Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530908

RESUMO

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Assuntos
Adiponectina , Diabetes Mellitus Tipo 2 , Glicocálix , Glomérulos Renais , Animais , Glicocálix/metabolismo , Glicocálix/efeitos dos fármacos , Adiponectina/metabolismo , Adiponectina/genética , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/efeitos dos fármacos , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Masculino , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Sindecana-4/metabolismo , Sindecana-4/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409185

RESUMO

Vascular endothelial growth factor A (VEGFA) secretion from podocytes is crucial for maintaining endothelial integrity within the glomerular filtration barrier. However, until now, the molecular mechanisms underlying podocyte secretory function remained unclear. Through podocyte-specific deletion of BECLIN1 (ATG6 or Becn1), a key protein in autophagy initiation, we identified a major role for this molecule in anterograde Golgi trafficking. The Becn1-deficient podocytes displayed aberrant vesicle formation in the trans-Golgi network (TGN), leading to dramatic vesicle accumulation and complex disrupted patterns of intracellular vesicle trafficking and membrane dynamics. Phenotypically, podocyte-specific deletion of Becn1 resulted in early-onset glomerulosclerosis, which rapidly progressed and dramatically reduced mouse life span. Further, in vivo and in vitro studies clearly showed that VEGFA secretion, and thereby endothelial integrity, greatly depended on BECLIN1 availability and function. Being the first to demonstrate the importance of a secretory pathway for podocyte integrity and function, we identified BECLIN1 as a key component in this complex cellular process. Functionally, by promoting VEGFA secretion, a specific secretory pathway emerged as an essential component for the podocyte-endothelial crosstalk that maintains the glomerular filtration barrier.


Assuntos
Podócitos , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Barreira de Filtração Glomerular/metabolismo , Camundongos , Podócitos/metabolismo , Via Secretória , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Mol Genet Genomics ; 297(2): 397-405, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35103870

RESUMO

In this study, the effect of heterozygous germline mutations in the heparan sulfate (HS) glycosaminoglycan chain co-polymerases EXT1 and EXT2 on glomerular barrier function and the endothelial glycocalyx in humans is investigated. Heparan sulfate (HS) glycosaminoglycans are deemed essential to the glomerular filtration barrier, including the glomerular endothelial glycocalyx. Animal studies have shown that loss of HS results in a thinner glycocalyx. Also, decreased glomerular HS expression is observed in various proteinuric renal diseases in humans. A case report of a patient with an EXT1 mutation indicated that this could result in a specific renal phenotype. This patient suffered from multiple osteochondromas, an autosomal dominant disease caused by mono-allelic germline mutations in the EXT1 or EXT2 gene. These studies imply that HS is indeed essential to the glomerular filtration barrier. However, loss of HS did not lead to proteinuria in various animal models. We demonstrate that multiple osteochondroma patients do not have more microalbuminuria or altered glycocalyx properties compared to age-matched controls (n = 19). A search for all Dutch patients registered with both osteochondroma and kidney biopsy (n = 39) showed that an EXT1 or EXT2 mutation does not necessarily lead to specific glomerular morphological phenotypic changes. In conclusion, this study shows that a heterozygous mutation in the HS backbone elongating enzymes EXT1 and EXT2 in humans does not result in (micro)albuminuria, a specific renal phenotype or changes to the endothelial glycocalyx, adding to the growing knowledge on the role of EXT1 and EXT2 genes in pathophysiology.


Assuntos
Barreira de Filtração Glomerular , Glicocálix , N-Acetilglucosaminiltransferases , Barreira de Filtração Glomerular/metabolismo , Glicocálix/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Mutação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo
4.
Mol Cancer Ther ; 20(10): 2008-2015, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34315765

RESUMO

Advances in antibody engineering have enabled the construction of novel molecular formats in diverse shapes and sizes, providing new opportunities for cancer immunotherapeutic drug discovery while also revealing limitations in knowledge of structure-activity relationships. The current understanding of renal filtration originates largely from data reported for dextrans, IgG, albumin, and selected globular proteins. For a one-armed IgG-based T-cell imaging agent, we observed higher renal signal than typically observed for bivalent IgGs, prompting us to explore the factors governing renal filtration of biologics. We constructed a small representative library of IgG-like formats with varied shapes and hinge flexibilities falling broadly into two categories: branched molecules including bivalent IgG and (scFv)2Fc, and nonbranched molecules including one-armed IgG, one-armed IgG with stacked Fab, and one-armed IgG with a rigid IgA2 hinge. Transmission electron microscopy revealed Y-shaped structures for the branched molecules and pseudo-linear structures for the nonbranched molecules. Single-photon emission CT imaging, autoradiography, and tissue harvest studies demonstrated higher renal uptake and catabolism for nonbranched molecules relative to branched molecules. Among the nonbranched molecules, the one-armed IgG with rigid IgA2 hinge molecule demonstrated higher kidney uptake and decreased systemic exposure relative to molecules with a more flexible hinge. Our results show that differences in shape and hinge flexibility drive the increased glomerular filtration of one-armed relative to bivalent antibodies and highlight the practical advantages of using imaging to assess renal filtration properties. These findings are particularly relevant for T-cell-dependent bispecific molecules, many of which have nonstandard antibody structures.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Barreira de Filtração Glomerular/metabolismo , Imunoglobulina G/imunologia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Feminino , Barreira de Filtração Glomerular/efeitos dos fármacos , Humanos , Imunoglobulina G/classificação , Camundongos SCID
5.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33986189

RESUMO

Loss of function of the lipid kinase diacylglycerol kinase ε (DGKε), encoded by the gene DGKE, causes a form of atypical hemolytic uremic syndrome that is not related to abnormalities of the alternative pathway of the complement, by mechanisms that are not understood. By generating a potentially novel endothelial specific Dgke-knockout mouse, we demonstrate that loss of Dgke in the endothelium results in impaired signaling downstream of VEGFR2 due to cellular shortage of phosphatidylinositol 4,5-biphosphate. Mechanistically, we found that, in the absence of DGKε in the endothelium, Akt fails to be activated upon VEGFR2 stimulation, resulting in defective induction of the enzyme cyclooxygenase 2 and production of prostaglandin E2 (PGE2). Treating the endothelial specific Dgke-knockout mice with a stable PGE2 analog was sufficient to reverse the clinical manifestations of thrombotic microangiopathy and proteinuria, possibly by suppressing the expression of matrix metalloproteinase 2 through PGE2-dependent upregulation of the chemokine receptor CXCR4. Our study reveals a complex array of autocrine signaling events downstream of VEGFR2 that are mediated by PGE2, that control endothelial activation and thrombogenic state, and that result in abnormalities of the glomerular filtration barrier.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/genética , Diacilglicerol Quinase/genética , Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Síndrome Hemolítico-Urêmica Atípica/metabolismo , Comunicação Autócrina , Ciclo-Oxigenase 2/metabolismo , Diacilglicerol Quinase/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Técnicas de Silenciamento de Genes , Barreira de Filtração Glomerular/efeitos dos fármacos , Barreira de Filtração Glomerular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores CXCR4/metabolismo , Microangiopatias Trombóticas/genética , Microangiopatias Trombóticas/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
6.
Circ Res ; 128(5): 602-618, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33435713

RESUMO

RATIONALE: Glomerular capillaries are lined with a highly specialized fenestrated endothelium and contribute to the glomerular filtration barrier. The Notch signaling pathway is involved in regulation of glomerular filtration barrier, but its role in glomerular endothelium has not been investigated due to the embryonic lethality of animal models with genetic modification of Notch pathway components in the endothelium. OBJECTIVE: To determine the effects of aberrant activation of the Notch signaling in glomerular endothelium and the underlying molecular mechanisms. METHODS AND RESULTS: We established the ZEG-NICD1 (notch1 intracellular domain)/Tie2-tTA/Tet-O-Cre transgenic mouse model to constitutively activate Notch1 signaling in endothelial cells of adult mice. The triple transgenic mice developed severe albuminuria with significantly decreased VE-cadherin (vascular endothelial cadherin) expression in the glomerular endothelium. In vitro studies showed that either NICD1 (Notch1 intracellular domain) lentiviral infection or treatment with Notch ligand DLL4 (delta-like ligand 4) markedly reduced VE-cadherin expression and increased monolayer permeability of human renal glomerular endothelial cells. In addition, Notch1 activation or gene knockdown of VE-cadherin reduced the glomerular endothelial glycocalyx. Further investigation demonstrated that activated Notch1 suppression of VE-cadherin was through the transcription factors SNAI1 (snail family transcriptional repressor 1) and ERG (Ets related gene), which bind to the -373 E-box and the -134/-118 ETS (E26 transformation-specific) element of the VE-cadherin promoter, respectively. CONCLUSIONS: Our results reveal novel regulatory mechanisms whereby endothelial Notch1 signaling dictates the level of VE-cadherin through the transcription factors SNAI1 and ERG, leading to dysfunction of glomerular filtration barrier and induction of albuminuria. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Albuminúria/metabolismo , Barreira de Filtração Glomerular/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Caderinas/genética , Caderinas/metabolismo , Células Endoteliais/metabolismo , Barreira de Filtração Glomerular/citologia , Glicocálix/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Regulador Transcricional ERG/metabolismo
7.
PLoS One ; 15(11): e0242436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33186381

RESUMO

Podocytes are highly specialized epithelial cells that are essential for an intact glomerular filtration barrier in the kidney. Several glomerular diseases like focal segmental glomerulosclerosis (FSGS) are initially due to podocyte injury and loss. Since causative treatments for FSGS are not available until today, drug screening is of great relevance. In order to test a high number of drugs, FSGS needs to be reliably induced in a suitable animal model. The zebrafish larva is an ideal model for kidney research due to the vast amount of offsprings, the rapid development of a simple kidney and a remarkable homology to the mammalian glomerulus. Zebrafish larvae possess a size-selective glomerular filtration barrier at 4 days post fertilization including podocytes with interdigitating foot processes that are connected by a slit membrane. Adriamycin is an anthracycline which is often used in mice and rats to induce a FSGS-like phenotype. In this study, we aimed to induce a similar phenotype to zebrafish larvae by adding adriamycin to the tank water in different concentrations. Surprisingly, zebrafish larvae did not develop glomerular injury and displayed an intact filtration barrier after treatment with adriamycin. This was shown by (immuno-) histology, our filtration assay, in vivo imaging by 2-photon microcopy, RT-(q)PCR as well as transmission electron microscopy. To summarize, adriamycin is unable to induce a podocyte-related damage in zebrafish larvae and therefore major effort must be made to establish FSGS in zebrafish larvae to identify effective drugs by screenings.


Assuntos
Doxorrubicina/farmacologia , Podócitos/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Modelos Animais de Doenças , Barreira de Filtração Glomerular/efeitos dos fármacos , Barreira de Filtração Glomerular/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Rim/patologia , Glomérulos Renais/patologia , Larva/efeitos dos fármacos , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
8.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909435

RESUMO

Renal disease is not rare among patients with inflammatory bowel disease (IBD) and is gaining interest as a target of research. However, related changes in glomerular structural have rarely been investigated. This study was aimed at clarifying the changes in collagens and glomerular filtration barrier (GFB)-related proteins of glomeruli in a dextran sulfate sodium (DSS)-induced colitis mouse model. Acute colitis was induced by administering 3.5% DSS in Slc:ICR strain mice for eight days. Histological changes to glomeruli were examined by periodic acid-Schiff (PAS) and Masson's trichrome staining. Expressions of glomerular collagens and GFB-related proteins were analyzed by immunofluorescent staining and Western blot analysis. DSS-colitis mice showed an elevated disease activity index (DAI), colon shortening, massive cellular infiltration and colon damage, confirming that DSS-colitis mice can be used as an IBD animal model. DSS-colitis mice showed increased glycoprotein and collagen deposition in glomeruli. Interestingly, we observed significant changes in glomerular collagens, including a decrease in type IV collagen, and an increment in type I and type V collagens. Moreover, declined GFB-related proteins expressions were detected, including synaptopodin, podocalyxin, nephrin and VE-cadherin. These results suggest that renal disease in DSS-colitis mice might be associated with changes in glomerular collagens and GFB-related proteins. These findings are important for further elucidation of the clinical pathological mechanisms underlying IBD-associated renal disease.


Assuntos
Colite/etiologia , Colite/metabolismo , Colágeno/metabolismo , Barreira de Filtração Glomerular/metabolismo , Glomérulos Renais/metabolismo , Animais , Biomarcadores , Biópsia , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Imuno-Histoquímica , Camundongos , Modelos Biológicos
9.
J Physiol Biochem ; 74(3): 467-478, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948786

RESUMO

Despite the effectiveness of renin-angiotensin blockade in retarding diabetic nephropathy progression, a considerable number of patients still develop end-stage renal disease. The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor of receptor for advanced glycation end products (RAGE), alone and in combination with valsartan, an angiotensin receptor blocker, against glomerular injury parameters in streptozotocin-induced diabetic rats. FPS-ZM1 at 1 mg/kg (i.p.), valsartan at 100 mg/kg (p.o.), and their combination were administered for 4 weeks, starting 2 months after diabetes induction in rats. Tests for kidney function, glomerular filtration barrier, and podocyte slit diaphragm integrities were performed. Combined FPS-ZM1/valsartan attenuated diabetes-induced elevations in renal levels of RAGE and phosphorylated NF-κB p65 subunit. It ameliorated glomerular injury due to diabetes by increasing glomerular nephrin and synaptopodin expressions, mitigating renal integrin-linked kinase (ILK) levels, and lowering urinary albumin, collagen type IV, and podocin excretions. FPS-ZM1 also improved renal function as demonstrated by decreasing levels of serum cystatin C. Additionally, the combination also alleviated indices of renal inflammation as revealed by decreased renal monocyte chemoattractant protein 1 (MCP-1) and chemokine (C-X-C motif) ligand 12 (CXCL12) expressions, F4/80-positive macrophages, glomerular TUNEL-positive cells, and urinary alpha-1-acid glycoprotein (AGP) levels. These findings underline the benefits of FPS-ZM1 added to valsartan in alleviating renal glomerular injury evoked by diabetes in streptozotocin rats and suggest FPS-ZM1 as a new potential adjunct to the conventional renin-angiotensin blockade.


Assuntos
Benzamidas/uso terapêutico , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/prevenção & controle , Barreira de Filtração Glomerular/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Insuficiência Renal/prevenção & controle , Valsartana/uso terapêutico , Administração Oral , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Benzamidas/administração & dosagem , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Quimioterapia Combinada , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/patologia , Barreira de Filtração Glomerular/fisiopatologia , Injeções Intraperitoneais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Microscopia de Fluorescência , Fosforilação/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Podócitos/imunologia , Podócitos/metabolismo , Podócitos/patologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Distribuição Aleatória , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Insuficiência Renal/complicações , Insuficiência Renal/metabolismo , Insuficiência Renal/fisiopatologia , Fator de Transcrição RelA/metabolismo , Valsartana/administração & dosagem
10.
Nat Nanotechnol ; 12(11): 1096-1102, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892099

RESUMO

The glomerular filtration barrier is known as a 'size cutoff' slit, which retains nanoparticles or proteins larger than 6-8 nm in the body and rapidly excretes smaller ones through the kidneys. However, in the sub-nanometre size regime, we have found that this barrier behaves as an atomically precise 'bandpass' filter to significantly slow down renal clearance of few-atom gold nanoclusters (AuNCs) with the same surface ligands but different sizes (Au18, Au15 and Au10-11). Compared to Au25 (∼1.0 nm), just few-atom decreases in size result in four- to ninefold reductions in renal clearance efficiency in the early elimination stage, because the smaller AuNCs are more readily trapped by the glomerular glycocalyx than larger ones. This unique in vivo nano-bio interaction in the sub-nanometre regime also slows down the extravasation of sub-nanometre AuNCs from normal blood vessels and enhances their passive targeting to cancerous tissues through an enhanced permeability and retention effect. This discovery highlights the size precision in the body's response to nanoparticles and opens a new pathway to develop nanomedicines for many diseases associated with glycocalyx dysfunction.


Assuntos
Barreira de Filtração Glomerular/metabolismo , Glicocálix/metabolismo , Ouro , Nanopartículas Metálicas , Animais , Feminino , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Permeabilidade
11.
Am J Physiol Renal Physiol ; 309(9): F800-6, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26290366

RESUMO

This study was performed to investigate the immediate actions of the proinflammatory cytokines IL-1ß, TNF-α, and IL-6 on the permeability of the glomerular filtration barrier (GFB) in rats and to test whether these actions are dependent upon the release of reactive oxygen species (ROS). In anesthetized rats, blood access was achieved and the left ureter was cannulated for urine collection. Rats were continuously infused intravenously with either IL-1ß (0.4 and 2 µg·kg(-1)·h(-1)), TNF-α (0.4 and 2 µg·kg(-1)·h(-1)), or IL-6 (4 and 8 µg·kg(-1)·h(-1)), together with polydisperse FITC-Ficoll-70/400 and inulin for 1 h. Plasma and urine samples were analyzed by high performance size exclusion chromatography (HPSEC) for determination of glomerular sieving coefficients (θ). The glomerular filtration rate (GFR) was also assessed (51Cr-EDTA). In separate experiments, the superoxide scavenger tempol (30 mg·kg(-1)·h(-1)) was given before and during cytokine infusions. IL-1ß and TNF-α caused rapid, partly reversible increases in glomerular permeability to large molecules (Ficoll50-80Å), peaking at 5-30 min, while IL-6 caused a more gradual increase in permeability, leveling off at 60 min. Tempol almost completely abrogated the glomerular permeability effects of the cytokines infused. In conclusion IL-1ß, TNF-α, and IL-6, when infused systemically, caused immediate and partly reversible increases in glomerular permeability, which could be inhibited by the superoxide scavenger tempol, suggesting an important role of ROS in acute cytokine-induced permeability changes in the GFB.


Assuntos
Barreira de Filtração Glomerular/efeitos dos fármacos , Interleucina-1beta/farmacologia , Interleucina-6/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Cromatografia em Gel , Sequestradores de Radicais Livres/farmacologia , Barreira de Filtração Glomerular/metabolismo , Taxa de Filtração Glomerular/efeitos dos fármacos , Infusões Intravenosas , Interleucina-1beta/administração & dosagem , Interleucina-6/administração & dosagem , Permeabilidade , Ratos Wistar , Fatores de Tempo , Fator de Necrose Tumoral alfa/administração & dosagem
12.
Biochim Biophys Acta ; 1852(8): 1599-609, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25952906

RESUMO

Podocytes are highly specialized cells that wrap around glomerular capillaries and comprise a key component of the glomerular filtration barrier. They are uniquely sensitive to insulin; like skeletal muscle and fat cells, they exhibit insulin-stimulated glucose uptake and express glucose transporters. Podocyte insulin signaling is mediated by protein kinase G type I (PKGI), and it leads to changes in glomerular permeability to albumin. Here, we investigated whether large-conductance Ca²âº-activated K⁺ channels (BKCa) were involved in insulin-mediated, PKGIα-dependent filtration barrier permeability. Insulin-induced glomerular permeability was measured in glomeruli isolated from Wistar rats. Transepithelial albumin flux was measured in cultured rat podocyte monolayers. Expression of BKCa subunits was detected by RT-PCR. BKCa, PKGIα, and upstream protein expression were examined in podocytes with Western blotting and immunofluorescence. The BKCa-PKGIα interaction was assessed with co-immunoprecipitation. RT-PCR showed that primary cultured rat podocytes expressed mRNAs that encoded the pore-forming α subunit and four accessory ß subunits of BKCa. The BKCa inhibitor, iberiotoxin (ibTX), abolished insulin-dependent glomerular albumin permeability and PKGI-dependent transepithelial albumin flux. Insulin-evoked albumin permeability across podocyte monolayers was also blocked with BKCa siRNA. Moreover, ibTX blocked insulin-induced disruption of the actin cytoskeleton and changes in the phosphorylation of PKG target proteins, MYPT1 and RhoA. These results indicated that insulin increased filtration barrier permeability through mobilization of BKCa channels via PKGI in cultured rat podocytes. This molecular mechanism may explain podocyte injury and proteinuria in diabetes.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/fisiologia , Barreira de Filtração Glomerular/efeitos dos fármacos , Barreira de Filtração Glomerular/metabolismo , Insulina/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Podócitos/efeitos dos fármacos , Albuminas/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Feminino , Peptídeos/farmacologia , Permeabilidade/efeitos dos fármacos , Podócitos/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar
13.
J Diabetes Complications ; 29(5): 621-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25958122

RESUMO

AIMS: Growing evidences suggest that acute hyperglycemia is strongly related to kidney injury. Our study aimed to investigate the effects of acute hyperglycemia on kidney glomerular and tubular impairment in non-diabetic conscious rats. METHODS: Non-diabetic conscious rats were randomly subjected to 6h of saline (control group) or high glucose (acute hyperglycemia group) infusion. Blood glucose was maintained at 16.0-18.0 mmol/L in acute hyperglycemia group. Renal structure and function alterations, systemic/renal inflammation and oxidative stress markers were assessed, and apoptosis markers of renal inherent cells were evaluated. RESULTS: Acute hyperglycemia caused significant injury to structure of glomerular filtration barrier, tubular epithelial cells and peritubular vascular endothelial cells. It increased urinary microalbumin (68.01 ± 27.09 µg/24h vs 33.81 ± 13.81 µg/24h , P=0.014), ß2-microglobulin, Cystatin C, urinary and serous neutrophil gelatinase-associated lipocalin levels (P < 0.05). Acute hyperglycemia decreased megalin and cubilin expression, activated systemic and renal oxidative stress as well as inflammation and promoted renal inherent cell apoptosis. CONCLUSIONS: Acute hyperglycemia causes significant injury to kidney function and structure. Compared with damages of glomerular filtration barrier, renal tubular injury may contribute more to acute hyperglycemia induced proteinuria. Activation of inflammation especially renal inflammation, oxidative stress and enhanced apoptosis may be the underlying mechanisms.


Assuntos
Apoptose , Hiperglicemia/fisiopatologia , Túbulos Renais/fisiopatologia , Estresse Oxidativo , Insuficiência Renal/etiologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Glicemia/análise , Barreira de Filtração Glomerular/imunologia , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/fisiopatologia , Barreira de Filtração Glomerular/ultraestrutura , Técnica Clamp de Glucose , Hiperglicemia/imunologia , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Glomérulos Renais/imunologia , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiopatologia , Glomérulos Renais/ultraestrutura , Túbulos Renais/imunologia , Túbulos Renais/metabolismo , Túbulos Renais/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Nefrite/etiologia , Especificidade de Órgãos , Proteinúria/etiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Insuficiência Renal/fisiopatologia , Índice de Gravidade de Doença
14.
J Am Soc Nephrol ; 26(5): 1053-70, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25270074

RESUMO

TNF ligand superfamily member 12, also known as TNF-related weak inducer of apoptosis (TWEAK), acts through its receptor, fibroblast growth factor-inducible 14 (Fn14), to mediate several key pathologic processes involved in tissue injury relating to lupus nephritis. To explore the potential for renal protection in lupus nephritis by targeting this pathway, we introduced the Fn14 null allele into the MRL-lpr/lpr lupus mouse strain. At 26-38 weeks of age, female Fn14-knockout MRL-lpr/lpr mice had significantly lower levels of proteinuria compared with female wild-type MRL-lpr/lpr mice. Furthermore, Fn14-knockout mice had significantly improved renal histopathology accompanied by attenuated glomerular and tubulointerstitial inflammation. There was a significant reduction in glomerular Ig deposition in Fn14-knockout mice, despite no detectable differences in either serum levels of antibodies or splenic immune cell subsets. Notably, we found that the Fn14-knockout mice displayed substantial preservation of podocytes in glomeruli and that TWEAK signaling directly damaged barrier function and increased filtration through podocyte and glomerular endothelial cell monolayers. Our results show that deficiency of the Fn14 receptor significantly improves renal disease in a spontaneous lupus nephritis model through prevention of the direct injurious effects of TWEAK on the filtration barrier and/or modulation of cytokine production by resident kidney cells. Thus, blocking the TWEAK/Fn14 axis may be a novel therapeutic intervention in immune-mediated proliferative GN.


Assuntos
Fatores de Crescimento de Fibroblastos/deficiência , Barreira de Filtração Glomerular/metabolismo , Nefrite Lúpica/etiologia , Fatores de Necrose Tumoral/metabolismo , Animais , Citocina TWEAK , Feminino , Imunoglobulina G/metabolismo , Camundongos Knockout , Proteinúria/metabolismo
15.
J Am Soc Nephrol ; 25(9): 1991-2002, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24676636

RESUMO

FSGS is characterized by segmental scarring of the glomerulus and is a leading cause of kidney failure. Identification of genes causing FSGS has improved our understanding of disease mechanisms and points to defects in the glomerular epithelial cell, the podocyte, as a major factor in disease pathogenesis. Using a combination of genome-wide linkage studies and whole-exome sequencing in a kindred with familial FSGS, we identified a missense mutation R431C in anillin (ANLN), an F-actin binding cell cycle gene, as a cause of FSGS. We screened 250 additional families with FSGS and found another variant, G618C, that segregates with disease in a second family with FSGS. We demonstrate upregulation of anillin in podocytes in kidney biopsy specimens from individuals with FSGS and kidney samples from a murine model of HIV-1-associated nephropathy. Overexpression of R431C mutant ANLN in immortalized human podocytes results in enhanced podocyte motility. The mutant anillin displays reduced binding to the slit diaphragm-associated scaffold protein CD2AP. Knockdown of the ANLN gene in zebrafish morphants caused a loss of glomerular filtration barrier integrity, podocyte foot process effacement, and an edematous phenotype. Collectively, these findings suggest that anillin is important in maintaining the integrity of the podocyte actin cytoskeleton.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas dos Microfilamentos/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Sequência de Aminoácidos , Animais , Movimento Celular/genética , Sequência Conservada , Proteínas Contráteis/genética , Proteínas do Citoesqueleto/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Exoma , Feminino , Técnicas de Silenciamento de Genes , Barreira de Filtração Glomerular/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Mutantes/genética , Linhagem , Podócitos/metabolismo , Homologia de Sequência de Aminoácidos , Regulação para Cima , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
16.
Development ; 141(2): 367-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24335255

RESUMO

Drosophila nephrocytes are functionally homologous to vertebrate kidney podocytes. Both share the presence of slit diaphragms that function as molecular filters during the process of blood and haemolymph ultrafiltration. The protein components of the slit diaphragm are likewise conserved between flies and humans, but the mechanisms that regulate slit diaphragm dynamics in response to injury or nutritional changes are still poorly characterised. Here, we show that Dumbfounded/Neph1, a key diaphragm constituent, is a target of the Src kinase Src64B. Loss of Src64B activity leads to a reduction in the number of diaphragms, and this effect is in part mediated by loss of Dumbfounded/Neph1 tyrosine phosphorylation. The phosphorylation of Duf by Src64B, in turn, regulates Duf association with the actin regulator Dock. We also find that diaphragm damage induced by administration of the drug puromycin aminonucleoside (PAN model) directly associates with Src64B hyperactivation, suggesting that diaphragm stability is controlled by Src-dependent phosphorylation of diaphragm components. Our findings indicate that the balance between diaphragm damage and repair is controlled by Src-dependent phosphorylation of diaphragm components, and point to Src family kinases as novel targets for the development of pharmacological therapies for the treatment of kidney diseases that affect the function of the glomerular filtration barrier.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Barreira de Filtração Glomerular/metabolismo , Nefropatias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Animais Geneticamente Modificados , Agregação Celular , Linhagem Celular , Modelos Animais de Doenças , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ativação Enzimática , Barreira de Filtração Glomerular/citologia , Humanos , Nefropatias/etiologia , Nefropatias/patologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Proteínas Musculares/química , Proteínas Musculares/genética , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Tirosina/química
17.
J Steroid Biochem Mol Biol ; 129(3-5): 107-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22207085

RESUMO

Proteinuria is an important risk factor for the progression and prognosis of chronic kidney disease. Bufalin, a cardiotonic steroid, has been shown to posses a variety of biological activities including cardiotonic, anaesthetic and antineoplastic activities, and regulate the immune response. This study investigated the effects of bufalin against proteinuria and glomerular filtration barrier damage in rats with adriamycin (ADR)-induced nephropathy. We compared the blood and urine biochemical indices and the histologic and ultrastructure of the glomerulus in ADR rats with and without the intervention of bufalin or prednisone. The transcription, expression and distribution of the podocyte-associated molecules were compared utilising RT-PCR, western blotting and immunohistochemical staining. We found that bufalin reduced the urinary protein excretion and optimised the lipidaemia of the ADR rats. Bufalin alleviated the removal of podocyte foot processes and attenuated the changes in nephrin, podocin and integrin-linked kinase (ILK) stainings in the glomerulus of the ADR rats. Bufalin notably decreased the expression of nephrin and ILK but inhibited the down-regulation of podocin in protein levels on the renal cortex of the ADR rats. Additionally, bufalin inhibited the up-regulation of podocin and ILK in mRNA levels but did not affect nephrin mRNA levels. These results suggest that bufalin could alleviate ADR-induced proteinuria by protecting the glomerular filtration barrier and may be a novel potential therapeutic agent for proteinuria-associated kidney disease.


Assuntos
Bufanolídeos/uso terapêutico , Cardiotônicos/uso terapêutico , Barreira de Filtração Glomerular/efeitos dos fármacos , Proteinúria/tratamento farmacológico , Animais , Doxorrubicina , Regulação da Expressão Gênica/efeitos dos fármacos , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/patologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nefropatias/induzido quimicamente , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Prednisona/uso terapêutico , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/genética , Proteinúria/sangue , Proteinúria/urina , Ratos , Ratos Sprague-Dawley
18.
Am J Pathol ; 180(3): 940-951, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22203053

RESUMO

The mechanism of proteinuria in many common kidney diseases involves glomerular hemodynamic effects and local expression of angiogenic, fibrogenic, and vasoactive factors. Transforming growth factor (TGF)-ß has been associated with many diseases involving proteinuria and renal fibrosis. TGF-ß has been shown to induce podocyte dedifferentiation in vitro, but its in vivo effects on the glomerular filtration barrier are not well described. In this study, we used an adenovirus vector to transfer active TGF-ß1 to the glomeruli of rat kidneys. Transient TGF-ß1 overexpression induced significant proteinuria, podocyte foot process effacement, nephrin down-regulation, and nephrinuria. The expression of synaptopodin was also significantly down-regulated by TGF-ß1. Increased glomerular expression of Snail, suggestive of an in vivo dedifferentiation process, was associated with a loss of podocyte epithelial markers. The expression of angiopoietin-1 and angiopoietin-2 was significantly increased in TGF-ß1-transfected glomeruli, and TGF-ß1 increased the expression of the angiopoietin receptor, Tie2, in podocyte cell culture. TGF-ß1 down-regulated nephrin and synaptopodin expression in podocytes in cell culture; this effect was reversed by the blockade of both angiopoietin and Tie2 activities. These findings suggest that locally produced TGF-ß1 can cause podocyte dedifferentiation marked by a loss of synaptopodin, nephrin, and foot process effacement, partly regulated by angiopoietins. This process represents a novel pathway that may explain proteinuria in a variety of common renal diseases.


Assuntos
Proteinúria/etiologia , Fator de Crescimento Transformador beta1/fisiologia , Actinas/metabolismo , Adenoviridae , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Animais , Desdiferenciação Celular , Células Cultivadas , Regulação para Baixo , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Barreira de Filtração Glomerular/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/urina , Podócitos/metabolismo , Podócitos/patologia , Proteinúria/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição da Família Snail , Sinaptofisina/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA