Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Toxicol Lett ; 360: 44-52, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35331839

RESUMO

3-Aminodibenzofuran (3-ADBF) is a potent bladder carcinogen. This study aimed to identify reactive metabolites and the metabolic pathways of 3-ADBF. The in vitro and in vivo studies demonstrated that 3-ADBF was oxidized to the corresponding hydroxylamine by cytochrome P450 enzymes, followed by sulfation of the hydroxyl group mediated by sulfotransferases. The resulting sulfate conjugate was chemically reactive to GSH and cysteine residues of hepatic protein to form the corresponding GSH conjugate and protein adduction. Exposure of 3-ADBF to primary hepatocytes caused protein covalent binding and decreased cell viability. The resultant protein adduction was found to correlate the observed cytotoxicity of 3-ADBF.


Assuntos
Benzofuranos , Sulfotransferases , Ativação Metabólica , Benzofuranos/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Sulfotransferases/metabolismo
2.
Life Sci ; 287: 120125, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34762904

RESUMO

AIMS: 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS: NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS: The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE: Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.


Assuntos
Acetilcisteína/metabolismo , Benzofuranos/metabolismo , Benzofuranos/toxicidade , Glutationa/metabolismo , Hepatócitos/metabolismo , Animais , Sítios de Ligação/fisiologia , Células Cultivadas , Indutores do Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/toxicidade , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Humanos , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
3.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641539

RESUMO

Usnic acid is the best-studied lichen metabolite, presenting several biological activities, such as antibacterial, immunostimulating, antiviral, antifungal, anti-inflammatory, and antiparasitic agents; despite these relevant properties, it is a hydrophobic and toxic molecule. In this context, scientific research has driven the development of innovative alternatives, considering usnic acid as a source of raw material in obtaining new molecules, allowing structural modifications (syntheses) from it. The purpose is to optimize biological activities and toxicity, with less concentration and/or response time. This work presents a literature review with an analogy of the hydrophobic molecule of usnic acid with its hydrophilic derivative of potassium usnate, emphasizing the elucidation and structural characteristics, biological activities, and toxicological aspects of both molecules, and the advantages of using the promising derivative hydrophilic in different in vitro and in vivo assays when compared to usnic acid.


Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Potássio/química , Analgésicos/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antiparasitários/química , Antiparasitários/farmacologia , Benzofuranos/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Líquens/metabolismo
4.
J Ethnopharmacol ; 270: 113873, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33485970

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Usnic acid (UA) is one of the well-known lichen metabolites that induces liver injury. It is mainly extracted from Usnea longissima and U. diffracta in China or from other lichens in other countries. U. longissima has been used as traditional Chinese medicine for treatment of cough, pain, indigestion, wound healing and infection. More than 20 incidences with hepatitis and liver failure have been reported by the US Food and Drug Administration since 2000. UA is an uncoupler of oxidative phosphorylation causing glutathione and ATP depletion. Previous histological studies observed extensive cell and organelle swellings accompanied with hydrotropic vacuolization of hepatocytes. AIM OF THE STUDY: This study was to investigate the mechanism of UA-induced liver toxicity in normal human L02 liver cells and ICR mice using various techniques, such as immunoblotting and siRNA transfection. MATERIALS AND METHODS: Assays were performed to evaluate the oxidative stress and levels of GSH, MDA and SOD. Double flouresencence staining was used for the detection of apoptotic cell death. The protein expressions, such as glutathione S transferase, glutathione reductase, glutathione peroxidase 4, catalase, c-Jun N-terminal protein kinase, caspases, gastamin-D and porimin were detected by Western blotting. Comparisons between transfected and non-transfected cells were applied for the elucidation of the role of porimin in UA-induced hepatotoxicity. Histopathological examination of mice liver tissue, serum total bilirubin and hepatic enzymes of alanine aminotransferase and aspatate aminotransferase were also studied. RESULTS: The protein expressions of glutathione reductase, glutathione S transferase and glutathione peroxidase-4 were increased significantly in normal human L02 liver cells. Catalase expression was diminished in dose-dependent manner. Moreover, (+)-UA did not induce the activation of caspase-3, caspase-1 or gasdermin-D. No evidence showed the occurrence of pyroptosis. However, the porimin expressions were increased significantly. In addition, (+)-UA caused no cytotoxicity in the porimin silencing L02 cells. CONCLUSIONS: In conclusion, (+)-UA induces oncotic L02 cell death via increasing protein porimin and the formation of irreversible membrane pores. This may be the potential research area for future investigation in different aspects especially bioactivity and toxicology.


Assuntos
Anti-Infecciosos/toxicidade , Benzofuranos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Glutationa/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isquemia/induzido quimicamente , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos ICR , Necrose/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/genética
5.
Int Immunopharmacol ; 92: 107352, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33422760

RESUMO

Idiosyncratic drug-induced liver injury (IDILI) is a rare but potentially fatal disease that is unpredictable and independent of the dose of the drug. Increasing evidence suggests that the majority of IDILI cases are immune-mediated, and the aberrant activation of inflammasome plays a vital role in progression. Psoraleae Fructus (PF), a tonic Chinese medicine, has been able to cause IDILI, but the precise mechanism of hepatotoxicity remains unclear. In this study, eight bioactive compounds involved in PF-induced inflammasome activation were investigated. The results demonstrated that psoralidin activated the inflammasomes followed by secreting caspase-1 and interleukin 1ß (IL-1ß) in a dose-dependent manner. Interestingly, MCC950, a potent inhibitor of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, could not entirely suppress the psoralidin-induced inflammasome activation. Moreover, psoralidin significantly induced IL-1ß maturation and caspase-1 activation in NLRP3-knockout bone marrow-derived macrophages (BMDMs), suggesting that psoralidin not only activates the NLRP3 inflammasome but also activates other types of inflammasomes. The results also demonstrated that psoralidin activated the inflammasomes by promoting the C-terminal caspase recruitment domain (ASC) oligomerization, and the production of mitochondrial reactive oxygen species (mtROS) is a decisive factor in psoralidin-induced inflammasome activation. Importantly, in vivo data revealed that psoralidin induced hepatic inflammation, increased aminotransferase activity and increased the production of IL-1ß and tumor necrosis factor(TNF-α) in a susceptible mouse model of lipopolysaccharide (LPS)-mediated IDILI. In summary, these results confirmed that psoralidin causes IDILI by inducing inflammasome activation. The study suggests that psoralidin is a possible risk factor and is responsible for PF-induced IDILI.


Assuntos
Benzofuranos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cumarínicos/toxicidade , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Psoralea/química , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamassomos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Compostos Fitoquímicos/toxicidade
6.
Environ Toxicol Pharmacol ; 80: 103493, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32961280

RESUMO

Increasing prevalence of herbal and dietary supplement-induced hepatotoxicity has been reported worldwide. Usnic acid (UA) is a well-known hepatotoxin derived from lichens. Since 2000, more than 20 incident reports have been received by the US Food and Drug Administration after intake of UA containing dietary supplement resulting in severe complications. Scientists and clinicians have been studying the cause, prevention and treatment of UA-induced hepatotoxicity. It is now known that UA decouples oxidative phosphorylation, induces adenosine triphosphate (ATP) depletion, decreases glutathione (GSH), and induces oxidative stress markedly leading to lipid peroxidation and organelle stress. In addition, experimental rat liver tissues have shown massive vacuolization associated with cellular swellings. Additionally, various signaling pathways, such as c-JNK N-terminal kinase (JNK), store-operated calcium entry, nuclear erythroid 2-related factor 2 (Nrf2), and protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathways are stimulated by UA causing beneficial or harmful effects. Nevertheless, there are controversial issues, such as UA-induced inflammatory or anti-inflammatory responses, cytochrome P450 detoxifying UA into non-toxic or transforming UA into reactive metabolites, and unknown mechanism of the formation of vacuolization and membrane pore. This article focused on the previous and latest comprehensive putative mechanistic findings of UA-induced hepatotoxicity and cell death. New insights on controversial issues and future perspectives are also discussed and summarized.


Assuntos
Benzofuranos/toxicidade , Fígado/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
7.
Eur J Med Chem ; 201: 112335, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32599323

RESUMO

A new class of 3-substituted isocoumarin/3-alkylidenephthalide based novel small molecules derived from rosuvastatin were designed and synthesized via the ultrasound assisted Cu-mediated coupling-cyclization in a single pot with remarkable regioselectivity. The phthalides were generally obtained at lower temperature whereas the use of elevated temperature afforded isocoumarins. Two compounds e.g. 3n and 4d showed promising cytotoxic effects when tested against HCT 116, HepG2 and PA-1 cell lines at 10 µM. Indeed, 4d was found to be a potent cytotoxic agent (IC50 ∼ 0.76-4.51 µM). Both 3n and 4d were tested for their effects on PANC-1 cells. Considerable decrease in p-Akt substrates shown by 4d and 3n at 50 µM (western blot analysis) indicated their ability to inhibit p-Akt signal transduction pathway and arresting growth of PANC-1 cells in vitro. This was further supported by the cytotoxic effect of 4d on PANC-1 cells (MTT assay) that was better than rosuvastatin. While none of 3n and 4d showed any significant effect on non-cancerous HEK cell line (indicating their potential selectivity towards cancer cells) these compounds were further evaluated for their toxicities in Zebrafish embryo. The NOAEL (No Observed Adverse Effect Level) for teratogenicity, hepatotoxicity and cardiotoxicity was found to be 100 µM for both compound. Thus, 4d as a novel and potent but safer cytotoxic agent with potential to treat colorectal/ovarian and pancreatic cancer is of further medicinal interest.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Isocumarinas/farmacologia , Rosuvastatina Cálcica/análogos & derivados , Rosuvastatina Cálcica/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Benzofuranos/síntese química , Benzofuranos/toxicidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Embrião não Mamífero/efeitos dos fármacos , Humanos , Isocumarinas/síntese química , Isocumarinas/toxicidade , Estrutura Molecular , Rosuvastatina Cálcica/toxicidade , Relação Estrutura-Atividade , Ondas Ultrassônicas , Peixe-Zebra
8.
Andrologia ; 52(7): e13622, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32412148

RESUMO

Chemotherapy for cancer treatment may result in a temporary or long-term gonadal damage resulting in subfertility or infertility. Cyclophosphamide (CY) is a cytotoxic alkylating agent that has been widely used in the treatment of cancer. Recent studies have shown that synthetic resorcinol lipid AMS35AA (3-Heptyl-3,4,6-trimethoxy-3H-isobenzofuran-1-one) may be an important adjuvant chemotherapy that potentiates mutagenic damage and increases apoptosis caused by CY. The present study investigates the action of AMS35AA alone or/in association with CY on testicular function. Animals were divided into four groups: (a) control group: received only water; (b) CY group: received 150 µg/g of CY b.w., i.p.; (c) AMS35AA group: received 10 µg/g of AMS35AA b.w., i.p; and (d) associated group: received 10 µg/g of AMS35AA + 150 µg/g of CY b.w., i.p. Four weeks after the treatment, the results showed that testes weight of CY and associated groups decreased. However, the number of Sertoli cell and Leydig cell per testis was similar in control and treated groups. Our findings provide strong evidence that the AMS35AA alone or in CY association is not toxic to spermatogenesis. The absence of toxicity of AMS35AA supports the view that the resorcinolic lipid could be used associated with CY chemotherapy without causing adverse effects to testes function.


Assuntos
Benzofuranos , Animais , Benzofuranos/toxicidade , Ciclofosfamida/toxicidade , Masculino , Espermatogênese , Testículo
9.
Eur J Med Chem ; 190: 112105, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035399

RESUMO

A novel series of shikonin-benzo[b]furan derivatives were designed and synthesized as tubulin polymerization inhibitors, and their biological activities were evaluated. Most compounds revealed the comparable anti-proliferation activities against the cancer cell lines to that of shikonin and simultaneously low cytotoxicity to non-cancer cells. Among them, compound 6c displayed powerful anti-cancer activity with the IC50 value of 0.18 µM against HT29 cells, which was significantly better than that of the reference drugs shikonin and CA-4. What's more, 6c could inhibit tubulin polymerization and compete with [3H] colchicine in binding to tubulin. Further biological studies depicted that 6c can induce cell apoptosis and cell mitochondria depolarize, regulate the expression of apoptosis related proteins in HT29 cells. Besides, 6c actuated the HT29 cell cycle arrest at G2/M phase, and influenced the expression of the cell-cycle related protein. Moreover, 6c displayed potent inhibition on cell migration and tube formation that contributes to the antiangiogenesis. These results prompt us to consider 6c as a potential tubulin polymerization inhibitor and is worthy for further study.


Assuntos
Benzofuranos/farmacologia , Naftoquinonas/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Benzofuranos/síntese química , Benzofuranos/metabolismo , Benzofuranos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Simulação de Acoplamento Molecular , Naftoquinonas/síntese química , Naftoquinonas/metabolismo , Naftoquinonas/toxicidade , Ligação Proteica , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/toxicidade
10.
Arch Toxicol ; 94(2): 609-629, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838565

RESUMO

New phenylethylamine derivatives are among the most commonly abused new psychoactive substances. They are synthesized and marketed in lieu of classical amphetaminic stimulants, with no previous safety testing. Our study aimed to determine the in vitro hepatotoxicity of two benzofurans [6-(2-aminopropyl)benzofuran (6-APB) and 5-(2-aminopropyl)benzofuran (5-APB)] that have been misused as 'legal highs'. Cellular viability was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, following 24-h drug exposure of human hepatoma HepaRG cells (EC50 2.62 mM 5-APB; 6.02 mM 6-APB), HepG2 cells (EC50 3.79 mM 5-APB; 8.18 mM 6-APB) and primary rat hepatocytes (EC50 964 µM 5-APB; 1.94 mM 6-APB). Co-incubation of primary hepatocytes, the most sensitive in vitro model, with CYP450 inhibitors revealed a role of metabolism, in particular by CYP3A4, in the toxic effects of both benzofurans. Also, 6-APB and 5-APB concentration-dependently enhanced oxidative stress (significantly increased reactive species and oxidized glutathione, and decreased reduced glutathione levels) and unsettled mitochondrial homeostasis, with disruption of mitochondrial membrane potential and decline of intracellular ATP. Evaluation of cell death mechanisms showed increased caspase-8, -9, and -3 activation, and nuclear morphological changes consistent with apoptosis; at concentrations higher than 2 mM, however, necrosis prevailed. Concentration-dependent formation of acidic vesicular organelles typical of autophagy was also observed for both drugs. Overall, 5-APB displayed higher hepatotoxicity than its 6-isomer. Our findings provide new insights into the potential hepatotoxicity of these so-called 'safe drugs' and highlight the putative risks associated with their use as psychostimulants.


Assuntos
Benzofuranos/toxicidade , Drogas Desenhadas/toxicidade , Hepatócitos/efeitos dos fármacos , Propilaminas/toxicidade , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/patologia , Inibidores das Enzimas do Citocromo P-450/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Isomerismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
11.
Mikrochim Acta ; 186(12): 842, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31768653

RESUMO

Conjugated polymer hybrid nanoparticles (NPs) loaded with both indocyanine green (ICG) and 1,3-diphenylisobenzofuran (DPBF) are described. The NPs are dually functional in that ICG acts as the photosensitizer, and DPBF as a probe for singlet oxygen (1O2 probe). The nanoparticle core consists of the energy donating host poly(9,9-dioctylfluorenyl-2,7-diyl)-co-(2,5-p-xylene) (PFP). The polymer is doped with the energy acceptor DPBF. Ratiometric fluorometric detection of singlet oxygen is accomplished by measurement of fluorescence at wavelengths of 415 and 458 nm. In addition, the shell of the positively charged polymeric nanoparticles was modified, via electrostatic interaction, with negatively charged PDT drugs ICG. The integrated nanoparticles of type ICG-DPBF-PFP display effective photodynamic performance under 808-nm laser irradiation. The 1O2 sensing behaviors of samples are evaluated based on the ratiometric fluorescent responses produced by DPBF and PFP. 1O2 can be fluorimetically sensed with a detection limit of 28 µM. The multifunctional nanoprobes exhibit effortless cellular uptake, superior photodynamic activity and a rapid ratiometric response to 1O2. Graphical abstractSchematic of a dual-functional nanoplatform for photodynamic therapy (PDT) and singlet oxygen (1O2) feedback. It offers a new strategy for self-monitoring photodynamic ablation. FRET: fluorescence resonance energy transfer. Indocyanine green is attached in the shell of nanoparticles, and 1,3-diphenylisobenzofuran is doped into the energy donating host conjugated polymer.


Assuntos
Benzofuranos/química , Verde de Indocianina/química , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Polilisina/química , Oxigênio Singlete/análise , Benzofuranos/toxicidade , Transferência Ressonante de Energia de Fluorescência , Células Hep G2 , Humanos , Verde de Indocianina/efeitos da radiação , Verde de Indocianina/toxicidade , Raios Infravermelhos , Limite de Detecção , Nanopartículas/toxicidade , Fotoquimioterapia , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/toxicidade , Polilisina/toxicidade , Oxigênio Singlete/química
12.
J Biochem Mol Toxicol ; 33(8): e22345, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31066974

RESUMO

For fasiglifam (TAK875) and its metabolites the substance-specific mechanisms of liver toxicity were studied. Metabolism studies were run to identify a putatively reactive acyl glucuronide metabolite. In vitro cytotoxicity and caspase 3/7 activation were assessed in primary human and dog hepatocytes in 2D and 3D cell culture. Involvement of glutathione (GSH) detoxication system in mediating cytotoxicity was determined by assessing potentiation of cytotoxicity in a GSH depleted in vitro system. In addition, potential mitochondrial liabilities of the compounds were assessed in a whole-cell mitochondrial functional assay. Fasiglifam showed moderate cytotoxicity in human primary hepatocytes in the classical 2D cytotoxicity assays and also in the complex 3D human liver microtissue (hLiMT) after short-term treatment (24 hours or 48 hours) with TC50 values of 56 to 68 µM (adenosine triphosphate endpoint). The long-term treatment for 14 days in the hLiMT resulted in a slight TC50 shift over time of 2.7/3.6 fold lower vs 24-hour treatment indicating possibly a higher risk for cytotoxicity during long-term treatment. Cellular GSH depletion and impairment of mitochondrial function by TAK875 and its metabolites evaluated by Seahorse assay could not be found being involved in DILI reported for TAK875. The acyl glucuronide metabolites of TAK875 have been finally identified to be the dominant reason for liver toxicity.


Assuntos
Benzofuranos/toxicidade , Ácidos Graxos não Esterificados/metabolismo , Fígado/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Sulfonas/toxicidade , Animais , Benzofuranos/metabolismo , Células Cultivadas , Cães , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/metabolismo
13.
Bioorg Med Chem Lett ; 29(6): 806-810, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30709651

RESUMO

A series of novel 2-benzoylbenzofuran derivatives possessing piperazine linker have been prepared, and their in vitro anticancer activity against a panel of human tumor cell lines by MTT assay were evaluated. The results demonstrated that tertiary amine derivatives exhibited better cytotoxic activity, and SAR study revealed that electron-donating substituents on the phenyl ring of the derivatization functionality contributed to potent anticancer activities. Among them, compounds 6, 9, 11, 18, 23 and 25 displayed both better anti-tumor activity and lower cytotoxic effect on human normal liver cell L02. Further apoptosis analysis showed that compound 18 significantly induced apoptosis in A549 cell, which was considered as the most potent anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Piperazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Benzofuranos/síntese química , Benzofuranos/toxicidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/toxicidade , Relação Estrutura-Atividade
14.
Toxicol Sci ; 167(2): 458-467, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289550

RESUMO

TAK-875 (fasiglifam), a GPR40 agonist in development for the treatment of type 2 diabetes (T2D), was voluntarily terminated in Phase III trials due to adverse liver effects. The potential mechanisms of TAK-875 toxicity were explored by combining in vitro experiments with quantitative systems toxicology (QST) using DILIsym, a mathematical representation of drug-induced liver injury. In vitro assays revealed that bile acid transporters were inhibited by both TAK-875 and its metabolite, TAK-875-Glu. Experimental data indicated that human bile salt export pump (BSEP) inhibition by TAK-875 was mixed whereas sodium taurocholate co-transporting polypeptide (NTCP) inhibition by TAK-875 was competitive. Furthermore, experimental data demonstrated that both TAK-875 and TAK-875-Glu inhibit mitochondrial electron transport chain (ETC) enzymes. These mechanistic data were combined with a physiologically based pharmacokinetic (PBPK) model constructed within DILIsym to estimate liver exposure of TAK-875 and TAK-875-Glu. In a simulated population (SimPops) constructed to reflect T2D patients, 16/245 (6.5%) simulated individuals developed alanine aminotransferase (ALT) elevations, an incidence similar to that observed with 200 mg daily dosing in clinical trials. Determining the mode of bile acid transporter inhibition (Ki) was critical to accurate predictions. In addition, simulations conducted on a sensitive subset of individuals (SimCohorts) revealed that when either BSEP or ETC inhibition was inactive, ALT elevations were not predicted to occur, suggesting that the two mechanisms operate synergistically to produce the observed clinical response. These results demonstrate how utilizing QST methods to interpret in vitro experimental results can lead to an improved understanding of the clinically relevant mechanisms underlying drug-induced toxicity.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Benzofuranos/toxicidade , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Sulfonas/toxicidade , Benzofuranos/farmacocinética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Simulação por Computador , Humanos , Fígado/metabolismo , Mitocôndrias/metabolismo , Sulfonas/farmacocinética
15.
Chemosphere ; 212: 1058-1066, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30286535

RESUMO

Di-n-butylphthalate (DnBP) exhibits alarming thyroid disrupting activities. However, the toxic mechanism of DnBP is not completely understood. In this study, we investigated the mechanism of DnBP in thyroid disruption. Rat pituitary tumor cell lines (GH3) were treated with DnBP in different scenarios, and cell viabilities, target gene transcriptions and protein levels were measured accordingly. The results showed that after treatment with DnBP (20 µmol/L), cell proliferation increased to 114.69% (p < 0.01) and c-fos gene was up-regulated by 1.57-fold (p < 0.01). Both nuclear thyroid hormone receptor ß (TRß) and membrane TR (integrin αv and integrin ß3) genes were up-regulated by 1.31-, 1.08- and 2.39-fold (p < 0.01), respectively, the latter was inhibited by Arg-Gly-Asp (RGD) peptides; the macromolecular DnBP-BSA was unable to bind nuclear TRs, but still promoted cell proliferation to 104.18% and up-regulated c-fos by 2.99-fold (p < 0.01); after silencing TRß gene, cell proliferation (106.64%, p < 0.05) and up-regulation of c-fos (1.23-fold, p < 0.01) were also observed. All of these findings indicated the existence of non-genomic pathway for DnBP-induced thyroid disruption. Finally, DnBP activated the downstream extracellular regulated protein kinases (ERK1/2) pathway, up-regulating Mapk1 (1.15-, p < 0.05), Mapk3 (1.26-fold, p < 0.01) and increasing protein levels of p-ERK (p < 0.01); notably, DnBP-induced ERK1/2 activation along with c-fos up-regulation were attenuated by PD98059 (ERK1/2 inhibitor). Taken together, it could be suggested that integrin αvß3 and ERK1/2 pathway play significant roles in DnBP-induced thyroid disruption, and this novel mechanism warrants further investigation in living organisms.


Assuntos
Benzofuranos/toxicidade , Proliferação de Células , Integrina alfaVbeta3/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ratos , Glândula Tireoide/metabolismo
16.
Molecules ; 23(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274140

RESUMO

Cortex Dictamni is a commonly-used traditional Chinese herbal medicine for the treatment of skin inflammation, tinea, and eczema. Recently, some studies reported that Cortex Dictamni might induce liver injury, suggesting more attention to its safety. The current study was designed to investigate subchronic toxicity of Cortex Dictamni aqueous extract (CDAE) and ethanol extract (CDEE) in mice and the potential hepatotoxicity mechanisms in vitro. Firstly, CDAE or CDEE groups were administrated with varying dosages (2.3, 4.6, or 9.2 g/kg/day, p.o.) in mice for 28 days in subchronic toxicity studies. General clinical signs and biochemical parameters were examined, and morphological analyses were conducted. Secondly, we identified the different constituents of CDAE and CDEE using HPLC-MS/MS and chose major components for further study. In order to determine the toxic components, we investigated the cytotoxicity of extracts and chosen components using CCK-8 assay in HepG2 cells. Furthermore, we explored the possible hepatotoxicity mechanisms of Cortex Dictamni using a high content analysis (HCA). The results showed that no significant differences of general clinical signs were observed in mice. Aspartate alanine aminotransferase (ALT) and aminotransferase (AST) were significantly increased in the high-dose CDAE and CDEE groups compared to the control group. Meanwhile, the absolute and relative liver weights and liver/brain ratio were significantly elevated, and histological examination of liver demonstrated cellular enlargement or nuclear shrinkage. In UPLC analysis, we compared the chemical constituents between CDAE and CDEE, and chose dictamnine, obakunone, and fraxinellone for hepatotoxicity evaluation in the in vitro studies. In the CCK-8 assay, CDAE, CDEE, dictamnine, obakunone, and fraxinellone decreased the cell viability in a dose-dependent manner after treatment for 48 h. Furthermore, the cell number decreased, while the nuclear intensity, cell membrane permeability, and concentration of reactive oxygen species were shown to increase, meanwhile, mitochondrial membrane potential was also changed in HepG2 cells following 48 h of compounds treatment using HCA. Our studies suggested that CDAE and CDEE have potential hepatotoxicity, and that the alcohol extraction process could increase toxicity. Dictamnine, obakunone, and fraxinellone may be the possible toxic components in Cortex Dictamni with dictamnine as the most potentially hepatotoxic component, whose potential hepatotoxicity mechanism may be associated with cell apoptosis. Moreover, this study could provide valuable data for clinical drug safety research of Cortex Dictamni and a good example for safety study of other Chinese herbal medicines.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dictamnus/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Benzofuranos/química , Benzofuranos/toxicidade , Benzoxepinas/química , Benzoxepinas/toxicidade , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Etanol/química , Feminino , Células Hep G2 , Humanos , Limoninas/química , Limoninas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Quinolinas/química , Quinolinas/toxicidade , Testes de Toxicidade Subcrônica , Água/química
17.
Environ Sci Pollut Res Int ; 25(32): 32572-32581, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30242650

RESUMO

This study aimed to investigate the toxic impact prompted in the testes of adult mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF). Four groups of 12 mice each were used in the present study. Group 1 mice were kept as control and administered corn oil only. Group 2 animals were given glutathione (GSH) in a dose of 100 mg/kg body weight by oral gavage twice a week. Group 3 was given TCDF orally twice per week, in a dose of 0.5 µg/kg body weight for 8 weeks. Group 4 was administered GSH orally in a dosage of 100 mg/kg body weight plus TCDF twice a week for 8 weeks. Animals were sacrificed after 2, 4, and 8 weeks of exposure, serum samples were collected for estimation of testosterone hormone, the testes were dissected and one part was used for estimation of superoxide dismutase (SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH), and 3ß-hydroxysteroid dehydrogenase. Another portion of the testis was kept in formalin for histopathological examination. The results showed that the activities of SOD were decreased while the levels of lipid peroxidation MDA were increased in the testicular tissues of the exposed mice. The serum testosterone level and the steroidogenic enzyme 3ß-hydroxysteroid dehydrogenase activity of testicular homogenate were essentially decreased in TCDF-treated mice. A significant increment in the testicular LDH activity in testicular tissues was recorded in mice exposed to TCDF. The percentage of DNA chromatin disintegration was significantly increased in TCDF-treated mice. Histopathological changes were recorded in TCDF-exposed group as degenerative changes of the seminiferous tubules with formation of spermatid giant cells at 2 weeks in addition to exhaustion of germinal epithelium and detachment of the germ cells from the basal lamina at 4 and 8 weeks. Co-administration of GSH could reestablish MDA and LDH levels besides reduction in percentage of sperm DNA damage and improvement of the testicular tissue architecture.


Assuntos
Benzofuranos/toxicidade , DNA/genética , Glutationa/administração & dosagem , Espermatozoides/efeitos dos fármacos , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , DNA/metabolismo , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Contagem de Espermatozoides , Espermatozoides/citologia , Espermatozoides/metabolismo , Superóxido Dismutase/metabolismo , Testículo/citologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/metabolismo
18.
Bioorg Chem ; 81: 340-349, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30189414

RESUMO

Synthesis of natural products has speeded up drug discovery process by minimizing the time for their purification from natural source. Several diseases like Alzheimer's disease (AD) demand exploring multi targeted drug candidates, and for the first time we report the multi AD target inhibitory potential of synthesized dihydroactinidiolide (DA). Though the activity of DA in several solvent extracts have been proved to possess free radical scavenging, anti bacterial and anti cancer activities, its neuroprotective efficacy has not been evidenced yet. Hence DA was successfully synthesized from ß-ionone using facile two-step oxidation method. It showed potent acetylcholinesterase (AChE) inhibition with half maximal inhibitory concentration (IC50) 34.03 nM, which was further supported by molecular docking results showing strong H bonding with some of the active site residues such as GLY117, GLY119 and SER200 of AChE. Further it displayed DPPH and (.NO) scavenging activity with IC50 value 50 nM and metal chelating activity with IC50 >270 nM. Besides, it significantly prevented amyloid ß25-35 self-aggregation and promoted its disaggregation at 270 nM. It did not show cytotoxic effect towards Neuro2a (N2a) cells up to 24 h at 50 and 270 nM while it significantly increased viability of amyloid ß25-35 treated N2a cells through ROS generation at both the concentrations. Cytotoxicity profile of DA against human PBMC was quite impressive. Hemolysis studies also revealed very low hemolysis i.e. minimum 2.35 to maximum 5.61%. It also had suitable ADME properties which proved its druglikeness. The current findings demand for further in vitro and in vivo studies to develop DA as a multi target lead against AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Benzofuranos/farmacologia , Inibidores da Colinesterase/farmacologia , Sequestradores de Radicais Livres/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Acetilcolinesterase/química , Animais , Benzofuranos/síntese química , Benzofuranos/farmacocinética , Benzofuranos/toxicidade , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacocinética , Inibidores da Colinesterase/toxicidade , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacocinética , Sequestradores de Radicais Livres/toxicidade , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/toxicidade , Multimerização Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Food Chem Toxicol ; 120: 112-118, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29981369

RESUMO

Usnic acid is a lichen compound which is extensively studied due to its cytotoxic, antiproliferative, antimicrobial, antiviral, antiprotozoal, and anti-inflammatory activities. Despite a broad spectrum of biological properties, usnic acid is a hepatotoxic agent, thus its potential use as a drug is limited. Certain hepatotoxic drugs may act by generating reactive metabolites that damage the liver. The aim of the study was to predict the biotransformation of usnic acid enantiomers to reactive products using a trapping assay with glutathione in human, rat, and mice liver microsomes. Our results indicate that each enantiomer forms two reactive metabolites; in turn, these metabolites form adducts with glutathione, which may partially explain the toxicity of usnic acid. In silico analysis indicated structural alerts for the generation of reactive metabolites in usnic acid formula. This study proposes a novel mode of the hepatic toxicity of usnic acid enantiomers; it also provides some useful suggestions for designing safer usnic acid derivatives.


Assuntos
Benzofuranos/metabolismo , Benzofuranos/toxicidade , Fígado/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Animais , Benzofuranos/química , Benzofuranos/isolamento & purificação , Biotransformação , Cromatografia Líquida , Glutationa/metabolismo , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Ratos , Estereoisomerismo , Espectrometria de Massas em Tandem
20.
Mikrochim Acta ; 185(5): 269, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700623

RESUMO

Sensing of intracellular singlet oxygen (1O2) is required in order to optimize photodynamic therapy (PDT). An optical nanoprobe is reported here for the optical determination of intracellular 1O2. The probe consists of a porous particle core doped with the commercial 1O2 probe 1,3-diphenylisobenzofuran (DPBF) and a layer of poly-L-lysine. The nanoparticle probes have a particle size of ~80 nm in diameter, exhibit good biocompatibility, improved photostability and high sensitivity for 1O2 in both absorbance (peak at 420 nm) and fluorescence (with excitation/emission peaks at 405/458 nm). Nanoprobes doped with 20% of DPBF are best suited even though they suffer from concentration quenching of fluorescence. In comparison with the commercial fluorescent 1O2 probe SOSG, 20%-doped DPBF-NPs (aged) shows higher sensitivity for 1O2 generated at an early stage. The best nanoprobes were used to real-time monitor the PDT-triggered generation of 1O2 inside live cells, and the generation rate is found to depend on the supply of intracellular oxygen. Graphical abstract A fluorescent nanoprobe featured with refined selectivity and improved sensitivity towards 1O2 was prepared from the absorption-based probe DBPF and used to real-time monitoring of the generation of intracellular 1O2 produced during PDT.


Assuntos
Benzofuranos/química , Corantes Fluorescentes/química , Oxigênio Singlete/metabolismo , Benzofuranos/efeitos da radiação , Benzofuranos/toxicidade , Fluorescência , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Células Hep G2 , Humanos , Luz , Nanopartículas/química , Nanopartículas/efeitos da radiação , Nanopartículas/toxicidade , Fotoquimioterapia , Polilisina/química , Polilisina/toxicidade , Oxigênio Singlete/análise , Oxigênio Singlete/química , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA