Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
Microbiome ; 12(1): 125, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004755

RESUMO

BACKGROUND: Soybean cyst nematodes (SCN) as animal parasites of plants are not usually interested in killing the host but are rather focused on completing their life cycle to increase population, resulting in substantial yield losses. Remarkably, some agricultural soils after long-term crop monoculture show a significant decline in SCN densities and suppress disease in a sustainable and viable manner. However, relatively little is known about the microbes and mechanisms operating against SCN in such disease-suppressive soils. RESULTS: Greenhouse experiments showed that suppressive soils (S) collected from two provinces of China and transplantation soils (CS, created by mixing 10% S with 90% conducive soils) suppressed SCN. However, SCN suppressiveness was partially lost or completely abolished when S soils were treated with heat (80 °C) and formalin. Bacterial community analysis revealed that the specific suppression in S and CS was mainly associated with the bacterial phylum Bacteroidetes, specifically due to the enrichment of Chitinophaga spp. and Dyadobacter sp., in the cysts. SCN cysts colonized by Chitinophaga spp. showed dramatically reduced egg hatching, with unrecognizable internal body organization of juveniles inside the eggshell due to chitinase activity. Whereas, Dyadobacter sp. cells attached to the surface coat of J2s increased soybean resistance against SCN by triggering the expression of defence-associated genes. The disease-suppressive potential of these bacteria was validated by inoculating them into conducive soil. The Dyadobacter strain alone or in combination with Chitinophaga strains significantly decreased egg densities after one growing cycle of soybeans. In contrast, Chitinophaga strains alone required more than one growing cycle to significantly reduce SCN egg hatching and population density. CONCLUSION: This study revealed how soybean monoculture for decades induced microbiota homeostasis, leading to the formation of SCN-suppressive soil. The high relative abundance of antagonistic bacteria in the cyst suppressed the SCN population both directly and indirectly. Because uncontrolled proliferation will likely lead to quick demise due to host population collapse, obligate parasites like SCN may have evolved to modulate virulence/proliferation to balance these conflicting needs. Video Abstract.


Assuntos
Glycine max , Microbiota , Doenças das Plantas , Microbiologia do Solo , Tylenchoidea , Animais , Glycine max/parasitologia , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Solo/parasitologia , China , Bacteroidetes/genética , Bactérias/classificação , Bactérias/genética
2.
BMC Microbiol ; 24(1): 245, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970021

RESUMO

BACKGROUND: The phylum Bacteroidota represents a significant proportion of heterotrophic bacteria found in marine ecosystems. Members of the phylum Bacteroidota are actively involved in the degradation of biopolymers such as polysaccharides and proteins. Bacteroidota genomes exhibit a significant enrichment of various enzymes, including carbohydrate-active enzymes (CAZymes), carboxypeptidases, esterases, isomerases, peptidases, phosphatases, and sulfatases. The genus Marivirga, a member of the family Marivirgaceae within the phylum Bacteroidota, comprises six documented species. During a microbial diversity study, three novel Marivirga strains (BKB1-2 T, ABR2-2, and BDSF4-3 T) were isolated from the West Sea, Republic of Korea. RESULTS: To explore the taxonomic status and genomic characteristics of the novel isolates, we employed a polyphasic taxonomic approach, which included phylogenetic, chemotaxonomic and comprehensive genome analysis. The three isolates were Gram-stain-negative, aerobic, rod-shaped, moderately halophilic, and had a gliding motility. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values among the two isolates, BKB1-2 T and BDSF4-3 T, and the six reference strains were 70.5-76.5% for ANI and 18.1-25.7% for dDDH. Interestingly, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the strains harbor genes for a comprehensive pathway for dissimilatory nitrate reduction to ammonium (DNRA), as well as other nitrogen pathways for the reduction of nitrite, nitric oxide, and nitrous oxide. Additionally, the antiSMASH analysis indicated that the strains contained three to eight biosynthetic gene clusters (BGCs) associated with the synthesis of secondary metabolites. Furthermore, the strains carried a high number of CAZyme ranging from 53 to 152, which was also demonstrated by an in vitro analysis of degradation of the polysaccharide cellulose, chitin, laminarin, starch, and xylan. Additionally, all the strains carried genes for the metabolism of heavy metals, and exhibited tolerance to heavy metals, with minimum inhibitory concentrations (MICs) in millimoles (mM) in ranges of Co2+ (3-6), Cu2+ (0.2-0.4), Ni2+ (3-5), Zn2+ (2-4), Mn2+ (20-50), and Hg2+ (0.3). CONCLUSIONS: Based on polyphasic taxonomic approach, the three isolated strains represent two novel species names Marivirga arenosa sp. nov. (BKB1-2 T = KCTC 82989 T = InaCC B1618T), and Marivirga salinae sp. nov. (BDSF4-3 T = KCTC 82973 T = InaCC B1619T).


Assuntos
DNA Bacteriano , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S , República da Coreia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/classificação , Análise de Sequência de DNA , Hibridização de Ácido Nucleico
3.
BMC Microbiol ; 24(1): 237, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961326

RESUMO

OBJECTIVE: Bladder cancer(BCa) was a disease that seriously affects patients' quality of life and prognosis. To address this issue, many researches suggested that the gut microbiota modulated tumor response to treatment; however, this had not been well-characterized in bladder cancer. In this study, our objective was to determine whether the diversity and composition of the gut microbiota or the density of specific bacterial genera influence the prognosis of patients with bladder cancer. METHODS: We collected fecal samples from a total of 50 bladder cancer patients and 22 matched non-cancer individuals for 16S rDNA sequencing to investigate the distribution of Parabacteroides in these two groups. Further we conducted follow-up with cancer patients to access the impact of different genera of microorganisms on patients survival. We conducted a Fecal Microbiota Transplantation (FMT) and mono-colonization experiment with Parabacteroides distasonis to explore its potential enhancement of the efficacy of anti-PD-1 immunotherapy in MB49 tumor-bearing mice. Immunohistochemistry, transcriptomics and molecular experiment analyses were employed to uncover the underlying mechanisms. RESULTS: The 16S rDNA showed that abundance of the genus Parabacteroides was elevated in the non-cancer control group compared to bladder cancer group. The results of tumor growth curves showed that a combination therapy of P. distasonis and ICIs treatment significantly delayed tumor growth and increased the intratumoral densities of both CD4+T and CD8+T cells. The results of transcriptome analysis demonstrated that the pathways associated with antitumoral immune response were remarkably upregulated in the P. distasonis gavage group. CONCLUSION: P. distasonis delivery combined with α-PD-1 mAb could be a new strategy to enhance the effect of anti-PD-1 immunotherapy. This effect might be achieved by activating immune and antitumor related pathways.


Assuntos
Bacteroidetes , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Imunoterapia , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/microbiologia , Animais , Humanos , Camundongos , Imunoterapia/métodos , Bacteroidetes/genética , Bacteroidetes/imunologia , Feminino , Masculino , RNA Ribossômico 16S/genética , Fezes/microbiologia , Pessoa de Meia-Idade , Idoso , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 14(1): 13819, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879636

RESUMO

Culture-dependent and metagenomic binning techniques were employed to gain an insight into the diversification of gut bacteria in Rhinopithecius bieti, a highly endangered primate endemic to China. Our analyses revealed that Bacillota_A and Bacteroidota were the dominant phyla. These two phyla species are rich in carbohydrate active enzymes, which could provide nutrients and energy for their own or hosts' survival under different circumstances. Among the culturable bacteria, one novel bacterium, designated as WQ 2009T, formed a distinct branch that had a low similarity to the known species in the family Sphingobacteriaceae, based on the phylogenetic analysis of its 16S rRNA gene sequence or phylogenomic analysis. The ANI, dDDH and AAI values between WQ 2009T and its most closely related strains S. kitahiroshimense 10CT, S. pakistanense NCCP-246T and S. faecium DSM 11690T were significantly lower than the accepted cut-off values for microbial species delineation. All results demonstrated that WQ 2009T represent a novel genus, for which names Rhinopithecimicrobium gen. nov. and Rhinopithecimicrobium faecis sp. nov. (Type strain WQ 2009T = CCTCC AA 2021153T = KCTC 82941T) are proposed.


Assuntos
Microbioma Gastrointestinal , Metagenômica , Filogenia , RNA Ribossômico 16S , Animais , Microbioma Gastrointestinal/genética , Metagenômica/métodos , RNA Ribossômico 16S/genética , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/classificação
5.
Gut Microbes ; 16(1): 2350150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841888

RESUMO

Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Metagenômica , Óperon , Camundongos , Animais , Humanos , Doença de Crohn/microbiologia , Doença de Crohn/genética , Bacteroidetes/genética , Bacteroidetes/classificação , Antígenos de Bactérias/genética , Genoma Bacteriano , Enterobacteriaceae/genética , Enterobacteriaceae/classificação
6.
PeerJ ; 12: e17450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860210

RESUMO

Background: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.


Assuntos
Microbioma Gastrointestinal , Larva , RNA Ribossômico 16S , Spodoptera , Animais , Microbioma Gastrointestinal/genética , Spodoptera/microbiologia , Spodoptera/genética , Larva/microbiologia , RNA Ribossômico 16S/genética , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Enterococcus/genética , Bacteroides/genética , Simbiose
7.
Sci Rep ; 14(1): 12827, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834834

RESUMO

Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Lipopolissacarídeos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , NF-kappa B/metabolismo , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/microbiologia , Camundongos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/microbiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Linhagem Celular Tumoral , Invasividade Neoplásica , Inflamação/metabolismo , Inflamação/patologia , Bacteroidetes , Microbioma Gastrointestinal , Movimento Celular/efeitos dos fármacos , Masculino , Metástase Neoplásica , Proliferação de Células , Feminino
8.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38573825

RESUMO

Ferriphaselus amnicola GF-20 is the first Fe-oxidizing bacterium isolated from the continental subsurface. It was isolated from groundwater circulating at 20 m depth in the fractured-rock catchment observatory of Guidel-Ploemeur (France). Strain GF-20 is a neutrophilic, iron- and thiosulfate-oxidizer and grows autotrophically. The strain shows a preference for low oxygen concentrations, which suggests an adaptation to the limiting oxygen conditions of the subsurface. It produces extracellular stalks and dreads when grown with Fe(II) but does not secrete any structure when grown with thiosulfate. Phylogenetic analyses and genome comparisons revealed that strain GF-20 is affiliated with the species F. amnicola and is strikingly similar to F. amnicola strain OYT1, which was isolated from a groundwater seep in Japan. Based on the phenotypic and phylogenetic characteristics, we propose that GF-20 represents a new strain within the species F. amnicola.


Assuntos
Água Subterrânea , Ferro , Oxirredução , Filogenia , RNA Ribossômico 16S , Tiossulfatos , Água Subterrânea/microbiologia , Tiossulfatos/metabolismo , Ferro/metabolismo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , França , Genoma Bacteriano , Análise de Sequência de DNA , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/metabolismo
9.
Antonie Van Leeuwenhoek ; 117(1): 66, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607563

RESUMO

The pink-colored and strictly aerobic bacterium strain, designated as TK19036T, was isolated from mesopelagic layer of the Southwest Indian Ocean. This novel isolate can grow at 10-45 °C (optimum, 30 °C), pH 6.0-8.0 (optimum, pH 7.0), and 2-14% NaCl concentrations (w/v) (optimum, 6%). The predominant respiratory quinone was Menaquinone-7. Major polar lipid profiles contained two aminolipids, aminophospholipid, two glycolipids, phosphatidylethanolamine, and three unknown polar lipids. The preponderant cellular fatty acids were iso-C15:0, C16:1 ω5c and iso-C17:0 3-OH. Phylogenetic analyses based on 16S rRNA gene sequence uncovered that the strain TK19036T pertained to the family Catalinimonadaceae under phylum Bacteroidota, and formed a distinct lineage with the closed species Tunicatimonas pelagia NBRC 107804T. The up-to-bacteria-core gene phylogenetic trees also demonstrated a deep and novel branch formed by the strain TK19036T within the family Catalinimonadaceae. Based on chemotaxonomic, phylogenetic and genomic features presented above, strain TK19036T represents a novel species from a novel genus of the family Catalinimonadaceae, for which the name Roseihalotalea indica gen. nov. sp. nov. is proposed. The type strain is TK19036T (= CGMCC 1.18940T = NBRC 116371T).


Assuntos
Bacteroidetes , Ácidos Graxos , Oceano Índico , Filogenia , RNA Ribossômico 16S/genética , Bacteroidetes/genética
10.
Nature ; 629(8013): 901-909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658756

RESUMO

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.


Assuntos
Colangite Esclerosante , Microbioma Gastrointestinal , Inflamação , Fígado , Macrófagos , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Feminino , Humanos , Masculino , Camundongos , Bacteroidetes/metabolismo , Colangite Esclerosante/imunologia , Colangite Esclerosante/microbiologia , Colangite Esclerosante/patologia , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Perfilação da Expressão Gênica , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Fígado/imunologia , Fígado/patologia , Fígado/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Veia Porta , Receptores Imunológicos/deficiência , Receptores Imunológicos/metabolismo , Análise de Célula Única , Simbiose/imunologia
11.
Front Immunol ; 15: 1363664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476231

RESUMO

The balance of the microbiome, which is sensitive to temperature changes, plays a crucial role in maintaining overall health and reducing the risk of diseases. However, the specific mechanisms by which immunity and microbiota interact to adapt to cold stress have yet to be addressed. In this study, Nanjiang Yellow goats were chosen as a model and sampled during the cold (winter, cold stress) and warm (spring) seasons, respectively. Analyses of serum immune factors, as well as the composition of rumen and fecal microbial communities, were conducted to explore the crosstalk between microbiota and innate immunity under cold stress. Significantly increased levels of IgA (P < 0.01) were observed in the cold season compared to the warm season. Conversely, the levels of IL-2 (P = 0.02) and IL-6 (P < 0.01) diminished under cold stress. However, no significant differences were observed in IgG (P = 0.89), IgM (P = 0.42), and IL-4 (P = 0.56). While there were no significant changes in the diversity of bacterial communities between the warm and cold seasons, positive correlations between serum IgA, IL-2, IL-6 concentrations and several genera were observed. Furthermore, the weighted gene co-expression network analysis indicated that the microbiota enriched in the MEbrown module positively correlated with IgA, while the microbiota enriched in the MEblue module positively correlated with IL-2 and IL-6. The strong correlation between certain probiotics, including Alistipes, Bacteroides, Blautia, and Prevotellaceae_UCG.004, and the concentration of IL-2, and IL-6 suggests their potential role in immunomodulatory properties. This study provides valuable insights into the crosstalk between microbial communities and immune responses under the challenge of cold stress. Further studies on the immunomodulatory properties of these probiotics would contribute to the development of strategies to enhance the stress resistance of animals for improved overall health and survival.


Assuntos
Resposta ao Choque Frio , Microbiota , Animais , Rúmen , Cabras , Interleucina-2 , Interleucina-6 , Imunidade Inata , Bacteroidetes , Imunoglobulina A
12.
BMC Genomics ; 25(1): 245, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443809

RESUMO

We investigated whole blood and hepatic mRNA expressions of immune genes and rumen microbiome of crossbred beef steers with divergent residual feed intake phenotype to identify relevant biological processes underpinning feed efficiency in beef cattle. Low-RFI beef steers (n = 20; RFI = - 1.83 kg/d) and high-RFI beef steers (n = 20; RFI = + 2.12 kg/d) were identified from a group of 108 growing crossbred beef steers (average BW = 282 ± 30.4 kg) fed a high-forage total mixed ration after a 70-d performance testing period. At the end of the 70-d testing period, liver biopsies and blood samples were collected for total RNA extraction and cDNA synthesis. Rumen fluid samples were also collected for analysis of the rumen microbial community. The mRNA expression of 84 genes related to innate and adaptive immunity was analyzed using pathway-focused PCR-based arrays. Differentially expressed genes were determined using P-value ≤ 0.05 and fold change (FC) ≥ 1.5 (in whole blood) or ≥ 2.0 (in the liver). Gene ontology analysis of the differentially expressed genes revealed that pathways related to pattern recognition receptor activity, positive regulation of phagocytosis, positive regulation of vitamin metabolic process, vascular endothelial growth factor production, positive regulation of epithelial tube formation and T-helper cell differentiation were significantly enriched (FDR < 0.05) in low-RFI steers. In the rumen, the relative abundance of PeH15, Arthrobacter, Moryella, Weissella, and Muribaculaceae was enriched in low-RFI steers, while Methanobrevibacter, Bacteroidales_BS11_gut_group, Bacteroides and Clostridium_sensu_stricto_1 were reduced. In conclusion, our study found that low-RFI beef steers exhibit increased mRNA expression of genes related to immune cell functions in whole blood and liver tissues, specifically those involved in pathogen recognition and phagocytosis regulation. Additionally, these low-RFI steers showed differences in the relative abundance of some microbial taxa which may partially account for their improved feed efficiency compared to high-RFI steers.


Assuntos
Rúmen , Fator A de Crescimento do Endotélio Vascular , Animais , Bovinos , Fenótipo , Bacteroidetes , Ingestão de Alimentos , RNA Mensageiro
13.
Sci Rep ; 14(1): 5585, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454103

RESUMO

A dataset comprising metagenomes of outpatients (n = 28) with acute leukemia (AL) and healthy controls (n = 14) was analysed to investigate the associations between gut microbiota composition and metabolic activity and AL. According to the results obtained, no significant differences in the microbial diversity between AL outpatients and healthy controls were found. However, significant differences in the abundance of specific microbial clades of healthy controls and AL outpatients were found. We found some differences at taxa level. The relative abundance of Enterobacteriaceae, Prevotellaceae and Rikenellaceae was increased in AL outpatients, while Bacteirodaceae, Bifidobacteriaceae and Lachnospiraceae was decreased. Interestingly, the abundances of several taxa including Bacteroides and Faecalibacterium species showed variations based on recovery time from the last cycle of chemotherapy. Functional annotation of metagenome-assembled genomes (MAGs) revealed the presence of functional domains corresponding to therapeutic enzymes including L-asparaginase in a wide range of genera including Prevotella, Ruminococcus, Faecalibacterium, Alistipes, Akkermansia. Metabolic network modelling revealed potential symbiotic relationships between Veillonella parvula and Levyella massiliensis and several species found in the microbiota of AL outpatients. These results may contribute to develop strategies for the recovery of microbiota composition profiles in the treatment of patients with AL.


Assuntos
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Bactérias/genética , Bacteroidetes
14.
Sci Total Environ ; 922: 171339, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428595

RESUMO

Inappropriate sterilization strategies inhibit microalgal growth when culturing microalgae with anaerobic digestate. This study aimed to scientifically select a low-cost disinfection pretreatment of anaerobic digestate for large-scale microalgae cultivations. In this work, three different methods, including autoclaving, ultraviolet or NaClO treatments, were employed to sterilize the municipal anaerobic digestate. Scenedesmus quadricauda was then cultured in diluted liquid digestate for the simultaneous lipid production and nutrient removal. The results indicated that the growth of S. quadricauda was inhibited after NaClO treatment due to the residual free chlorine. The 15-min ultraviolet effectively mitigated microbial contamination and increasing nutrient availability, enhancing the electron transport of microalgal photosynthesis. After 6-days cultivation, the microalgal biomass concentration of the ultraviolet group was 1.09 g/L, comparable to that of the autoclaving group (1.15 g/L). High nutrient removal efficiency was observed: COD (93.30 %), NH4+-N (92.56 %), TN (85.82 %) and TP (95.12 %). Moreover, S. quadricauda outcompeted the indigenous microorganisms, contributing to its dominance in the culture system of ultraviolet group. The facultative anaerobe Comamonadaceae and aerobes Moraxellaceae, rather than strict anaerobe Paludibacteraceae and Bacteroidetes_vadinHA17, played vital roles in synergistic removal of contaminants by bacteria and algae. The potential competition for nitrogen and phosphorus by bacteria contributed to the ultraviolet group having the greatest lipid content (48.19 %). Therefore, this work suggested using 15-min ultraviolet treatment for anaerobic digestate in large-scale microalgae cultivation.


Assuntos
Microalgas , Scenedesmus , Raios Ultravioleta , Anaerobiose , Bactérias , Biomassa , Nitrogênio , Bacteroidetes , Lipídeos
15.
J Food Sci ; 89(4): 2465-2481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380680

RESUMO

Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.


Assuntos
Camellia , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Óleos de Plantas/farmacologia , Bacteroidetes , Firmicutes , Fibras Musculares Esqueléticas
16.
Dig Liver Dis ; 56(6): 941-950, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38413348

RESUMO

INTRODUCTION: Nonampullary duodenal epithelial tumors are rare, but their prevalence is increasing. Various gastrointestinal cancers have been associated with microbiomes. We evaluated the characteristics of the salivary and duodenal microbiomes of patients with nonampullary duodenal epithelial tumors. METHODS: Saliva and biopsy samples from the duodenal bulb and descending portion were obtained from 15 patients with nonampullary duodenal epithelial tumors and 10 controls. Next-generation sequencing was performed to identify bacteria for comparison. RESULTS: Saliva samples had higher Amplicon Sequence Variants (ASVs) and more observed species than duodenal samples. Saliva samples from patients with nonampullary duodenal epithelial tumor were dominated by Bacteroidetes and Prevotella, whereas Proteobacteria and Neisseria were dominant in the control samples. The relative abundance of bacteria was higher in patients with nonampullary duodenal epithelial tumors. Most bacteria were classified as bacteria of oral origin. Oribacterium and Stomatobaculum were significantly higher in the saliva, duodenal bulb, and descending portion of patients with nonampullary duodenal epithelial tumors. CONCLUSION: Patients with nonampullary duodenal epithelial tumors had different salivary and duodenal microbiomes than controls. Bacteria types differed between groups at each site, and most bacteria of oral origin were more abundant in patients with nonampullary duodenal epithelial tumors.


Assuntos
Neoplasias Duodenais , Duodeno , Saliva , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Saliva/microbiologia , Neoplasias Duodenais/microbiologia , Neoplasias Duodenais/patologia , Idoso , Duodeno/microbiologia , Duodeno/patologia , Estudos de Casos e Controles , Microbioma Gastrointestinal , Adulto , Prevotella/isolamento & purificação , Prevotella/genética , Sequenciamento de Nucleotídeos em Larga Escala , Bacteroidetes/isolamento & purificação , Bacteroidetes/genética , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação
17.
Food Funct ; 15(6): 2939-2959, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38406886

RESUMO

To explore whether apple polyphenol extract (APE) ameliorates sugary-diet-induced depression-like behaviors, thirty male C57BL/6 mice (3-4 weeks old) were assigned to three groups randomly to receive different treatments for 8 consecutive weeks: (1) control group (CON), (2) S-HSD group (60% high sucrose diet feeding with 0.1 mg mL-1 sucralose solution as drinking water), and (3) S-APE group (S-HSD feeding with 500 mg per (kg bw day) APE solution gavage). The S-HSD group showed significant depression-like behaviors compared with the CON group, which was manifested by an increased number of buried marbles in the marble burying test, prolonged immobility time in both the tail suspension test and forced swimming test, and cognitive impairment based on the Morris water maze test. However, APE intervention significantly improved the depression-like behaviors by reducing serum levels of corticosterone and adrenocorticotropic hormone, and increasing the serum level of IL-10. Moreover, APE intervention inhibited the activation of the NF-κB inflammatory pathway, elevated colonic MUC-2 protein expression, and elevated the colonic and hippocampal tight junction proteins of occludin and ZO-1. Furthermore, APE intervention increased the richness and diversity of gut microbiota by regulating the composition of microbiota, with increased relative abundance of Firmicutes and Bacteroidota, decreased relative abundance of Verrucomicrobiota at the phylum level, significantly lowered relative abundance of Akkermansia at the genus level, and rebalanced abnormal relative abundance of Muribaculaceae_unclassified, Coriobacteriaceae_UCG-002, and Lachnoclostridium induced by S-HSD feeding. Thus, our study supports the potential application of APE as a dietary intervention for ameliorating depression-like behavioral disorders.


Assuntos
Eixo Encéfalo-Intestino , Ácido Clorogênico , Flavonoides , Hominidae , Taninos , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Depressão/tratamento farmacológico , Inflamação/tratamento farmacológico , Bacteroidetes
18.
Food Funct ; 15(4): 2022-2037, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38289370

RESUMO

Probiotics are known for their beneficial effects on improving intestinal function by alleviating the gut microbial diversity. However, the influences of antioxidant lactic acid bacteria (LAB) and anti-inflammatory Clostridium butyricum (CB) on ameliorating enteritis remain unclear. In this study, we investigated the effects of the antioxidant strain Lactiplantibacillus plantarum AS21 and CB alone, or in combination on intestinal microbiota, barrier function, oxidative stress and inflammation in mice with DSS-induced colitis. All probiotic treatments relieved the pathological development of colitis by improving the integrity of the intestinal mucosal barrier and the length of the colon. The probiotics also suppressed inflammation and oxidative stress by improving gut short-chain fatty acids and inhibiting the p38-MAPK/NF-κB pathway in colon tissues. According to the meta-network analysis, three distinct modules containing sensitive OTUs of the gut bacterial community specific to the control, DSS and DSS + probiotics groups were observed, and unlike the other two modules, Lachnospiraceae and Clostridia dominated the sensitive OTUs in the DSS + probiotics group. In addition, administration of the present probiotics particularly increased antioxidant and anti-inflammatory microbes Muribaculaceae, Bifidobacterium, Prevotellaceae and Alloprevotella. Furthermore, combined probiotic strain treatment showed a more stable anti-colitis effect than a single probiotic strain. Collectively, the present probiotics exhibited protective effects against colitis by suppressing the inflammation and oxidative damage in the colon, improving the gut microbiota and their functions, and consequently preventing the gut leak. The results indicate that the combination of the antioxidant properties of LAB and the anti-inflammatory properties of CB as nutritional intervention and adjuvant therapy could be an effective strategy to prevent and alleviate colitis.


Assuntos
Clostridium butyricum , Colite , Microbioma Gastrointestinal , Lactobacillales , Lactobacillus plantarum , Probióticos , Camundongos , Animais , Antioxidantes/farmacologia , Colite/terapia , Colite/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Bacteroidetes , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Colo/metabolismo , Camundongos Endogâmicos C57BL
19.
BMC Microbiol ; 24(1): 32, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245675

RESUMO

BACKGROUND: COVID-19 emerged in late 2019 and has occasioned more than 765 millions cumulative cases and 6.9 millions of deaths globally. Notably, around 70% of patients with severe COVID-19 are men. Therefore, it is to be presumed that women have a hormonal protector factor in inflammation and ACE2 expression. On the other hand, oral health status, and local microbiome can be key factors to respiratory viral infections control. Nevertheless, it has been poorly investigated. In our study 20 premenopausal, 18 postmenopausal and 22 men with COVID-19 were included. Oral health status, viral load, lingual ACE2 expression, as well as microbiome, estrogens and cytokines in saliva were analyzed. RESULTS: Our results showed a lower expression of ACE2 in tongue cells of postmenopausal compared with premenopausal (p = 0.05), and a strong negative correlation between saliva estrogen and viral load (r = -0.76; p = 0.001). Respect to IFN-γ (p = 0.05), IL-1ß, TNF-α, IL-18, and IL-23 levels were increased in postmenopausal. Oral microbiome signature of premenopausal was characterized by Prevotella melaninogenica (Log2 = 26.68; p = 1.34e-10), Haemophilus (Log2 = 23.99; p = 2.96e-9), and Alloprevotella (Log2 = 7.92; p = 0.0001). On the other hand, Leptotrichia (Log2 = -18.74; p = 0.001), Tanerella (Log2 = -17.08; p = 0.004), and Clostridiales (Log2 = -2.88; p = 0.04) represented the poor oral health group compared with the adequate group which was enriched with the commensal microorganism Neisseria perflava (Log2 = 26.70; p = 1.74e-7). Furthermore, the high viral load group was characterized by Prevotella nanceiensis (Log2 = 19.60; p = 6.06e-8), Prevotella melaninogenica (Log2 = 21.45; p = 9.59e-6), Alloprevotella (Log2 = 23.50; p = 2.70e-7) and bacteria from the red complex Porphyromonas endodentalis (Log2 = 21.97; p = 1.38e-7). CONCLUSIONS: Postmenopausal and men have a poor oral health status which could be related to a detrimental progression of COVID-19 also linked to a lower expression of ACE2, lower saliva estrogen levels and oral dysbiosis. Nevertheless, functional studies are required for a deeper knowledge.


Assuntos
COVID-19 , Microbiota , Masculino , Humanos , Feminino , Saúde Bucal , Enzima de Conversão de Angiotensina 2 , Estrogênios , Bacteroidetes
20.
Sci Rep ; 14(1): 1038, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200134

RESUMO

The rhizosphere microbial community is closely associated with plant disease by regulating plant growth, agricultural production, nutrient availability, plant hormone and adaptation to environmental changes. Therefore, it is very important to identify the rhizosphere microbes around plant roots and understand their functions. While studying the differences between the rhizosphere microbiota of healthy and diseased apple trees to find the cause of apple tree disease, we isolated a novel strain, designated as B3-10T, from the rhizosphere soil of a healthy apple tree. The genome relatedness indices between strain B3-10T and other type species of family Chitinophagaceae were in the ranges of 62.4-67.0% for ANI, 18.6-32.1% for dDDH, and 39.0-56.6% for AAI, which were significantly below the cut­off values for the species delineation, indicating that strain B3-10T could be considered to represent a novel genus in family Chitinophagaceae. Interestingly, the complete genome of strain B3-10T contained a number of genes encoding ACC-deaminase, siderophore production, and acetoin production contributing to plant-beneficial functions. Furthermore, strain B3-10T was found to significantly promote the growth of shoots and roots of the Nicotiana benthamiana, which is widely used as a good model for plant biology, demonstrating that strain B3-10T, a rhizosphere microbe of healthy apple trees, has the potential to promote growth and reduce disease. The phenotypic, chemotaxonomic, phylogenetic, genomic, and physiological properties of this plant growth-promoting (rhizo)bacterium, strain B3-10T supported the proposal of a novel genus in the family Chitinophagaceae, for which the name Rhizosphaericola mali gen. nov., sp. nov. (= KCTC 72123T = NBRC 114178T).


Assuntos
Malus , Solo , Mali , Filogenia , Desenvolvimento Vegetal , Bacteroidetes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA