Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5123, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879612

RESUMO

Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-ß-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.


Assuntos
Proteínas de Bactérias , Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Polissacarídeos , Polissacarídeos/metabolismo , Humanos , Bacteroides thetaiotaomicron/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Bacteroides thetaiotaomicron/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Especificidade por Substrato , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Manose/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Família Multigênica
2.
J Extracell Vesicles ; 11(1): e12189, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35064769

RESUMO

The gastrointestinal (GI) tract harbours a complex microbial community, which contributes to its homeostasis. A disrupted microbiome can cause GI-related diseases, including inflammatory bowel disease (IBD), therefore identifying host-microbe interactions is crucial for better understanding gut health. Bacterial extracellular vesicles (BEVs), released into the gut lumen, can cross the mucus layer and access underlying immune cells. To study BEV-host interactions, we examined the influence of BEVs generated by the gut commensal bacterium, Bacteroides thetaiotaomicron, on host immune cells. Single-cell RNA sequencing data and host-microbe protein-protein interaction networks were used to predict the effect of BEVs on dendritic cells, macrophages and monocytes focusing on the Toll-like receptor (TLR) pathway. We identified biological processes affected in each immune cell type and cell-type specific processes including myeloid cell differentiation. TLR pathway analysis highlighted that BEV targets differ among cells and between the same cells in healthy versus disease (ulcerative colitis) conditions. The in silico findings were validated in BEV-monocyte co-cultures demonstrating the requirement for TLR4 and Toll-interleukin-1 receptor domain-containing adaptor protein (TIRAP) in BEV-elicited NF-kB activation. This study demonstrates that both cell-type and health status influence BEV-host communication. The results and the pipeline could facilitate BEV-based therapies for the treatment of IBD.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Monócitos/imunologia , Monócitos/metabolismo , Mapas de Interação de Proteínas , Receptores de Interleucina-1/antagonistas & inibidores , Transdução de Sinais , Receptor 4 Toll-Like/antagonistas & inibidores , Receptores Toll-Like/metabolismo
3.
Cell Host Microbe ; 29(9): 1351-1365.e11, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34403684

RESUMO

Bacterial ADP-ribosyltransferases (ADPRTs) have been described as toxins involved in pathogenesis through the modification of host proteins. Here, we report that ADPRTs are not pathogen restricted but widely prevalent in the human gut microbiome and often associated with phage elements. We validated their biochemical activity in a large clinical isolate collection and further examined Bxa, a highly abundant ADPRT in Bacteroides. Bxa is expressed, secreted, and enzymatically active in Bacteroides and can ADP-ribosylate non-muscle myosin II proteins. Addition of Bxa to epithelial cells remodeled the actin cytoskeleton and induced secretion of inosine. Bxa-encoding B. stercoris can use inosine as a carbon source and colonizes the gut to significantly greater numbers than a bxa-deleted strain in germ-free and altered Schaedler flora (ASF) mice. Colonization correlated with increased inosine concentrations in the feces and tissues. Altogether, our results show that ADPRTs are abundant in the microbiome and act as bacterial fitness factors.


Assuntos
ADP Ribose Transferases/metabolismo , Citoesqueleto de Actina/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Bacteroides/metabolismo , Células Epiteliais/metabolismo , Inosina/metabolismo , ADP Ribose Transferases/genética , Animais , Bacteriófagos/genética , Células CACO-2 , Linhagem Celular Tumoral , Fezes/química , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/metabolismo
4.
Cell ; 180(4): 717-728.e19, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084341

RESUMO

Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Carboidratos da Dieta/metabolismo , Glucosinolatos/metabolismo , Intestinos/microbiologia , Animais , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/patogenicidade , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Óperon , Simbiose
5.
Biochemistry ; 58(13): 1728-1737, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30835452

RESUMO

Commensal bacteria secrete proteins and metabolites to influence host intestinal homeostasis, and proteases represent a significant constituent of the components at the host:microbiome interface. Here, we determined the structures of the two secreted C11 cysteine proteases encoded by the established gut commensal Bacteroides thetaiotaomicron. We employed mutational analysis to demonstrate the two proteases, termed "thetapain" and "iotapain", undergo in trans autoactivation after lysine and/or arginine residues, as observed for other C11 proteases. We determined the structures of the active forms of thetapain and iotapain in complex with irreversible peptide inhibitors, Ac-VLTK-AOMK and biotin-VLTK-AOMK, respectively. Structural comparisons revealed key active-site interactions important for peptide recognition are more extensive for thetapain; however, both proteases employ a glutamate residue to preferentially bind small polar residues at the P2 position. Our results will aid in the design of protease-specific probes to ultimately understand the biological role of C11 proteases in bacterial fitness, elucidate their host and/or microbial substrates, and interrogate their involvement in microbiome-related diseases.


Assuntos
Bacteroides thetaiotaomicron/enzimologia , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/farmacologia , Peptídeos/farmacologia , Infecções por Bacteroides/microbiologia , Bacteroides thetaiotaomicron/química , Bacteroides thetaiotaomicron/efeitos dos fármacos , Bacteroides thetaiotaomicron/metabolismo , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Cisteína Proteases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica/efeitos dos fármacos
6.
Gut ; 66(1): 59-69, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27411368

RESUMO

OBJECTIVE: Mercaptopurine (MP) and pro-drug azathioprine are 'first-line' oral therapies for maintaining remission in IBD. It is believed that their pharmacodynamic action is due to a slow cumulative decrease in activated lymphocytes homing to inflamed gut. We examined the role of host metabolism, lymphocytes and microbiome for the amelioration of colitis by the related thioguanine (TG). DESIGN: C57Bl/6 mice with or without specific genes altered to elucidate mechanisms responsible for TG's actions were treated daily with oral or intrarectal TG, MP or water. Disease activity was scored daily. At sacrifice, colonic histology, cytokine message, caecal luminal and mucosal microbiomes were analysed. RESULTS: Oral and intrarectal TG but not MP rapidly ameliorated spontaneous chronic colitis in Winnie mice (point mutation in Muc2 secretory mucin). TG ameliorated dextran sodium sulfate-induced chronic colitis in wild-type (WT) mice and in mice lacking T and B lymphocytes. Remarkably, colitis improved without immunosuppressive effects in the absence of host hypoxanthine (guanine) phosphoribosyltransferase (Hprt)-mediated conversion of TG to active drug, the thioguanine nucleotides (TGN). Colonic bacteria converted TG and less so MP to TGN, consistent with intestinal bacterial conversion of TG to so reduce inflammation in the mice lacking host Hprt. TG rapidly induced autophagic flux in epithelial, macrophage and WT but not Hprt-/- fibroblast cell lines and augmented epithelial intracellular bacterial killing. CONCLUSIONS: Treatment by TG is not necessarily dependent on the adaptive immune system. TG is a more efficacious treatment than MP in Winnie spontaneous colitis. Rapid local bacterial conversion of TG correlated with decreased intestinal inflammation and immune activation.


Assuntos
Colite/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Imunossupressores/uso terapêutico , Mucosa Intestinal/microbiologia , Mercaptopurina/metabolismo , Mercaptopurina/uso terapêutico , Tioguanina/metabolismo , Tioguanina/uso terapêutico , Administração Oral , Administração Retal , Animais , Autofagia/efeitos dos fármacos , Bacteroides thetaiotaomicron/metabolismo , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colo/microbiologia , Citocinas/genética , Sulfato de Dextrana , Enterococcus faecalis/metabolismo , Células Epiteliais , Escherichia coli/metabolismo , Feminino , Fibroblastos , Interações Hospedeiro-Patógeno , Hipoxantina Fosforribosiltransferase/genética , Imunossupressores/administração & dosagem , Imunossupressores/metabolismo , Macrófagos , Masculino , Mercaptopurina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-2/genética , RNA Mensageiro/metabolismo , Linfócitos T/imunologia , Tioguanina/farmacologia
7.
Mol Microbiol ; 104(1): 32-45, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28009067

RESUMO

Bacteroides thetaiotaomicron is a human gut symbiotic bacterium that utilizes a myriad of host dietary and mucosal polysaccharides. The proteins responsible for the uptake and breakdown of many of these polysaccharides are transcriptionally regulated by hybrid two-component systems (HTCSs). These systems consist of a single polypeptide harboring the domains of sensor kinases and response regulators, and thus, are thought to autophosphorylate in response to specific signals. We now report that the HTCS BT0366 is phosphorylated in vivo when B. thetaiotaomicron experiences the BT0366 inducer arabinan but not when grown in the presence of glucose. BT0366 phosphorylation and transcription of BT0366-activated genes requires the conserved predicted sites of phosphorylation in BT0366. When chondroitin sulfate is added to arabinan-containing cultures, BT0366 phosphorylation and transcription of BT0366-activated genes are inhibited and the bacterium exhibits diauxic growth. Whereas 20 additional combinations of polysaccharides also give rise to diauxic growth, other combinations result in synergistic or unaltered growth relative to bacteria experiencing a single polysaccharide. The different strategies employed by B. thetaiotaomicron when faced with multiple polysaccharides may aid its competitiveness in the mammalian gut.


Assuntos
Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Carboidratos da Dieta/metabolismo , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Fosforilação , Simbiose , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA