Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 181: 111549, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376569

RESUMO

Tuberculosis (TB) still has a major impact on public health. In order to efficiently eradicate this life-threatening disease, the exploration of novel anti-TB drugs is of paramount importance. As part of our program to design new 2-azaanthraquinones with anti-mycobacterial activity, various "out-of-plane" tetrahydro- and octahydrobenzo[j]phenanthridinediones were synthesized. In this study, the scaffold of the most promising hits was further optimized in an attempt to improve the bioactivity and to decrease enzymatic degradation. The rudiment bio-evaluation of a small library of fluorinated tetrahydrobenzo[j]phenanthridine-7,12-dione derivatives indicated no significant improvement of the bio-activity against intracellular and extracellular Mycobacterium tuberculosis (Mtb). Though, the derivatives showed an acceptable toxicity against J774A.1 macrophages and early signs of genotoxicity were absent. All derivatives showed to be metabolic stabile in the presence of both phase I and phase II murine or human microsomes. Finally, the onset of reactive oxygen species within Mtb after exposure to the derivatives was measured by electron paramagnetic resonance (EPR). Results showed that the most promising fluorinated derivative is still a possible candidate for the subversive inhibition of mycothione reductase.


Assuntos
Antituberculosos/farmacologia , Benzofenantridinas/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/síntese química , Antituberculosos/química , Benzofenantridinas/síntese química , Benzofenantridinas/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Relação Estrutura-Atividade
2.
Eur J Med Chem ; 178: 81-92, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176097

RESUMO

DNA topoisomerase IB (TOP1) regulates DNA topological structure in many cellular metabolic processes and is a validated target for development of antitumor agents. Our previous study revealed that the benzophenanthridone scaffold is a novel chemotype for the discovery of TOP1 inhibitors. In this work, a series of novel 5-aminoethyl substituted benzophenanthridone derivatives have been synthesized and evaluated for TOP1 inhibition and cytotoxicity. Compound 12 exhibits the most potent TOP1 inhibition (+++) and cytotoxicity in human cancer cell lines with GI50 values at nanomolar concentration range. 12 induces the cellular TOP1cc formation and DNA damage, resulting in HCT116 cell apoptosis. The pharmacokinetics, acute toxicity and antitumor efficiency in vivo of 12 were also studied.


Assuntos
Antineoplásicos/farmacocinética , Benzofenantridinas/farmacocinética , Inibidores da Topoisomerase I/farmacocinética , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzofenantridinas/síntese química , Benzofenantridinas/metabolismo , Benzofenantridinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos Nus , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/metabolismo , Inibidores da Topoisomerase I/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Anticancer Agents Med Chem ; 18(10): 1386-1393, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651966

RESUMO

BACKGROUND: A glioblastoma is a primary CNS tumor that is more aggressive and lethal than other brain tumors. Its location, rapid proliferation, invasive growth, angiogenesis and immunosuppression are the main factors that limit its treatment, making it a major challenge to neuro-oncology. OBJECTIVE: This study investigated the in vitro effects of the alkaloid dihydrochelerythrine (DHC), which is extracted from Zanthoxylum stelligerum, on the viability, proliferation, cell death and ß-catenin, NFκB, STAT3/pSTAT3 and interleukins roles. METHOD: In vitro experimental models of human (U251 and GL-15) and murine (C6) glioblastoma cells were cultured in the presence of DHC at increasing concentrations for MTT assay and exclusion trypan blue dye to determine EC50. Afterward, C6 and U251 cells were treated with 100 µM DHC or DMSO 0.1% for cell cycle, annexin and expression of ß-catenin/NFκB/STAT3/pSTAT3 by flow cytometry or immunofluorescence. Interleukin quantification was made by Cytometric Bead Array. RESULTS: A significant decrease was observed in C6 and U251 cell viability in a time and dose-dependent manner. GL-15 cell viability decreased only when treated with 200 µM DHC. This maximum concentration affected neither astrocytes nor microglia viability. A cytostatic effect of DHC was observed in C6 and U251 cells after 48 h of 100 µM DHC treatment. After 72 h of DHC treatment, C6 presented 80% of annexin-V+ cells compared to 10% of annexin-V+ U251 cells. C6 cells demonstrated significant high levels of NFκ B and ß-catenin cytoplasmic fraction. Additionally, DHC treatment resulted in higher significant levels of IL-6 than did other interleukins and STAT3 up-regulation in U251 cells. CONCLUSION: These results demonstrate that DHC acts as a chemosensitizing agent selective for glioma cells not affecting non-tumor cells. Considering tumor heterogeneity, DHC demonstrated an anti-cancer potential to activate different cell death pathways. DHC demonstrated could be used for chemotherapy and immunotherapy applications in glioblastomas in the future.


Assuntos
Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofenantridinas/síntese química , Benzofenantridinas/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Interleucina-6/metabolismo , Camundongos , Conformação Molecular , NF-kappa B/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , beta Catenina/metabolismo
4.
Eur J Med Chem ; 138: 1-12, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28641156

RESUMO

A series of C(6)-substituted dihydrobenzo[c]phenanthridines were synthesized by mild copper-catalyzed C(sp3)-H functionalization of dihydrosanguinarine (2) and dihydrochelerythrine (3) with certain nucleophiles selected to enhance cytotoxicity against human breast, colorectal, and prostate cancer cell lines. We also investigated the cytotoxicity of our previously reported C(6)-functionalized N-methyl-5,6-dihydrobenzo[c]phenanthridines 1a-1e to perform structure-activity relationship (SAR) studies. Among the target compounds, five ß-aminomalonates (1a, 1b, 2a, 2b, and 3b), one α-aminophosphonate (2c), and one nitroalkyl derivative (2h) exhibited half maximal inhibitory concentration (IC50) values in the range of 0.6-8.2 µM. Derivatives 1b, 2b and 2h showed the lowest IC50 values, with 2b being the most potent with values comparable to those of the positive control doxorubicin. On the basis of their IC50 values, derivatives 1a, 1b, 2a, 2b, 2h, and 3b were selected to evaluate the apoptotic PC-3 cell death at 10 µM by flow cytometry using propidium iodide and fluorescein isothiocyanate-conjugated Annexin V dual staining. The results indicated that the cytotoxic activity of the tested compounds in PC-3 cells is due to the induction of apoptosis, with 1a and 2h being the most active (55% of early apoptosis induction). Our preliminary SAR study showed that the incorporation of specific malonic esters, dialkyl phosphites and nitro alkanes on scaffolds 1-3 significantly enhanced their cytotoxic properties. Moreover, it appears that the electron donating 7,8-methylenedioxy group allowed derivatives of 2 to exhibit higher cytotoxicity than derivatives of 1 and 3. The present results suggest that derivatives 2b and 2h may be considered as potential lead compounds for the development of new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzofenantridinas/síntese química , Benzofenantridinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 24(13): 2887-2896, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27234888

RESUMO

A convenient route was envisaged toward the synthesis of dihydrochelerythrine (DHCHL), 4 by intramolecular Suzuki coupling of 2-bromo-N-(2-bromobenzyl)-naphthalen-1-amine derivative 5 via in situ generated arylborane. This compound was converted to (±)-6-acetonyldihydrochelerythrine (ADC), 3 which was then resolved by chiral prep-HPLC. Efficiency of DHCHL for the stabilization of promoter quadruplex DNA structures and a comparison study with the parent natural alkaloid chelerythrine (CHL), 1 was performed. A thorough investigation was carried out to assess the quadruplex binding affinity by using various biophysical and biochemical studies and the binding mode was explained by using molecular modeling and dynamics studies. Results clearly indicate that DHCHL is a strong G-quadruplex stabilizer with affinity similar to that of the parent alkaloid CHL. Compounds ADC and DHCHL were also screened against different human cancer cell lines. Among the cancer cells, (±)-ADC and its enantiomers showed varied (15-48%) inhibition against human colorectal cell line HCT116 and breast cancer cell line MDA-MB-231 albeit low enantio-specificity in the inhibitory effect; whereas DHCHL showed 30% inhibition against A431 cell line only, suggesting the compounds are indeed cancer tissue specific.


Assuntos
Benzofenantridinas/síntese química , Benzofenantridinas/farmacologia , DNA/química , DNA/metabolismo , Quadruplex G , Instabilidade Genômica/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofenantridinas/química , Linhagem Celular Tumoral , Dicroísmo Circular , Células HCT116 , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular
6.
Bioorg Med Chem Lett ; 21(23): 6960-3, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22024033

RESUMO

A new alkaloid, methyl 2'-(7,8-dihydrosanguinarine-8-yl)acetate (1), together with six known alkaloids, stylopine (2), protopine (3), norchelidonine (4), chelidonine (5), berberine (6), and 8-hydroxydihydrosanguinarine (7), were isolated from Chelidonium majus. Their chemical structures were primarily established using 1D and 2D NMR techniques and mass spectrometry. The anti-inflammatory activity of the isolates was examined for their inhibitory effects on LPS-induced NO production in macrophage RAW264.7 cells. Among them, compounds 5 and 7 showed strong inhibitory activities toward the LPS-induced NO production in macrophage RAW264.7 cells with IC(50) values of 7.3 and 4.5 µM, respectively. In addition, compounds 5 and 7 inhibited the inductions of COX-2 and iNOS mRNA in dose-dependent manners, indicating that these compounds attenuated the syntheses of these transcripts at the transcriptional level.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Benzofenantridinas/síntese química , Chelidonium/química , Isoquinolinas/síntese química , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Animais , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Concentração Inibidora 50 , Isoquinolinas/química , Isoquinolinas/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Extratos Vegetais/farmacologia
7.
Eur J Med Chem ; 45(7): 2854-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20362359

RESUMO

Benzo[c]phenanthridine alkaloids represent interesting lead for the discovery of new potential antiplasmodial and/or anticancer drugs. In this field, a novel library of aza-analogs of benzo[c]phenanthroline framework derivatives was designed and prepared. Although these compounds did not have specific antiplasmodial activities, some of them displayed specific in vitro activity against two cancer lines especially compound 24 with an IC(50) against the MCF7 line of 0.6 microM.


Assuntos
Compostos Aza/química , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Desenho de Fármacos , Plasmodium falciparum/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Benzofenantridinas/síntese química , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA