity against S. suis. In the current study, the in vitro data showed that after incubation with pig serum, the bacteriolytic efficacy of Ply5218 declined in a time-dependent manner. The in vivo assays indicated that a Ply5218 triple treatment (6, 24, and 48 h post infection) was effective against various serotypes of S. suis in a murine infection model. This regimen also alleviated streptococcal-induced clinical symptoms in piglets and significantly reduced the bacterial burden and levels of interleukin 6, a proinflammatory cytokine. This study indicates that Ply5218 shows strong antibacterial activity in pigs and has the potential to be used as a treatment for infectious diseases caused by S. suis.


Assuntos
Antibacterianos/administração & dosagem , Enzimas/administração & dosagem , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/terapia , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Carga Bacteriana/efeitos dos fármacos , Bacteriólise , Enzimas/isolamento & purificação , Enzimas/farmacologia , Interleucina-6/sangue , Camundongos , Testes de Sensibilidade Microbiana , Sorogrupo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/terapia , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Suínos , Doenças dos Suínos/microbiologia , Resultado do Tratamento
9.
PLoS Negl Trop Dis ; 13(8): e0007113, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425525

RESUMO

Buruli Ulcer (BU) is a cutaneous disease caused by Mycobacterium ulcerans. The pathogenesis of this disease is closely related to the secretion of the toxin mycolactone that induces extensive destruction of the skin and soft tissues. Currently, there are no effective measures to prevent the disease and, despite availability of antibiotherapy and surgical treatments, these therapeutic options are often associated with severe side effects. Therefore, it is important to develop alternative strategies for the treatment of BU. Endolysins (lysins) are phage encoded enzymes that degrade peptidoglycan of bacterial cell walls. Over the past years, lysins have been emerging as alternative antimicrobial agents against bacterial infections. However, mycobacteria have an unusual outer membrane composed of mycolylarabinogalactan-peptidoglycan. To overcome this complex barrier, some mycobacteriophages encode a lipolytic enzyme, Lysin B (LysB). In this study, we demonstrate for the first time that recombinant LysB displays lytic activity against M. ulcerans isolates. Moreover, using a mouse model of M. ulcerans footpad infection, we show that subcutaneous treatment with LysB prevented further bacterial proliferation, associated with IFN-γ and TNF production in the draining lymph node. These findings highlight the potential use of lysins as a novel therapeutic approach against this neglected tropical disease.


Assuntos
Úlcera de Buruli/tratamento farmacológico , Endopeptidases/administração & dosagem , Micobacteriófagos/enzimologia , Mycobacterium ulcerans/efeitos dos fármacos , Animais , Bacteriólise , Úlcera de Buruli/patologia , Modelos Animais de Doenças , Endopeptidases/farmacologia , Feminino , Interferon gama/análise , Linfonodos/imunologia , Camundongos Endogâmicos BALB C , Mycobacterium ulcerans/virologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/análise
10.
Viruses ; 11(7)2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323792

RESUMO

The virome is comprised of endogenous retroviruses, eukaryotic viruses, and bacteriophages and is increasingly being recognized as an essential part of the human microbiome. The human virome is associated with Type-1 diabetes (T1D), Type-2 diabetes (T2D), Inflammatory Bowel Disease (IBD), Human Immunodeficiency Virus (HIV) infection, and cancer. Increasing evidence also supports trans-kingdom interactions of viruses with bacteria, small eukaryotes and host in disease progression. The present review focuses on virus ecology and biology and how this translates mostly to human gut virome research. Current challenges in the field and how the development of bioinformatic tools and controls are aiding to overcome some of these challenges are also discussed. Finally, the present review also focuses on how human gut virome research could result in translational and clinical studies that may facilitate the development of therapeutic approaches.


Assuntos
Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Microbiota , Vírus , Adaptação Biológica , Animais , Bactérias/genética , Bactérias/virologia , Bacteriólise , Bacteriófagos/fisiologia , Disbiose , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Interações Microbianas , Vírus/classificação , Vírus/genética
11.
Int J Antimicrob Agents ; 54(3): 329-337, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31229670

RESUMO

Orthopaedic implant-associated infections are a devastating complication of orthopaedic surgery with a significant impact on patients and healthcare systems. The aims of this work were to describe the patterns of antimicrobial resistance, pathogenicity and virulence of clinical bacterial isolates from orthopaedic implant-associated infections and to further isolate and characterise bacteriophages that are efficient in controlling these bacteria. Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolated from orthopaedic infections showed multiresistance patterns to the most frequently used antibiotics in clinical settings. The presence of mobile genetic elements (mecA, Tn916/Tn1545 and intl1) and virulence determinants (icaB, cna, hlb, cylLs, cylM, agg, gelE, fsr and fimA) highlighted the pathogenicity of these isolates. Moreover, the isolates belonged to clonal complexes associated with the acquisition of pathogenicity islands and antimicrobial resistance genes by recombination and horizontal gene transfer. Bacteriophages vB_SauM_LM12, vB_EfaS_LM99 and vB_EcoM_JB75 were characterised and their ability to infect clinical isolates of S. aureus, E. faecalis and E. coli, respectively, was assessed. Morphological and genomic analyses revealed that vB_EfaS_LM99 and vB_EcoM_JB75 belong to the Siphoviridae and Myoviridae families, respectively, and no genes associated with lysogeny were found. The bacteriophages showed low latent periods, high burst sizes, broad host ranges and tolerance to several environmental conditions. Moreover, they showed high efficiency and specificity to infect and reduce clinical bacteria, including methicillin-resistant S. aureus and vancomycin-resistant enterococci. Therefore, the results obtained suggest that the bacteriophages used in this work are a promising approach to control these pathogens involved in orthopaedic implant-associated infections.


Assuntos
Bacteriólise , Bacteriófagos/isolamento & purificação , Infecções por Escherichia coli/terapia , Infecções por Bactérias Gram-Positivas/terapia , Terapia por Fagos/métodos , Infecções Relacionadas à Prótese/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bacteriófagos/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/patogenicidade , Enterococcus faecalis/virologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Escherichia coli/virologia , Feminino , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Ortopédicos/efeitos adversos , Infecções Relacionadas à Prótese/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/virologia
12.
Cell Host Microbe ; 25(5): 746-755.e5, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071296

RESUMO

Temperate phages can adopt either a lytic or lysogenic lifestyle within their host bacteria. It was recently shown that Bacillus-subtilis-infecting phages of the SPbeta group utilize a peptide-based communication system called arbitrium to coordinate the lysogeny decision. The occurrence of peptide-based communication systems among phages more broadly remains to be explored. Here, we uncover a wide array of peptide-based communication systems utilized by phages for lysogeny decisions. These arbitrium-like systems show diverse peptide codes and can be detected in numerous genetically distant phage types and conjugative elements. The pathogens Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are commonly infected by arbitrium-carrying mobile elements, which often carry toxins essential for pathogenicity. Experiments with phages containing these arbitrium-like systems demonstrate their involvement in lysogeny decisions. Finally, our results suggest that the peptide-based decision is executed by an antisense RNA that controls the regulator of the lysogenic state.


Assuntos
Fagos Bacilares/crescimento & desenvolvimento , Bacillus anthracis/virologia , Bacillus cereus/virologia , Bacillus thuringiensis/virologia , Regulação Viral da Expressão Gênica , Peptídeos/metabolismo , Microbiologia do Solo , Fagos Bacilares/genética , Bacteriólise , Lisogenia , RNA não Traduzido/metabolismo
13.
Sci Rep ; 9(1): 6643, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040333

RESUMO

Chronic wounds affect thousands of people worldwide, causing pain and discomfort to patients and represent significant economical burdens to health care systems. The treatment of chronic wounds is very difficult and complex, particularly when wounds are colonized by bacterial biofilms which are highly tolerant to antibiotics. Enterococcus faecium and Enterococcus faecalis are within the most frequent bacteria present in chronic wounds. Bacteriophages (phages) have been proposed as an efficient and alternative against antibiotic-resistant infections, as those found in chronic wounds. We have isolated and characterized two novel enterococci phages, the siphovirus vB_EfaS-Zip (Zip) and the podovirus vB_EfaP-Max (Max) to be applied during wound treatment. Both phages demonstrated lytic behavior against E. faecalis and E. faecium. Genome analysis of both phages suggests the absence of genes associated with lysogeny. A phage cocktail containing both phages was tested against biofilms formed in wound simulated conditions at a multiplicity of infection of 1.0 and a 2.5 log CFU.mL-1 reduction in the bacterial load after at 3 h of treatment was observed. Phages were also tested in epithelial cells colonized by these bacterial species and a 3 log CFU.mL-1 reduction was observed using both phages. The high efficacy of these new isolated phages against multi-species biofilms, their stability at different temperatures and pH ranges, short latent periods and non-cytotoxicity to epithelial cells suggest their therapeutic use to control infectious biofilms present in chronic wounds.


Assuntos
Bacteriófagos/fisiologia , Biofilmes , Enterococcus/virologia , Terapia por Fagos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/terapia , Células 3T3 , Animais , Bacteriólise , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Sobrevivência Celular , Células Epiteliais/virologia , Genes Virais , Especificidade de Hospedeiro , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Temperatura
14.
Artigo em Inglês | MEDLINE | ID: mdl-30863725

RESUMO

Streptococcosis is recognized as a leading infectious disease in the swine industry. Streptococcus suis serotype 2 is regarded as the most virulent species, which threatens human and pig health and causes serious economic losses. In this study, multiple in vitro and in vivo effects of MP1102 on multidrug resistant S. suis was studied for the first time. MP1102 exhibited significant antibacterial activity against S. suis (minimum inhibitory concentration, MIC = 0.028-0.228 µM), rapid bacteriocidal action, a longer postantibiotic effect than ceftriaxone, and a synergistic or additive effect with lincomycin, penicillin, and ceftriaxone (FICI = 0.29-0.96). No resistant mutants appeared after 30 serial passages of S. suis in the presence of MP1102. Flow cytometric analysis and electron microscopy observations showed that MP1102 destroyed S. suis cell membrane integrity and affected S. suis cell ultrastructure and membrane morphology. Specifically, a significantly wrinkled surface, intracellular content leakage, and cell lysis were noted, establishing a cyto-basis of nonresistance to this pathogen. DNA gel retardation and circular dichroism analysis indicated that MP1102 interacted with DNA by binding to DNA and changing the DNA conformation, even leading to the disappearance of the helical structure. This result further supported the mechanistic basis of nonresistance via interaction with an intracellular target, which could serve as a means of secondary injury after MP1102 is transported across the membrane. Upon treatment with 2.5-5.0 mg/kg MP1102, the survival of mice challenged with S. suis was 83.3-100%. MP1102 decreased bacterial translocation in liver, lung, spleen, and blood; inhibited the release of interleukin-1ß and tumor necrosis factor-α; and relieved the lung, liver, and spleen from acute injury induced by S. suis. These results suggest that MP1102 is a potent novel antibacterial agent for the treatment of porcine streptococcal disease.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Streptococcus suis/efeitos dos fármacos , Estruturas Animais/microbiologia , Estruturas Animais/patologia , Animais , Bacteriólise/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , DNA Bacteriano/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , Sorogrupo , Infecções Estreptocócicas/patologia , Streptococcus suis/classificação , Streptococcus suis/fisiologia , Streptococcus suis/ultraestrutura , Análise de Sobrevida
15.
Food Res Int ; 116: 795-801, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717010

RESUMO

The potential of PEF for triggering autolysis of Saccharomyces cerevisiae and accelerating the release of mannoproteins during aging on the lees of Chardonnay wine was evaluated. Release of mannoproteins in Chardonnay wine increased drastically in samples containing PEF-treated (5 and 10 kV/cm, 75 µs) yeasts. No mannoprotein release was observed in the first seven days of aging on the lees in wine containing untreated yeast; however, after the same time interval, the concentration of those compounds increased by 40 and 60% in wines containing yeast treated by PEF at 5 and 10 kV/cm, respectively. After 30 days of incubation, the mannoprotein concentration in wines containing yeast treated under the most intense PEF conditions reached the maximum value. Control cells, on the other hand, required six months to reach that maximum level. Chromatic characteristics, total polyphenol index, total volatile acidity, pH, ethanol, and CIELAB parameters of the wine were not affected during aging on the lees with untreated and PEF-treated yeast. On the other hand, the capability of the mannoproteins released from yeast treated by PEF for decreasing wine turbidity, foaming, and interacting with tannins was similar to that of those released from untreated yeast; the differences observed were a consequence of the varying concentration of mannoproteins. The result obtained demonstrates that PEF permits the acceleration of the aging-on-lees step while avoiding or reducing the problems associated with it. To achieve this effect, intense treatment is not required. Therefore, wineries could process lees by using the most economical PEF devices on the market.


Assuntos
Eletricidade , Frutas/microbiologia , Glicoproteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Vitis/microbiologia , Vinho/microbiologia , Bacteriólise , Fermentação , Microbiologia de Alimentos , Fatores de Tempo
16.
Appl Microbiol Biotechnol ; 103(1): 315-326, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30397766

RESUMO

Urinary tract infections are one of the most common infectious diseases worldwide. Uropathogenic Escherichia coli (UPEC) is a major cause of unary tract infection. Due to increasing prevalence of multidrug resistance, alternative methods to eradicate the UPECs are urgently needed. In this respect, phage therapy has been demonstrated to be a good candidate. Here, we described a novel bacteriophage named vB_EcoP-EG1, which can infect several strains of UPEC. Phage morphology and genome sequencing analysis show that vB_EcoP-EG1 belongs to the T7-like Podoviridae. vB_EcoP-EG1 possesses a genome (39,919 bp) containing 51 predicted genes and 149 bp terminal repeats. vB_EcoP-EG1 genome does not encode toxic proteins or proteins related to lysogeny. And no known virulent proteins were found in purified phage particles by mass spectrometry. vB_EcoP-EG1 appeared to be relatively specific and sensitive to clinical UPEC strains, which could infect 10 out of 21 clinical multidrug-resistant UPEC strains. In addition, vB_EcoP-EG1 suspension can eliminate biofilm formed by E. coli MG1655 and multidrug-resistant UPEC strain 390G7. Therefore, we concluded that vB_EcoP-EG1 has desirable characteristics for potential therapy, which may serve as an alternative to antibiotic therapy against urinary tract infections caused by multidrug-resistant UPEC.


Assuntos
Podoviridae/fisiologia , Escherichia coli Uropatogênica/virologia , Bacteriólise , Biofilmes , Farmacorresistência Bacteriana Múltipla , Genoma Viral , Especificidade de Hospedeiro , Humanos , Terapia por Fagos , Filogenia , Plâncton/virologia , Podoviridae/genética , Podoviridae/patogenicidade , Escherichia coli Uropatogênica/isolamento & purificação , Proteínas Estruturais Virais/genética
17.
Nat Microbiol ; 3(11): 1285-1294, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323253

RESUMO

Communication is vital for all organisms including microorganisms, which is clearly demonstrated by the bacterial quorum-sensing system. However, the molecular mechanisms underlying communication among viruses (phages) via the quorum-sensing-like 'arbitrium' system remain unclear. Viral or host densities are known to be related to an increased prevalence of lysogeny; however, how the switch from the lytic to the lysogenic pathway occurs is unknown. Thus, we sought to reveal mechanisms of communication among viruses and determine the lysogenic dynamics involved. Structural and functional analyses of the phage-derived SAIRGA and GMPRGA peptides and their corresponding receptors, phAimR and spAimR, indicated that SAIRGA directs the lysis-lysogeny decision of phi3T by modulating conformational changes in phAimR, whereas GMPRGA regulates the lysis-lysogeny pathway by stabilizing spAimR in the dimeric state. Although temperate viruses are thought to share a similar lytic-lysogenic cycle switch model, our study suggests the existence of alternative strain-specific mechanisms that regulate the lysis-lysogeny decision. Collectively, these findings provide insights into the molecular mechanisms underlying communication among viruses, offering theoretical applications for the treatment of infectious viral diseases.


Assuntos
Fagos Bacilares/fisiologia , Bacteriólise , Lisogenia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Fagos Bacilares/efeitos dos fármacos , Bacillus subtilis/citologia , Bacillus subtilis/virologia , Bacteriólise/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Lisogenia/efeitos dos fármacos , Modelos Biológicos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Especificidade da Espécie , Relação Estrutura-Atividade , Proteínas Virais/química
18.
Nat Microbiol ; 3(11): 1266-1273, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30224798

RESUMO

A bacteriophage can replicate and release virions from a host cell in the lytic cycle or switch to a lysogenic process in which the phage integrates itself into the host genome as a prophage. In Bacillus cells, some types of phages employ the arbitrium communication system, which contains an arbitrium hexapeptide, the cellular receptor AimR and the lysogenic negative regulator AimX. This system controls the decision between the lytic and lysogenic cycles. However, both the mechanism of molecular recognition between the arbitrium peptide and AimR and how downstream gene expression is regulated remain unknown. Here, we report crystal structures for AimR from the SPbeta phage in the apo form and the arbitrium peptide-bound form at 2.20 Å and 1.92 Å, respectively. With or without the peptide, AimR dimerizes through the C-terminal capping helix. AimR assembles a superhelical fold and accommodates the peptide encircled by its tetratricopeptide repeats, which is reminiscent of RRNPP family members from the quorum-sensing system. In the absence of the arbitrium peptide, AimR targets the upstream sequence of the aimX gene; its DNA binding activity is prevented following peptide binding. In summary, our findings provide a structural basis for peptide recognition in the phage lysis-lysogeny decision communication system.


Assuntos
Fagos Bacilares/fisiologia , Bacteriólise , Lisogenia , Peptídeos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Fagos Bacilares/efeitos dos fármacos , Bacillus subtilis/citologia , Bacillus subtilis/virologia , Bacteriólise/efeitos dos fármacos , Cristalografia por Raios X , Regulação Viral da Expressão Gênica , Lisogenia/efeitos dos fármacos , Mutação , Peptídeos/farmacologia , Ligação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Proteínas Virais/genética
19.
Hernia ; 22(6): 961-974, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30168006

RESUMO

BACKGROUND: Infectious complications following mesh implantation for abdominal wall repair appear in 0.7 up to 26.6% of hernia repairs and can have a detrimental impact for the patient. To prevent or to treat mesh-related infection, the scientific community is currently developing a veritable arsenal of antibacterial meshes. The numerous and increasing reports published every year describing new technologies indicate a clear clinical need, and an academic interest in solving this problem. Nevertheless, to really appreciate, to challenge, to compare and to optimize the antibacterial properties of next generation meshes, it is important to know which models are available and to understand them. PURPOSE: We proposed for the first time, a complete overview focusing only on the in vitro and in vivo models which have been employed specifically in the field of antibacterial meshes for hernia repair. RESULTS AND CONCLUSION: From this investigation, it is clear that there has been vast progress and breadth in new technologies and models to test them. However, it also shows that standardization or adoption of a more restricted number of models would improve comparability and be a benefit to the field of study.


Assuntos
Anti-Infecciosos/administração & dosagem , Herniorrafia , Modelos Animais , Modelos Biológicos , Telas Cirúrgicas , Infecção da Ferida Cirúrgica/prevenção & controle , Animais , Aderência Bacteriana , Bacteriólise , Biofilmes , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Humanos , Teste de Materiais
20.
Can J Microbiol ; 64(9): 629-637, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30169128

RESUMO

Growth of two dissimilatory sulfate-reducing bacteria, Desulfosporosinus orientis (gram-positive) and Desulfovibrio desulfuricans (gram-negative), in a chemically defined culture medium resulted in similar growth rates (doubling times for each culture = 2.8 h) and comparable rates of H2S generation (D. orientis = 0.19 nmol/L S2- per cell per h; D. desulfuricans = 0.12 nmol/L S2- per cell per h). Transmission electron microscopy of whole mounts and thin sections revealed that the iron sulfide mineral precipitates produced by the two cultures were morphologically different. The D. orientis culture flocculated, with the minerals occurring as subhedral plate-like precipitates, which nucleated on the cell wall during exponential growth producing extensive mineral aggregates following cell autolysis and endospore release. In contrast, the D. desulfuricans culture produced fine-grained colloidal or platy iron sulfide precipitates primarily within the bulk solution. Mineral analysis by scanning electron microscopy - energy dispersive spectroscopy indicated that neither culture promoted advanced mineral development beyond a 1:1 Fe:S stoichiometry. This analysis did not detect pyrite (FeS2). The average Fe:S ratios were 1 : 1.09 ± 0.03 at 24 h and 1 : 1.08 ± 0.03 at 72 h for D. orientis and 1 : 1.05 ± 0.02 at 24 h and 1 : 1.09 ± 0.07 at 72 h for D. desulfuricans. The formation of "biogenic" iron sulfides by dissimilatory sulfate-reducing bacteria is influenced by bacterial cell surface structure, chemistry, and growth strategy, i.e., mineral aggregation occurred with cell autolysis of the gram-positive bacterium.


Assuntos
Desulfovibrio desulfuricans/metabolismo , Ferro/metabolismo , Minerais/química , Peptococcaceae/metabolismo , Sulfetos/metabolismo , Bacteriólise , Parede Celular/ultraestrutura , Ferro/química , Minerais/metabolismo , Oxirredução , Sulfatos/metabolismo , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA