Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Sci Rep ; 14(1): 7947, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575707

RESUMO

Graves' ophthalmopathy (GO) is an extra-thyroidal complication of Graves' disease which can lead to vision loss in severe cases. Currently, treatments of GO are not sufficiently effective, so novel therapeutic strategies are needed. As platelet-derived growth factor (PDGF)-BB induces several effector mechanisms in GO orbital fibroblasts including cytokine production and myofibroblast activation, this study aims to investigate the roles of histone lysine methyltransferases (HKMTs) in PDGF-BB-activated GO orbital fibroblasts by screening with HKMTs inhibitors library. From the total of twelve selective HKMT inhibitors in the library, EZH2, G9a and DOT1L inhibitors, DZNeP, BIX01294 and Pinometostat, respectively, prevented PDGF-BB-induced proliferation and hyaluronan production by GO orbital fibroblasts. However, only EZH2 inhibitor, DZNeP, significantly blocked pro-inflammatory cytokine production. For the HKMTs expression in GO orbital fibroblasts, PDGF-BB significantly and time-dependently induced EZH2, G9a and DOT1L mRNA expression. To confirm the role of EZH2 in PDGF-BB-induced orbital fibroblast activation, EZH2 silencing experiments revealed suppression of PDGF-BB-induced collagen type I and α-SMA expression along with decreasing histone H3 lysine 27 trimethylation (H3K27me3) level. In a more clinically relevant model than orbital fibroblast culture experiments, DZNeP treated GO orbital tissues significantly reduced pro-inflammatory cytokine production while slightly reduced ACTA2 mRNA expression. Our data is the first to demonstrate that among all HKMTs EZH2 dominantly involved in the expression of myofibroblast markers in PDGF-BB-activated orbital fibroblast from GO presumably via H3K27me3. Thus, EZH2 may represent a novel therapeutics target for GO.


Assuntos
Oftalmopatia de Graves , Histonas , Humanos , Becaplermina/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Órbita/patologia , Oftalmopatia de Graves/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/genética , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
2.
World J Gastroenterol ; 30(15): 2143-2154, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38681990

RESUMO

BACKGROUND: Liver fibrosis is a compensatory response during the tissue repair process in chronic liver injury, and finally leads to liver cirrhosis or even hepatocellular carcinoma. The pathogenesis of hepatic fibrosis is associated with the progressive accumulation of activated hepatic stellate cells (HSCs), which can transdifferentiate into myofibroblasts to produce an excess of the extracellular matrix (ECM). Myofibroblasts are the main source of the excessive ECM responsible for hepatic fibrosis. Therefore, activated hepatic stellate cells (aHSCs), the principal ECM producing cells in the injured liver, are a promising therapeutic target for the treatment of hepatic fibrosis. AIM: To explore the effect of taurine on aHSC proliferation and the mechanisms involved. METHODS: Human HSCs (LX-2) were randomly divided into five groups: Normal control group, platelet-derived growth factor-BB (PDGF-BB) (20 ng/mL) treated group, and low, medium, and high dosage of taurine (10 mmol/L, 50 mmol/L, and 100 mmol/L, respectively) with PDGF-BB (20 ng/mL) treated group. Cell Counting Kit-8 method was performed to evaluate the effect of taurine on the viability of aHSCs. Enzyme-linked immunosorbent assay was used to estimate the effect of taurine on the levels of reactive oxygen species (ROS), malondialdehyde, glutathione, and iron concentration. Transmission electron microscopy was applied to observe the effect of taurine on the autophagosomes and ferroptosis features in aHSCs. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the effect of taurine on the expression of α-SMA, Collagen I, Fibronectin 1, LC3B, ATG5, Beclin 1, PTGS2, SLC7A11, and p62. RESULTS: Taurine promoted the death of aHSCs and reduced the deposition of the ECM. Treatment with taurine could alleviate autophagy in HSCs to inhibit their activation, by decreasing autophagosome formation, downregulating LC3B and Beclin 1 protein expression, and upregulating p62 protein expression. Meanwhile, treatment with taurine triggered ferroptosis and ferritinophagy to eliminate aHSCs characterized by iron overload, lipid ROS accumulation, glutathione depletion, and lipid peroxidation. Furthermore, bioinformatics analysis demonstrated that taurine had a direct targeting effect on nuclear receptor coactivator 4, exhibiting the best average binding affinity of -20.99 kcal/mol. CONCLUSION: Taurine exerts therapeutic effects on liver fibrosis via mechanisms that involve inhibition of autophagy and trigger of ferroptosis and ferritinophagy in HSCs to eliminate aHSCs.


Assuntos
Autofagia , Proliferação de Células , Ferroptose , Células Estreladas do Fígado , Cirrose Hepática , Espécies Reativas de Oxigênio , Taurina , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Autofagia/efeitos dos fármacos , Taurina/farmacologia , Ferroptose/efeitos dos fármacos , Cirrose Hepática/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Becaplermina/farmacologia , Becaplermina/metabolismo , Linhagem Celular , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
PLoS One ; 19(3): e0300370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536827

RESUMO

Anti-VEGF (vascular endothelial growth factor) drugs such as aflibercept (AFL) and bevacizumab (BVZ) inhibit pathological neo-angiogenesis and vascular permeability in retinal vascular diseases. As cytokines and growth factors are produced by Müller glial cells under stressful and pathological conditions, we evaluated the in vitro effect of AFL (Eylea®, 0.5 mg/mL) and BVZ (Avastin®, 0.5 mg/mL) on cell viability/metabolism, and cytokine/growth factor production by Müller cells (MIO-M1) under cobalt chloride (CoCl2)-induced hypoxia after 24h, 48h and 72h. Cell viability/metabolism were analyzed by Trypan Blue and MTT assays and cytokine/growth factors in supernatants by Luminex xMAP-based multiplex bead-based immunoassay. Cell viability increased with AFL at 48h and 72h and decreased with BVZ or hypoxia at 24h. BVZ-treated cells showed lower cell viability than AFL at all exposure times. Cell metabolism increased with AFL but decreased with BVZ (72h) and hypoxia (48h and72h). As expected, AFL and BVZ decreased VEGF levels. AFL increased PDGF-BB, IL-6 and TNF-α (24h) and BVZ increased PDGF-BB (72h). Hypoxia reduced IL-1ß, -6, -8, TNF-α and PDGF-BB at 24h, and its suppressive effect was more prominent than AFL (EGF, PDGF-BB, IL-1ß, IL-6, IL-8, and TNF-α) and BVZ (PDGF-BB and IL-6) effects. Hypoxia increased bFGF levels at 48h and 72h, even when combined with anti-VEGFs. However, the stimulatory effect of BVZ predominated over hypoxia for IL-8 and TNF-α (24h), as well as for IL-1ß (72h). Thus, AFL and BVZ exhibit distinct exposure times effects on MIO-M1 cells viability, metabolism, and cytokines/growth factors. Hypoxia and BVZ decreased MIO-M1 cell viability/metabolism, whereas AFL likely induced gliosis. Hypoxia resulted in immunosuppression, and BVZ stimulated inflammation in hypoxic MIO-M1 cells. These findings highlight the complexity of the cellular response as well as the interplay between anti-VEGF treatments and the hypoxic microenvironment.


Assuntos
Células Ependimogliais , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Fator A de Crescimento do Endotélio Vascular , Humanos , Bevacizumab/farmacologia , Bevacizumab/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Ependimogliais/metabolismo , Sobrevivência Celular , Becaplermina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Interleucina-6/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Citocinas/metabolismo , Hipóxia/metabolismo , Neovascularização Patológica/patologia , Inflamação/patologia
4.
Mol Immunol ; 168: 38-46, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422885

RESUMO

Asthma, a common pediatric pulmonary disease, significantly affects children's healthy development. This study aimed to investigate the functions of human ß defensin-3 (HBD-3) in asthma progression. For this purpose, blood samples from asthmatic and healthy children were collected. Moreover, the airway smooth muscle cells (ASMCs) were treated with platelet-derived growth factor BB (PDGF-BB) to develop an in vitro asthma model, then evaluated cell viability and migration via CCK-8 and transwell assays. The mRNA levels of interferon γ (INF-γ), interleukin 4 (IL-4), interleukin 10 (IL-10), alpha-smooth muscle actin (α-SMA), HBD-3, and the protein levels of phosphatidylinositol 3-kinase (PI3K) along with protein kinase B (AKT) were detected. Similarly, the N6-methyladenosine (m6A) content in the ASMCs and m6A levels of HBD-3 were also measured. Results indicated an upregulated HBD-3 in the asthmatic children. The ASMCs were found to be stimulated by PDGF-BB, in addition to the promotion of cell viability and migration. The INF-γ, IL-4, and α-SMA levels were reduced, while IL-10 was elevated in PDGF-BB-stimulated ASMCs. Silencing HBD-3 in PDGF-BB stimulated ASMCs was found to exert the opposite effect by inhibiting cell viability and migration, enhancing the levels of INF-γ, IL-4, and α-SMA, while the IL-10 levels were found to decline. PDGF-BB stimulation of ASMCs resulted in activation of the PI3K/AKT signaling pathway, which was blocked post HBD-3 silencing, while the role of si-hBD in PDGF-BB stimulated ASMCs was neutralized post-treatment with IGF-1. Finally, it was found that METTL3 overexpression prominently upregulated the m6A levels of HBD-3 and decreased the mRNA expression and stability of HBD-3 in the PDGF-BB-stimulated ASMCs. The study concluded that METTL3-mediated HBD-3 participates in the progression of asthma through the PI3K/AKT signaling pathway.


Assuntos
Asma , Metiltransferases , Miócitos de Músculo Liso , beta-Defensinas , Criança , Humanos , Asma/metabolismo , Becaplermina/farmacologia , Becaplermina/metabolismo , beta-Defensinas/genética , beta-Defensinas/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais
5.
Sci Rep ; 14(1): 4191, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378786

RESUMO

Lung adenocarcinoma (LUAD) remains one of the most aggressive tumors and the efficacy of conventional treatment has been bleak. Nowadays, gene-targeted therapy has become a new favorite in tumor therapy. Herein, we investigated the effect of platelet derived growth factor BB (PDGFBB) on LUAD. Firstly, PDGFBB was upregulated in LUAD patients and closely linked with poor survival. Furthermore, the expression of PDGFBB and PDGFRα/ß in LUAD cells was higher than that in normal lung cells. By loss-of-function with herpes simplex virus (HSV)-PDGFi-shRNA, we found that PDGFBB knockdown caused a significant decrease in proliferation and migration, but evoked apoptosis of LUAD cells in vitro. Conversely, exogenous PDGFBB held adverse effect. Additionally, A549 cells with PDGFBB knockdown had a low probability of tumorigenesis in vivo. Moreover, PDGFBB knockdown restrained the growth of xenografts derived from normal A549 cells. Mechanistically, PDGFBB knockdown suppressed PI3K/AKT and Ras/MAPK signaling, while PDGFBB was the opposite. Therefore, we concluded that PDGFBB might facilitate the tumorigenesis and malignancy of LUAD through its functional downstream nodes-PI3K/AKT and Ras/MAPK signaling, which supported that PDGFBB could serve as a rational therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Becaplermina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/patologia , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Linhagem Celular Tumoral
6.
Atherosclerosis ; 390: 117430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301602

RESUMO

BACKGROUND AND AIMS: Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS: Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS: TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.


Assuntos
Aterosclerose , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Becaplermina/genética , Becaplermina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Liso Vascular/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular , Transdução de Sinais , Proliferação de Células , Serina-Treonina Quinases TOR/metabolismo , Aterosclerose/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Células Cultivadas , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
Mol Med ; 30(1): 21, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317079

RESUMO

BACKGROUND: Pericytes are a vital component of the blood-brain barrier, and their involvement in acute inflammation was recently suggested. However, it remains unclear whether pericytes contribute to hypothalamic chronic inflammation and energy metabolism in obesity. The present study investigated the impact of pericytes on the pathophysiology of obesity by focusing on platelet-derived growth factor (PDGF) signaling, which regulates pericyte functions. METHODS: Tamoxifen-inducible systemic conditional PDGF receptor ß knockout mice (Pdgfrb∆SYS-KO) and Calcium/calmodulin-dependent protein kinase type IIa (CaMKIIa)-positive neuron-specific PDGF receptor ß knockout mice (Pdgfrb∆CaMKII-KO) were fed a high-fat diet, and metabolic phenotypes before and 3 to 4 weeks after dietary loading were examined. Intracellular energy metabolism and relevant signal transduction in lipopolysaccharide- and/or platelet-derived growth factor-BB (PDGF-BB)-stimulated human brain pericytes (HBPCs) were assessed by the Seahorse XFe24 Analyzer and Western blotting. The pericyte secretome in conditioned medium from HBPCs was studied using cytokine array kit, and its impact on polarization was examined in bone marrow-derived macrophages (BMDMs), which are microglia-like cells. RESULTS: Energy consumption increased and body weight gain decreased after high-fat diet loading in Pdgfrb∆SYS-KO mice. Cellular oncogene fos (cFos) expression increased in proopiomelanocortin (POMC) neurons, whereas microglial numbers and inflammatory gene expression decreased in the hypothalamus of Pdgfrb∆SYS-KO mice. No significant changes were observed in Pdgfrb∆CaMKII-KO mice. In HBPCs, a co-stimulation with lipopolysaccharide and PDGF-BB shifted intracellular metabolism towards glycolysis, activated mitogen-activated protein kinase (MAPK), and modulated the secretome to the inflammatory phenotype. Consequently, the secretome showed an increase in various proinflammatory chemokines and growth factors including Epithelial-derived neutrophil-activating peptide 78 (C-X-C motif chemokine ligand (CXCL)5), Thymus and activation-regulated chemokine (C-C motif chemokine (CCL)17), Monocyte chemoattractant protein 1 (CCL2), and Growth-regulated oncogene α (CXCL1). Furthermore, conditioned medium from HBPCs stimulated the inflammatory priming of BMDMs, and this change was abolished by the C-X-C motif chemokine receptor (CXCR) inhibitor. Consistently, mRNA expression of CXCL5 was elevated by lipopolysaccharide and PDGF-BB treatment in HBPCs, and the expression was significantly lower in the hypothalamus of Pdgfrb∆SYS-KO mice than in control Pdgfrbflox/flox mice (FL) following 4 weeks of HFD feeding. CONCLUSIONS: PDGF receptor ß signaling in hypothalamic pericytes promotes polarization of macrophages by changing their secretome and contributes to the progression of obesity.


Assuntos
Pericitos , Fator de Crescimento Derivado de Plaquetas , Camundongos , Humanos , Animais , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Pericitos/metabolismo , Becaplermina/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Meios de Cultivo Condicionados/metabolismo , Lipopolissacarídeos , Transdução de Sinais , Inflamação/metabolismo , Camundongos Knockout , Obesidade/metabolismo , Hipotálamo , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo
8.
Discov Med ; 36(181): 323-331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409837

RESUMO

BACKGROUND: Childhood asthma is a chronic inflammatory disease of the respiratory tract characterized by bronchial inflammation, airway hyperresponsiveness, airflow disorder, and obstruction. Secreted frizzled-related protein 5 (SFRP5) may be associated with respiratory inflammatory diseases. This study investigated the effect of SFRP5 on human airway smooth muscle cells (HASMCs) to provide new ideas for treating asthma. METHODS: A total of 30 children with asthma and 30 children who had a physical examination at the same time were selected and divided into asthma and healthy groups. Serum SFRP5 levels were determined by enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (RT-qPCR). Lipofectamine 2000™ regent was used to transfect the SFRP5 overexpression plasmid (pc-SFRP5) or corresponding negative control (pc-NC) into HASMCs. HASMCs were treated with 10 µg/L platelet-derived growth factor-BB (PDGF-BB), which is an inducer to mimic the asthma-like condition at the cellular level of childhood asthma. HASMCs were divided into control, PDGF-BB (PDGF-BB treatment), PDGF-BB+pc-NC (pc-NC transfection and PDGF-BB treatment), and PDGF-BB+pc-SFRP5 (pc-SFRP5 transfection and PDGF-BB treatment) groups. Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assay. Cell migration was detected by Transwell assay. The protein expression was detected by western blot. RESULTS: Serum SFRP5 expression in the asthmatic group was decreased versus the healthy group (p < 0.0001). Induction of PDGF-BB decreased SFRP5 expression in HASMCs (p < 0.01). SFRP5 expression in the pc-SFRP5 group was increased (p < 0.01). The proliferation and migration of HASMCs increased after PDGF-BB treatment (p < 0.001, p < 0.0001), indicating that the asthma model was successfully inducted in vitro. Moreover, the expression of ß-catenin, cellular-myelocytomatosis viral oncogene (c-Myc), and cyclinD1 proteins in HASMCs increased after PDGF-BB treatment (p < 0.0001). SFRP5 overexpression partly inhibited PDGF-BB-induced proliferation, migration, and expressions of ß-catenin, c-Myc, and cyclinD proteins in HASMCs (p < 0.01, p < 0.001, p < 0.0001). CONCLUSIONS: Serum SFRP5 expression decreases in children with asthma. SFRP5 overexpression partially inhibits PDGF-BB-induced HASMC proliferation and migration by regulating the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt)/ß-catenin pathway.


Assuntos
Asma , beta Catenina , Animais , Criança , Camundongos , Humanos , Becaplermina/metabolismo , Becaplermina/farmacologia , beta Catenina/metabolismo , beta Catenina/farmacologia , Via de Sinalização Wnt/genética , Asma/genética , Asma/metabolismo , Asma/patologia , Proliferação de Células/genética , Pulmão/metabolismo , Movimento Celular , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Cultivadas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
9.
Sci Rep ; 14(1): 559, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177414

RESUMO

miR-374a-5p expression and localization in intracranial aneurysm (IA) tissues were detected, and its correlation with vascular smooth muscle cells (VSMCs) and macrophage markers was analyzed. Using platelet-derived growth factor-BB (PDGF-BB) induced VSMC model, elastase-induced IA rat model. Subsequently, miR-374a-5p was knocked down or overexpressed. We investigated the effects of miR-374a-5p on phenotypic conversion, and in vivo experiments were also carried out to verify the findings. The targeted relationship between miR-374a-5p and WNTA5 was analyzed. The effect of WNT5A inhibition on VSMC phenotypic transformation and THP-1-derived macrophage polarization was explored. Clinical studies have shown that miR-374a-5p was upregulated in IA patients. miR-374a-5p was negatively correlated with SM22α, α-SMA, CD206, and positively correlated with CD86. In vitro experiments showed that knocking down miR-374a-5p reversed the promotion of SM22α and α-SMA expression by PDGF-BB, while overexpression of miR-374a-5p had the opposite effect. In addition, knocking down miR-374a-5p also reversed the decrease in Calponin, TIMP3, TIMP4, and IL-10 levels caused by PDGF-BB, and further reduced the levels of MMP1, MMP3, MMP9, IL-1ß, IL-6, and TNF-α. These findings were further validated in vivo. In IA rats, there were notable increases in both systolic and diastolic blood pressure, along with an elevated M1/M2 ratio and the occurrence of vascular lesions. However, these symptoms were improved after knocking down miR-374a-5p. Furthermore, miR-374a-5p could target the WNT signals (WNT2B, WNT3, and WNT5A). miR-374a-5p regulated the VSMC phenotypic conversion and M1 macrophage polarization by targeting WNT5A, thereby impacting the progression of IA.


Assuntos
Aneurisma Intracraniano , MicroRNAs , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Becaplermina/metabolismo , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proliferação de Células/fisiologia
10.
Cell Biochem Funct ; 42(1): e3896, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081793

RESUMO

Cysteine and glycine-rich protein 2 (Csrp2) has emerged as a key factor in controlling the phenotypic modulation of smooth muscle cells. The phenotypic transition of airway smooth muscle cells (ASMCs) is a pivotal step in developing airway remodeling during the onset of asthma. However, whether Csrp2 mediates the phenotypic transition of ASMCs in airway remodeling during asthma onset is undetermined. This work aimed to address the link between Csrp2 and the phenotypic transition of ASMCs evoked by platelet-derived growth factor (PDGF)-BB in vitro. The overexpression or silencing of Csrp2 in ASMCs was achieved through adenovirus-mediated gene transfer. The expression of mRNA was measured by quantitative real-time-PCR. Protein levels were determined through Western blot analysis. Cell proliferation was detected by EdU assay and Calcein AM assays. Cell cycle distribution was assessed via fluorescence-activated cell sorting assay. Cell migration was evaluated using the scratch-wound assay. The transcriptional activity of Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) was measured using the luciferase reporter assay. A decline in Csrp2 level occurred in PDGF-BB-stimulated ASMCs. Increasing Csrp2 expression repressed the PDGF-BB-evoked proliferation and migration of ASMCs. Moreover, increasing Csrp2 expression impeded the phenotypic change of PDGF-BB-stimulated ASMCs from a contractile phenotype into a synthetic/proliferative phenotype. On the contrary, the opposite effects were observed in Csrp2-silenced ASMCs. The activity of YAP/TAZ was elevated in PDGF-BB-stimulated ASMCs, which was weakened by Csrp2 overexpression or enhanced by Csrp2 silencing. The YAP/TAZ activator could reverse Csrp2-overexpression-mediated suppression of the PDGF-BB-evoked phenotypic switching of ASMCs, while the YAP/TAZ suppressor could dimmish Csrp2-silencing-mediated enhancement on PDGF-BB-evoked phenotypic switching of ASMCs. In summary, Csrp2 serves as a determinant for the phenotypic switching of ASMCs. Increasing Csrp2 is able to impede PDGF-BB-evoked phenotypic change of ASMCs from a synthetic phenotype into a synthetic/proliferative phenotype through the effects on YAP/TAZ. This work implies that Csrp2 may be a key player in airway remodeling during the onset of asthma.


Assuntos
Asma , Cisteína , Humanos , Becaplermina/genética , Becaplermina/metabolismo , Cisteína/genética , Cisteína/metabolismo , Remodelação das Vias Aéreas , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Asma/metabolismo , Fenótipo , Movimento Celular
11.
Oral Maxillofac Surg ; 28(1): 413-424, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37269407

RESUMO

OBJECTIVES: This cross-sectional invitro research aimed to compare and contrast the macroscopic and microscopic, mechanical and biochemical features of leukocyte-rich platelet-rich fibrin, advanced platelet-rich fibrin, and injectable platelet-rich fibrin. MATERIALS AND METHODS: In all, 150 samples were taken from males aged 18 to 25 with good systemic health (n = 50 each for i-PRF, A-PRF, and L-PRF). The samples were assessed for clot length, clot width, membrane length and width. Microscopic parameters assessed were the distribution of cells and fibrin structure. Mechanical tests were performed for tensile strength using a universal testing machine and growth factor analysis was performed for platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)- ß on Days 1, 3 and 7 using commercially available ELISA kits. The osteogenic potential was analyzed in a culture of human periodontal ligament cells for 21 days using cell viability assay, alkaline phosphatase formation and alizarin red staining for mineralization. RESULTS: L-PRF demonstrates statistically superior clot length, width, weight, membrane length, width and weight in comparison to A-PRF (p < 0.05). L-PRF demonstrates a denser fibrin structure in comparison to A-PRF and i-PRF (p < 0.05). The cells in L-PRF are most commonly situated in the proximal of the clot where as they are distributed in the proximal and middle aspect for A-PRF(p < 0.05). A-PRF demonstrates the highest tensile strength followed by L-PRF (p < 0.05). When growth factor release was evaluated, A-PRF showed noticeably increased release of all growth factors, namely PDGF-BB, TGF-ß, and VEGF, in comparison to i-PRF and L-PRF (p < 0.05). On days 7 and 14, the cell viability of human periodontal ligament cells in co-culture with A-PRF was statistically substantially greater than that of L-PRF and i-PRF (p < 0.05). Alkaline phosphatase levels were statistically substantially higher in A-PRF, followed by i-PRF and L-PRF on days 14 and 21 (p < 0.05). After 21 days of culture, A-PRF treated cultures had much more Alizarin Red staining than L-PRF and i-PRF cultures did (p < 0.05). CONCLUSION: It was determined that although L-PRF exhibits greater size and weight in comparison to A-PRF and i-PRF, A-PRF has superior mechanical properties, increased growth factor releases of TGF-b, PDGF-BB, and VEGF as well as superior cell viability, alkaline phosphatase production, and mineralization on human periodontal ligament cells. CLINICAL RELEVANCE: Based on these findings, A-PRF can be recommended for improved delivery of growth factors and osteogenesis whereas L-PRF is better-suited for applications relying on the size of membrane.


Assuntos
Antraquinonas , Fibrina Rica em Plaquetas , Masculino , Humanos , Fibrina Rica em Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fibrina/farmacologia , Fibrina/metabolismo , Osteogênese , Becaplermina/metabolismo , Fosfatase Alcalina/metabolismo , Estudos Transversais , Ligamento Periodontal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Leucócitos/metabolismo
12.
Tissue Eng Part C Methods ; 30(1): 15-26, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756374

RESUMO

Insufficient vascularization is still a challenge that impedes bladder tissue engineering and results in unsatisfied smooth muscle regeneration. Since bladder regeneration is a complex articulated process, the aim of this study is to investigate whether combining multiple pathways by exploiting a combination of biomaterials, cells, and bioactive factors, contributes to the improvements of smooth muscle regeneration and vascularization in tissue-engineered bladder. Autologous endothelial progenitor cells (EPCs) and bladder smooth muscle cells (BSMCs) are cultured and incorporated into our previously prepared porcine bladder acellular matrix (BAM) for bladder augmentation in rabbits. Simultaneously, exogenous vascular endothelial growth factor (VEGF) and platelet-derived growth factor BB (PDGF-BB) mixed with Matrigel were injected around the implanted cells-BAM complex. In the results, compared with control rabbits received bladder augmentation with porcine BAM seeded with BSMCs, the experimental animals showed significantly improved smooth muscle regeneration and vascularization, along with more excellent functional recovery of tissue-engineered bladder, due to the additional combination of autologous EPCs and bioactive factors, including VEGF and PDGF-BB. Furthermore, cell tracking suggested that the seeded EPCs could be directly involved in neovascularization. Therefore, it may be an effective method to combine multiple pathways for tissue-engineering urinary bladder.


Assuntos
Células Progenitoras Endoteliais , Bexiga Urinária , Suínos , Coelhos , Animais , Bexiga Urinária/irrigação sanguínea , Bexiga Urinária/metabolismo , Células Progenitoras Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Becaplermina/farmacologia , Becaplermina/metabolismo , Engenharia Tecidual/métodos , Regeneração
13.
Neurol Med Chir (Tokyo) ; 64(1): 50-55, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38030262

RESUMO

Angiogenesis is one of the growth mechanisms of chronic subdural hematoma (CSDH). Pericytes have been implicated in the capillary sprouting during angiogenesis and are involved in brain ischemia and diabetic retinopathy. This study examined the pericyte expressions in CSDH outer membranes obtained during trepanation surgery. Eight samples of CSDH outer membranes and 35 samples of CSDH fluid were included. NG2, N-cadherin, VE-cadherin, Tie-2, endothelial nitric oxide synthase (eNOS), platelet-derived growth factor (PDGF) receptor-ß (PDGFR-ß), a well-known marker of pericytes, phosphorylated PDGFR-ß at Tyr751, and ß-actin expressions, were examined using western blot analysis. PDGFR-ß, N-cadherin, and Tie-2 expression levels were also examined using immunohistochemistry. The concentrations of PDGF-BB in CSDH fluid samples were measured using enzyme-linked immunosorbent assay kits. NG2, N-cadherin, VE-cadherin, Tie-2, eNOS, PDGFR-ß, and eNOS expressions in CSDH outer membranes were confirmed in all cases. Furthermore, phosphorylated PDGFR-ß at Tyr751 was also detected. In addition, PDGFR-ß, N-cadherin, and Tie-2 expressions were localized to the endothelial cells of the vessels within CSDH outer membranes by immunohistochemistry. The concentration of PDGF-BB in CSDH fluids was significantly higher than that in cerebrospinal fluid. These findings indicate that PDGF activates pericytes in the microvessels of CSDH outer membranes and suggest that pericytes are crucial in CSDH angiogenesis through the PDGF/PDGFR-ß signaling pathway.


Assuntos
Hematoma Subdural Crônico , Humanos , Hematoma Subdural Crônico/cirurgia , Pericitos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Becaplermina/metabolismo , Células Endoteliais/metabolismo , Microvasos/metabolismo , Caderinas/metabolismo
14.
Oncogene ; 43(3): 171-188, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989866

RESUMO

A proportion of gastric cancer (GC) patients suffer from peritoneal metastasis (PM) in the late stage of tumor and these patients have a poor prognosis. To provide more care for GC patient with PM, a deeper exploration of the molecular characteristics of GC-PM is needed. Here we performed the in vitro and in vivo study to illustrate the effect of HOXA11 over-expressed GC cells on peritoneal mesothelial cells (HMrSV5), transcriptomics analyses of HMrSV5 cells co-cultured with HOXA11 over-expressed GC cells, counterparts or alone, cytokine array analyses of serum-free culture medium of HOXA11 over-expressed GC cells, we validated our findings through genetic manipulation of HMrSV5 cells and neutralizing antibodies targeting cytokines secreted by HOXA11 over-expressed GC cells in vitro, as well as utilized human peritoneal metastatic lesions to validate expression of potential targets. We identified that HOXA11 over-expressed GC cells strongly propelled mesothelial fibrosis in vivo and in vitro, and HOXA11 regulated paracrine and autocrine of PDGF BB and TGF ß1 in GC cells to propel mesothelial fibrosis. Meanwhile, HOXA11 over-expressed GC cells drove PDGF BB and TGF ß1 secretion to activate developmental-process related genes in HMrSV5 cells, including Egr1, which processes dependent on miR-181a-5p. Then, Egr1 could mediate peritoneal mesothelial fibrosis. Correspondingly, Egr1 over-expressed HMrSV5 cells supported migration and peritoneal dissemination of GC cells. Together our results suggest that a feedforward amplifier circuity governing GC cells and mesothelial cells in peritoneum contribute to peritoneal metastasis of GC cells.


Assuntos
MicroRNAs , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Becaplermina/metabolismo , Linhagem Celular Tumoral , Epitélio/metabolismo , Fibrose , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Peritoneais/metabolismo , Peritônio/metabolismo , Neoplasias Gástricas/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
15.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966120

RESUMO

Glioblastoma (GBM) tumor-associated macrophages (TAMs) provide a major immune cell population contributing to growth and immunosuppression via the production of proinflammatory factors, including IL-1. In this issue of the JCI, Chen, Giotti, and colleagues investigated loss of ll1b in the immune tumor microenvironment (TME) in GBM models driven by PDGFB expression and Nf1 knockdown. Survival was only improved in PDGFB-driven GBM models, suggesting that tumor cell genotype influenced the immune TME. IL-1ß in the TME increased PDGFB-driven GBM growth by increasing tumor-derived NF-κB, expression of monocyte chemoattractants, and increased infiltration of bone marrow-derived myeloid cells (BMDMs). In contrast, no requirement for IL-1ß was evident in Nf1-silenced tumors due to high basal levels of NF-κB and monocyte chemoattractants and increased infiltration of BMDM and TAMs. Notably, treatment of mice bearing PDGFB-driven GBM with anti-IL-1ß or an IL1R1 antagonist extended survival. These findings suggest that effective clinical immunotherapy may require differential targeting strategies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Becaplermina/metabolismo , Neoplasias Encefálicas/patologia , Fatores Quimiotáticos/metabolismo , Citocinas/metabolismo , Glioblastoma/patologia , Macrófagos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Microambiente Tumoral
16.
Atherosclerosis ; 387: 117391, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38029612

RESUMO

BACKGROUND AND AIMS: The pathological roles and mechanisms of Rho-specific guanine nucleotide dissociation inhibitor 3 (RhoGDI3) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. This study aimed to investigate how RhoGDI3 regulates the Nod-like receptor protein 3 (NLRP3) inflammasome in platelet-derived growth factor-BB (PDGF-BB)-induced neointima formation. METHODS: For in vitro assays, human aortic VSMCs (HA-VSMCs) were transfected with pcDNA3.1-GDI3 and RhoGDI3 siRNA to overexpress and knockdown RhoGDI3, respectively. HA-VSMCs were also treated with an NLRP3 inhibitor (CY-09) or agonist (NSS). Protein transcription and expression, cell proliferation and migration, Golgi morphology, and protein binding and colocalization were measured. For the in vivo assays, balloon injury (BI) rats were injected with recombinant adenovirus carrying RhoGDI3 shRNA. Carotid arterial morphology, protein expression and colocalization, and activation of the NLRP3 inflammasome were measured. RESULTS: PDGF-BB treatment induced transcription and expression of RhoGDI3 through PDGF receptor αß (PDGFRαß) rather than PDGFRαα or PDGFRßß in HA-VSMCs. RhoGDI3 suppression blocked PDGF-BB-induced VSMC phenotypic transformation. In contrast, RhoGDI3 overexpression further promoted PDGF-BB-induced VSMC dedifferentiation. The in vivo results also confirmed that RhoGDI3 expressed in VSMCs participated in neointima formation and muscle fiber and collagen deposition caused by balloon injury. In addition, PDGF-BB increased binding of RhoGDI3 to NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) at the trans-Golgi membrane, which depended on the normal Golgi network. However, recruitment of NLRP3 and ASC to the trans-Golgi network after PDGF-BB treatment was independent of RhoGDI3. Moreover, RhoGDI3 knockdown significantly inhibited ASC expression and NLRP3 inflammasome assembly and activation and reduced NLRP3 protein stability in PDGF-BB-treated HA-VSMCs. Inhibiting NLRP3 effectively prevented PDGF-BB-induced VSMC phenotypic modulation, and an NLRP3 agonist reversed the decline in VSMC phenotypic transformation caused by RhoGDI3 knockdown. Furthermore, RhoGDI3 suppression reduced the protein levels and assembly of NLRP3 and ASC, and the activation of the NLRP3 inflammasome in VSMCs in a rat balloon injury model. CONCLUSIONS: The results of this study reveal a novel mechanism through which RhoGDI3 regulates VSMC phenotypic modulation and neointima formation by activating the NLRP3 inflammasome.


Assuntos
Inflamassomos , Neointima , Animais , Humanos , Ratos , Becaplermina/farmacologia , Becaplermina/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Inflamassomos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Ratos Sprague-Dawley , Inibidor gama de Dissociação do Nucleotídeo Guanina rho/metabolismo , Rede trans-Golgi
17.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815871

RESUMO

Brain vascular calcification is a prevalent age-related condition often accompanying neurodegenerative and neuroinflammatory diseases. The pathogenesis of large-vessel calcifications in peripheral tissue is well studied, but microvascular calcification in the brain remains poorly understood. Here, we report that elevated platelet-derived growth factor BB (PDGF-BB) from bone preosteoclasts contributed to cerebrovascular calcification in male mice. Aged male mice had higher serum PDGF-BB levels and a higher incidence of brain calcification compared with young mice, mainly in the thalamus. Transgenic mice with preosteoclast-specific Pdgfb overexpression exhibited elevated serum PDGF-BB levels and recapitulated age-associated thalamic calcification. Conversely, mice with preosteoclast-specific Pdgfb deletion displayed diminished age-associated thalamic calcification. In an ex vivo cerebral microvascular culture system, PDGF-BB dose-dependently promoted vascular calcification. Analysis of osteogenic gene array and single-cell RNA-Seq (scRNA-Seq) revealed that PDGF-BB upregulated multiple osteogenic differentiation genes and the phosphate transporter Slc20a1 in cerebral microvessels. Mechanistically, PDGF-BB stimulated the phosphorylation of its receptor PDGFRß (p-PDGFRß) and ERK (p-ERK), leading to the activation of RUNX2. This activation, in turn, induced the transcription of osteoblast differentiation genes in PCs and upregulated Slc20a1 in astrocytes. Thus, bone-derived PDGF-BB induced brain vascular calcification by activating the p-PDGFRß/p-ERK/RUNX2 signaling cascade in cerebrovascular cells.


Assuntos
Becaplermina , Subunidade alfa 1 de Fator de Ligação ao Core , Calcificação Vascular , Animais , Masculino , Camundongos , Becaplermina/metabolismo , Becaplermina/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteogênese , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Calcificação Vascular/metabolismo
18.
Matrix Biol ; 122: 18-32, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37579864

RESUMO

Angiogenesis, the formation of the new blood vessels from pre-existing vasculature, is an essential process occurring under both normal and pathological conditions, such as inflammation and cancer. This complex process is regulated by several cytokines, growth factors and extracellular matrix components modulating endothelial cell and pericyte function. In this study, we discovered that the extracellular matrix glycoprotein Elastin Microfibril Interfacer 2 (Emilin2) plays a prominent role in pericyte physiology. This work was originally prompted by the observations that tumor-associated vessels from Emilin2-/- mice display less pericyte coverage, impaired vascular perfusion, and reduced drug efficacy, suggesting that Emilin2 could promote vessel maturation and stabilization affecting pericyte recruitment. We found that Emilin2 affects different mechanisms engaged in pericyte recruitment and vascular stabilization. First, human primary endothelial cells challenged with recombinant Emilin2 synthesized and released ∼ 2.1 and 1.2 folds more PDGF-BB and HB-EGF, two cytokines known to promote pericyte recruitment. We also discovered that Emilin2, by directly engaging α5ß1 and α6ß1 integrins, highly expressed in pericytes, served as an adhesion substrate and haptotactic stimulus for pericytes. Moreover, Emilin2 evoked increased NCadherin expression via the sphingosine-1-phosphate receptor, leading to enhanced vascular stability by fostering interconnection between endothelial cells and pericytes. Finally, restoring pericyte coverage in melanoma and ovarian tumor vessels developed in Emilin2-/- mice improved drug delivery to the tumors. Collectively, our results implicate Emilin2 as a prominent regulator of pericyte function and suggest that Emilin2 expression could represent a promising maker to predict the clinical outcome of patients with melanoma, ovarian, and potentially other forms of cancer.


Assuntos
Melanoma , Pericitos , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Becaplermina/metabolismo , Citocinas/metabolismo , Melanoma/metabolismo , Glicoproteínas/metabolismo
19.
J Vasc Res ; 60(4): 234-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643584

RESUMO

INTRODUCTION: Culturing cerebrovascular smooth muscle cells (CVSMCs) in vitro can provide a model for studying many cerebrovascular diseases. This study describes a convenient and efficient method to obtain mouse CVSMCs by enzyme digestion. METHODS: Mouse circle of Willis was isolated, digested, and cultured with platelet-derived growth factor-BB (PDGF-BB) to promote CVSMC growth, and CVSMCs were identified by morphology, immunofluorescence analysis, and flow cytometry. The effect of PDGF-BB on vascular smooth muscle cell (VSMC) proliferation was evaluated by cell counting kit (CCK)-8 assay, morphological observations, Western blotting, and flow cytometry. RESULTS: CVSMCs cultured in a PDGF-BB-free culture medium had a typical peak-to-valley growth pattern after approximately 14 days. Immunofluorescence staining and flow cytometry detected strong positive expression of the cell type-specific markers alpha-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain 11 (SMMHC), smooth muscle protein 22 (SM22), calponin, and desmin. In the CCK-8 assay and Western blotting, cells incubated with PDGF-BB had significantly enhanced proliferation compared to those without PDGF-BB. CONCLUSION: We obtained highly purified VSMCs from the mouse circle of Willis using simple methods, providing experimental materials for studying the pathogenesis and treatment of neurovascular diseases in vitro. Moreover, the experimental efficiency improved with PDGF-BB, shortening the cell cultivation period.


Assuntos
Círculo Arterial do Cérebro , Músculo Liso Vascular , Animais , Camundongos , Becaplermina/farmacologia , Becaplermina/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Músculo Liso Vascular/metabolismo , Células Cultivadas , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Movimento Celular
20.
Med Oncol ; 40(8): 240, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37442847

RESUMO

Platelet-derived growth factor receptor-ß (PDGFRß) is a critical type III receptor tyrosine kinase family member, which is involved in Wilms' tumour (WT) metastasis and aerobic glycolysis. The role of PDGFRß in tumour angiogenesis has not been fully elucidated. Here, we examined the effect of PDGFRß on angiogenesis in WT. First, the NCBI database integrated three datasets, GSE2712, GSE11151, and GSE73209, to screen differentially expressed genes. The R language was used to analyse the correlation between PDGFRB and vascular endothelial growth factor (VEGF). The results showed that PDGFRB, encoding PDGFRß, was upregulated in WT, and its level was correlated with VEGFA expression. Next, PDGFRß expression was inhibited by small interfering RNA (siRNA) or activated with the exogenous ligand PDGF-BB. The expression and secretion of the angiogenesis elated factor VEGFA in WT G401 cells were detected using Western blotting and ELISA, respectively. The effects of conditioned medium from G401 cells on endothelial cell viability, migration, invasion, the total length of the tube, and the number of fulcrums were investigated. To further explore the mechanism of PDGFRß in the angiogenesis of WT, the expression of VEGFA was detected after blocking the phosphatidylinositol-3-kinase (PI3K) pathway and inhibiting the expression of PKM2, a key enzyme of glycolysis. The results indicated that PDGFRß regulated the process of tumour angiogenesis through the PI3K/AKT/PKM2 pathway. Therefore, this study provides a novel therapeutic strategy to target PDGFRß and PKM2 to inhibit glycolysis and anti-angiogenesis, thus, developing a new anti-vascular therapy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Tumor de Wilms , Humanos , Becaplermina/metabolismo , Becaplermina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA