Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Chem Biodivers ; 21(5): e202400031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448389

RESUMO

Ulcerative colitis has been widely concerned for its persistent upward trend, and the sustained overproduction of pro-inflammatory cytokines such as IL-6 remains a crucial factor in the development of UC. Therefore, the identification of new effective drugs to block inflammatory responses is an urgent and viable therapeutic strategy for UC. In our research, twenty-three 6-acylamino/sulfonamido benzoxazolone derivatives were synthesized, characterized, and evaluated for anti-inflammatory activity against NO and IL-6 production in LPS-induced RAW264.7 cells. The results demonstrated that most of the target compounds were capable of reducing the overexpression of NO and IL-6 to a certain degree. For the most active compounds 3i, 3j and 3 l, the inhibitory activities were superior or equivalent to those of the positive drug celecoxib with a dose-dependent relationship. Furthermore, animal experiments revealed that active derivatives 3i, 3j and 3 l exhibited definitive therapeutical effect on DSS induced ulcerative colitis in mice by mitigating weight loss and DAI score while decreasing levels of pro-inflammatory cytokines such as IL-6 and IFN-γ, simultaneously increasing production of anti-inflammatory cytokines IL-10. In addition, compounds 3i, 3j and 3 l could also inhibit the oxidative stress to alleviate ulcerative colitis by decreasing MDA and MPO levels. These finding demonstrated that compounds 3i, 3j and 3 l hold significant potential as novel therapeutic agents for ulcerative colitis.


Assuntos
Benzoxazóis , Colite Ulcerativa , Interleucina-6 , Animais , Colite Ulcerativa/tratamento farmacológico , Camundongos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Benzoxazóis/química , Benzoxazóis/farmacologia , Benzoxazóis/síntese química , Células RAW 264.7 , Relação Estrutura-Atividade , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Óxido Nítrico/biossíntese , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana , Descoberta de Drogas , Estrutura Molecular , Relação Dose-Resposta a Droga
2.
Chem Biodivers ; 21(6): e202400123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494443

RESUMO

Benzimidazole and benzoxazole derivatives are included in the category of medical drugs in a wide range of areas such as anticancer, anticoagulant, antihypertensive, anti- inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, immunomodulators, proton pump inhibitors, hormone modulators, etc. Many researchers have focused on synthesizing more effective benzimidazole and benzoxazole derivatives for screening various biological activities. In addition, there are benzimidazole and benzoxazole rings as bioisosteres of aromatic rings found in drugs used in the treatment of Alzheimer's disease. Because of the diverse activity of the benzimidazole and benzoxazole rings and bioisosteres marketed as drugs for Alzheimer Diseases, designed compounds containing these rings are likely to be effective against Alzheimer's disease. In this study, the effectiveness of compounds containing benzimidazole and benzoxazole rings against Alzheimer's disease will be examined.


Assuntos
Doença de Alzheimer , Benzimidazóis , Benzoxazóis , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Benzoxazóis/química , Benzoxazóis/farmacologia , Benzoxazóis/síntese química , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Humanos , Estrutura Molecular , Animais , Relação Estrutura-Atividade
3.
Arch Pharm (Weinheim) ; 356(9): e2300245, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37379239

RESUMO

The benzoxazolone nucleus is an ideal scaffold for drug design, owing to its discrete physicochemical profile, bioisosteric preference over pharmacokinetically weaker moieties, weakly acidic behavior, presence of both lipophilic and hydrophilic fragments on a single framework, and a wider choice of chemical modification on the benzene and oxazolone rings. These properties apparently influence the interactions of benzoxazolone-based derivatives with their respective biological targets. Hence, the benzoxazolone ring is implicated in the synthesis and development of pharmaceuticals with a diverse biological profile ranging from anticancer, analgesics, insecticides, anti-inflammatory, and neuroprotective agents. This has further led to the commercialization of several benzoxazolone-based molecules and a few others under clinical trials. Nevertheless, the SAR exploration of benzoxazolone derivatives for the identification of potential "hits" followed by the screening of "leads" provides a plethora of opportunities for further exploration of the pharmacological profile of the benzoxazolone nucleus. In this review, we aim to present the biological profile of different derivatives based on the benzoxazolone framework.


Assuntos
Analgésicos , Benzoxazóis , Relação Estrutura-Atividade , Analgésicos/farmacologia , Benzoxazóis/química , Interações Hidrofóbicas e Hidrofílicas
4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835453

RESUMO

The large Amino Acid Transporter 1 (LAT1) is an interesting target in drug discovery since this transporter is overexpressed in several human cancers. Furthermore, due to its location in the blood-brain barrier (BBB), LAT1 is interesting for delivering pro-drugs to the brain. In this work, we focused on defining the transport cycle of LAT1 using an in silico approach. So far, studies of the interaction of LAT1 with substrates and inhibitors have not considered that the transporter must undergo at least four different conformations to complete the transport cycle. We built outward-open and inward-occluded conformations of LAT1 using an optimized homology modelling procedure. We used these 3D models and the cryo-EM structures in outward-occluded and inward-open conformations to define the substrate/protein interaction during the transport cycle. We found that the binding scores for the substrate depend on the conformation, with the occluded states as the crucial steps affecting the substrate affinity. Finally, we analyzed the interaction of JPH203, a high-affinity inhibitor of LAT1. The results indicate that conformational states must be considered for in silico analyses and early-stage drug discovery. The two built models, together with the available cryo-EM 3D structures, provide important information on the LAT1 transport cycle, which could be used to speed up the identification of potential inhibitors through in silico screening.


Assuntos
Benzoxazóis , Transportador 1 de Aminoácidos Neutros Grandes , Tirosina , Humanos , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/metabolismo , Tirosina/química , Tirosina/farmacologia , Benzoxazóis/química , Benzoxazóis/farmacologia
5.
Bioorg Chem ; 134: 106437, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842320

RESUMO

Novel series of benzoxazole-appended piperidine derivatives were planned, synthesized and screened against two breast cancer cell lines. Considerable antiproliferative activity was observed for screened compounds (IC50 = 33.32 ± 0.2 µM to 7.31 ± 0.43 µM and 1.66 ± 0.08 µM to 12.10 ± 0.57 µM) against MCF-7 and MDA-MB-231 cell lines respectively being more potent than doxorubicin (IC50 = 8.20 ± 0.39 µM and 13.34 ± 0.63 µM respectively). Active compounds were submitted for enzyme inhibition assays when 4d and 7h demonstrated potent EGFR inhibition (0.08 ± 0.002 µM and 0.09 ± 0.002 µM respectively) compared to erlotinib (0.11 ± 0.003 µM). However, no one compound displayed effective ARO inhibition activity as tested compounds were less active than letrozole. Apoptosis inducing ability results implied that apoptosis was provoked by significant stimulation of caspase-9 protein levels (4.25-7.04-fold) upon treatment of MCF-7 cells with 4a, 7h, 9, 12e and 12f. Alternatively, MDA-MB-231 cells treated with 4d, 7a, 12b and 12c considerably increased caspase-9 levels (2.32-4.06-fold). Cell cycle arrest and annexin-V/Propidium iodide assays further confirmed apoptosis when tested compounds arrested cell cycle at various phases and demonstrated high annexin V binding affinity. Docking outcomes proved valuable binding affinities for compounds 4d and 7h to EGFR enzyme while compounds 4a and 12e, upon docking into the active site of ARO, failed to interact with heme, suggesting their inabilities to act as AIs. Therefore, these benzoxazoles can act as promising candidates exhibiting EGFR inhibition and apoptosis-promoting properties.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Estrutura Molecular , Caspase 9 , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Benzoxazóis/farmacologia , Benzoxazóis/química , Receptores ErbB , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Apoptose
6.
Chem Biodivers ; 19(10): e202200489, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36050285

RESUMO

2-Halogenatedphenyl benzoxazole-5-carboxylic acids with mono-halogen (chloro, bromo and fluoro) substituted at ortho-, meta- and para-positions on the phenyl ring were designed and synthesized based on significance of presence of halogen in increasing number of marketed halogenated drugs and importance of benzoxazoles. These 2-alogenatedphenylbenzoxazole-5-carboxylic acids and their methyl esters were screened for anti-inflammatory activity, and cytotoxicity. 2-(3-Chlorophenyl)benzoxaole-5-carboxylic acid (6b) exhibited significant anti-inflammatory activity with IC50 values of 0.103 mM almost equivalent to the standard drug ibuprofen (0.101 mM). 2-(4-Chlorophenyl)benzoxaole-5-carboxylic acid (6c) showed excellent cytotoxic activity against 22Rv1 cells (human prostate carcinoma epithelial cell lines) with IC50 value of 1.54 µM better than that of standard drug doxorubicin having IC50 value of 2.32 µM. More importantly, the selectivity index of this potential molecule was found to be 57.74. Molecular docking analysis resulted in good binding interactions of these compounds with their respective biochemical targets viz. Cyclooxygenase-2 and aldo-keto reductase IC3.


Assuntos
Antineoplásicos , Benzoxazóis , Humanos , Simulação de Acoplamento Molecular , Benzoxazóis/farmacologia , Benzoxazóis/química , Ciclo-Oxigenase 2/metabolismo , Ibuprofeno , Citotoxinas , Ácidos Carboxílicos/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/química , Anti-Inflamatórios/farmacologia , Doxorrubicina , Aldo-Ceto Redutases/metabolismo , Estrutura Molecular
7.
Sci Rep ; 12(1): 16246, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171229

RESUMO

Many benzoxazole-based and similar scaffolds were reported to have wide-range of anticancer activities. In this study, four series of benzoxazole derivatives were designed by combining benzoxazole scaffold with different amines via a reversed phenyl amide linker to produce the compounds of series A, B and C. A fourth new hybrid of benzoxazole with 1,2,3 triazole ring (series D) was also designed. The designed compounds were synthesized and screened for their anti-breast cancer activity against MDA-MB-231 and MCF-7 cell lines using MTT assay. The most potent cytotoxic compounds; 11-14, 21, 22, 25-27 were further evaluated for their in vitro PARP-2 enzyme inhibition. Compounds 12 and 27 proved to be the most active PARP-2 inhibitors with IC50 values of 0.07 and 0.057 µM, respectively. Compounds 12 and 27 caused cell cycle arrest in mutant MCF-7 cell line at G2/M and G1/S phase, respectively and they possessed significant apoptosis-promoting activity. Docking results of compounds 12 and 27 into PARP-2 pocket demonstrated binding interactions comparable to those of olaparib. Their predicted pharmacokinetic parameters and oral bioavailability appeared to be appropriate. Collectively, it could be concluded that compounds 12 and 27 are promising anti-breast cancer agents that act as PARP-2 inhibitors with potent apoptotic activity.


Assuntos
Antineoplásicos , Neoplasias da Mama , Amidas/farmacologia , Aminas/farmacologia , Antineoplásicos/química , Benzoxazóis/química , Benzoxazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Relação Estrutura-Atividade , Triazóis/farmacologia
8.
Molecules ; 27(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956997

RESUMO

This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 µM compared to sorafenib (0.0782 µM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 µM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Benzoxazóis/química , Proliferação de Células , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Sorafenibe/farmacologia , Relação Estrutura-Atividade
9.
Sci Rep ; 12(1): 10021, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705688

RESUMO

A series of new paclitaxel-benzoxazoles hybrids were designed based on both the molecular docking mode of beta-tubulin with paclitaxel derivatives (7a and 7g), and the activity-structure relationship of C-13 side chain in paclitaxel. Palladium-catalyzed direct Csp2-H arylation of benzoxazoles with different aryl-bromides was used as the key synthetic strategy for the aryl-benzoxazoles moieties in the hybrids. Twenty-six newly synthesized hybrids were screened for their antiproliferative activity against human cancer cell lines such as human breast cancer cells (MDA-MB-231) and liver hepatocellular cells (HepG2) by the MTT assay and results were compared with paclitaxel. Interestingly, most hybrids (7a-7e, 7i, 7k, 7l, 7A, 7B, 7D and 7E) showed significantly active against both cell lines at concentration of 50 µM, which indicated that the hybrid strategy is effective to get structural simplified paclitaxel analogues with high anti-tumor activity.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Benzoxazóis/química , Catálise , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Paclitaxel/farmacologia , Paládio/farmacologia , Relação Estrutura-Atividade
10.
J Enzyme Inhib Med Chem ; 37(1): 397-410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34961427

RESUMO

A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzoxazóis/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Toxicol In Vitro ; 79: 105300, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34933087

RESUMO

Sunscreening chemicals protect against damage caused by sunlight most absorbing UVA or UVB radiations. In this sense, 2-(2'-hydroxyphenyl)benzoxazole derivatives with amino substituents in the 4' and 5' positions have an outstandingly high Sun Protection Factor and adequate photostability, but their toxicity is not yet known. This study aimed to evaluate the toxicity of three synthetic 2-(2'-hydroxyphenyl)benzoxazole derivatives for their possible application as sunscreens. In silico tools were used in order to assess potential risks regarding mutagenic, carcinogenic, and skin sensitizing potential. Bioassays were performed in L929 cells to assess cytotoxicity in MTT assay and genotoxic activities in the Comet assay and micronucleus test. Also, the Salmonella/microsome assay was performed to evaluate gene mutations. The in silico predictions indicate a low risk of mutagenicity and carcinogenicity of the compounds while the skin sensitizing potential was low or inconclusive. The 2-(4'-amino-2'-hydroxyphenyl)benzoxazol compound was the most cytotoxic and genotoxic among the compounds evaluated in L929 cells, but none induced mutations in the Salmonella/microsome assay. The amino substituted at the 4' position of the phenyl ring appears to have greater toxicological risks than substituents at the 5' position of 2-(phenyl)benzoxazole. The findings warrant further studies of these compounds in cosmetic formulations.


Assuntos
Benzoxazóis/toxicidade , Relação Quantitativa Estrutura-Atividade , Protetores Solares/toxicidade , Animais , Benzoxazóis/química , Carcinogênese/efeitos dos fármacos , Linhagem Celular , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Salmonella typhimurium/efeitos dos fármacos , Protetores Solares/química
12.
Phys Chem Chem Phys ; 24(2): 829-841, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34928284

RESUMO

Hexagonal boron nitride (h-BN) sheets possess high fluorescence quenching ability and high affinity towards DNA/RNA, and they can be used as a sensing platform for rapid detection. We report the absorption and emission properties of DNA nucleobases such as adenine (A), cytosine (C), guanine (G), and thymine (T) tagged with benzoxazole on h-BN and aluminium-doped h-BN (Al_hBN) sheets. The binding affinity of studied nucleobases on h-BN sheets at the M062X/6-31G* level of theory showed the following adsorption trend: G ≥ T ≥ A > C, which is in good agreement with the previous results. The calculated stability trend of nucleobases on the Al_hBN sheet follows as C > G > A > T at the same level of theory. The physically adsorbed behavior of nucleobases to h-BN sheets was confirmed by the non-covalent interactions (NCIs) and the total density of states (TDOS) plots. The NCI results indicated that van der Waals interactions contribute significantly to the adsorption of nucleobases on h-BN sheets. Atoms in molecules (AIM) calculations revealed the electrostatic interactions between nucleobases and the Al_hBN sheet. The quenching phenomenon of nucleobase-tagged fluorophores on h-BN and Al_hBN sheets was investigated by TD-DFT calculations using the same level of theory. The thymine-tagged fluorophore upon adsorption to the pristine h-BN sheet was found to be blue-shifted (∼43 nm); however, the guanine-tagged fluorophore with Al_hBN showed a remarkable difference from other nucleobase-tagged fluorophores in the absorption and emission spectrum. Guanine-tagged fluorophores showed a smaller blue shift (∼7 nm) in the absorption spectrum; however, it showed a larger red shift (∼55 nm) than the other nucleobase-tagged fluorophores on Al_hBN sheets and can be useful in recognizing a sequence-specific phenomenon as a fluorescent biosensor of DNA and RNA to ascertain the presence of such nucleobases.


Assuntos
Alumínio/química , Benzoxazóis/química , Compostos de Boro/química , Teoria da Densidade Funcional , Corantes Fluorescentes/química , Simulação de Dinâmica Molecular , Adenina/química , Adsorção , Citosina/química , Guanina/química , Timina/química
13.
J Enzyme Inhib Med Chem ; 37(1): 168-177, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894971

RESUMO

We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cumarínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
14.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943940

RESUMO

Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the ß5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and ß5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the ß5, ß5i, ß1, and ß1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either ß5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.


Assuntos
Cisteína/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Treonina/química , Ubiquitina/química , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Química Computacional , Cisteína/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Relação Estrutura-Atividade , Treonina/imunologia , Ubiquitina/imunologia
15.
Eur J Med Chem ; 225: 113824, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34509167

RESUMO

Hepatocellular carcinoma (HCC) is a major contributor to global cancer incidence and mortality. Many pathways are involved in the development of HCC and various proteins including mTOR and HDACs have been identified as potential drug targets for HCC treatment. In the present study, two series of novel hybrid molecules targeting mTOR and HDACs were designed and synthesized based on parent inhibitors (MLN0128 and PP121 for mTOR, SAHA for HDACs) by using a fusion-type molecular hybridization strategy. In vitro antiproliferative assays demonstrated that these novel hybrids with suitable linker lengths exhibited broad cytotoxicity against various cancer cell lines, with significant activity against HepG2 cells. Notably, DI06, an MLN0128-based hybrid, exhibited antiproliferative activity against HepG2 cells with an IC50 value of 1.61 µM, which was comparable to those of both parent drugs (MLN0128, IC50 = 2.13 µM and SAHA, IC50 = 2.26 µM). In vitro enzyme inhibition assays indicated that DI06, DI07 and DI17 (PP121-based hybrid) exhibited nanomolar inhibitory activity against mTOR kinase and HDACs (e.g., HDAC1, HDAC2, HDAC3, HADC6 and HADC8). Cellular studies and western blot analyses uncovered that in HepG2 cells, DI06 and DI17 induced cell apoptosis by targeting mTOR and HDACs, blocked the cell cycle at the G0/G1 phase and suppressed cell migration. The potential binding modes of the hybrids (DI06 and DI17) with mTOR and HDACs were investigated by molecular docking. DI06 displayed better stability in rat liver microsomes than DI07 and DI17. Collectively, DI06 as a novel mTOR and HDACs inhibitor presented here warrants further investigation as a potential treatment of HCC.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzoxazóis/síntese química , Benzoxazóis/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Quinases/síntese química , Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
16.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299115

RESUMO

A series of novel hybrid compounds containing benzofuroxan and 2-aminothiazole moieties are synthesized via aromatic nucleophilic substitution reaction. Possible reaction pathways have been considered quantum-chemically, which allowed us to suggest the most probable products. The quantum chemical results have been proved by X-ray data on one compound belonging to the synthesized series. It was shown that the introduction of substituents to both the thiazole and amine moieties of the compounds under study strongly influences their UV/Vis spectra. Initial substances and obtained hybrid compounds have been tested in vitro as anticancer agents. Target compounds showed selectivity towards M-HeLa tumor cell lines and were found to be more active than starting benzofuroxan and aminothiazoles. Furthermore, they are considerably less toxic to normal liver cells compared to Tamoxifen. The mechanism of action of the studied compounds can be associated with the induction of apoptosis, which proceeds along the mitochondrial pathway. Thus, new hybrids of benzofuroxan are promising candidates for further development as anticancer agents.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzoxazóis/química , Tiazóis/química , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Neoplasias do Colo do Útero/patologia
17.
ChemMedChem ; 16(21): 3237-3262, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34289258

RESUMO

The benzoxazole moiety is widely found in various natural compounds, which are often found to be biologically active. Due to its versatile biological properties, benzoxazole has been incorporated as an essential pharmacophore and substructure in many medicinal compounds. In the past years, numerous benzoxazole derivatives have been synthesised and evaluated for their biological potential. The wide range in therapeutic potential of benzoxazole derivatives is related to the favourable interactions of the benzoxazole moiety with different protein targets. Herein we review the biological activities of benzoxazole derivatives patented within the past six years. Using the Lens database, granted patents issued from 2015 to 2020 were retrieved. The patented benzoxazole derivatives demonstrated excellent activity against various protein targets and diseases, with some reaching clinical trial stage. Pharmacological and medicinal aspects of patented benzoxazole derivatives are discussed. The recent development and drawbacks are also reviewed.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular
18.
Bioorg Chem ; 114: 105132, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34229198

RESUMO

Hydroxamic acid derivatives constitute an interesting novel class of antitumor agents. Three of them, including vorinostat, are approved drugs for the treatment of malignancies, while several others are currently under clinical trials. In this work, we present new vorinostat analogs containing the benzoxazole ring as the cap group and various linkers. The benzoxazole-based analogs were synthesized starting either from 2-aminobenzoxazole, through conventional coupling, or from benzoxazole, through a metal-free oxidative amination. All the synthesized compounds were evaluated for their antiproliferative activity on three diverse human cancer cell lines (A549, Caco-2 and SF268), in comparison to vorinostat. Compound 12 (GK601), carrying a benzoxazole ring replacement for the phenyl ring of vorinostat, was the most potent inhibitor of the growth of three cell lines (IC50 1.2-2.1 µΜ), similar in potency to vorinostat. Compound 12 also inhibited human HDAC1, HDAC2 and HDAC6 like vorinostat. This new analog also showed antiproliferative activity against two colon cancer cell lines genetically resembling pseudomyxoma peritonei (PMP), namely HCT116 GNAS R201C/+ and LS174T (IC50 0.6 and 1.4 µΜ, respectively) with potency comparable to vorinostat (IC50 1.1 and 2.1 µΜ, respectively).


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Vorinostat/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Vorinostat/síntese química , Vorinostat/química
19.
Bioorg Med Chem ; 40: 116129, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971488

RESUMO

Over the past few decades, an increasing variety of molecular chaperones have been investigated for their role in tumorigenesis and as potential chemotherapeutic targets; however, the 60 kDa Heat Shock Protein (HSP60), along with its HSP10 co-chaperone, have received little attention in this regard. In the present study, we investigated two series of our previously developed inhibitors of the bacterial homolog of HSP60/10, called GroEL/ES, for their selective cytotoxicity to cancerous over non-cancerous colorectal cells. We further developed a third "hybrid" series of analogs to identify new candidates with superior properties than the two parent scaffolds. Using a series of well-established HSP60/10 biochemical screens and cell-viability assays, we identified 24 inhibitors (14%) that exhibited > 3-fold selectivity for targeting colorectal cancer over non-cancerous cells. Notably, cell viability EC50 results correlated with the relative expression of HSP60 in the mitochondria, suggesting a potential for this HSP60-targeting chemotherapeutic strategy as emerging evidence indicates that HSP60 is up-regulated in colorectal cancer tumors. Further examination of five lead candidates indicated their ability to inhibit the clonogenicity and migration of colorectal cancer cells. These promising results are the most thorough analysis and first reported instance of HSP60/10 inhibitors being able to selectively target colorectal cancer cells and highlight the potential of the HSP60/10 chaperonin system as a viable chemotherapeutic target.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Chaperonina 10/antagonistas & inibidores , Chaperonina 60/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Salicilanilidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzoxazóis/síntese química , Benzoxazóis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Salicilanilidas/síntese química , Salicilanilidas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
Bioorg Chem ; 112: 104913, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33945950

RESUMO

Discovery of novel anticancer drugs which have low toxicity and high activity is very significant area in anticancer drug research and development. One of the important targets for cancer treatment research is topoisomerase enzymes. In order to make a contribution to this field, we have designed and synthesized some 5(or 6)-nitro-2-(substitutedphenyl)benzoxazole (1a-1r) and 2-(substitutedphenyl)oxazolo[4,5-b]pyridine (2a-2i) derivatives as novel candidate antitumor agents targeting human DNA topoisomerase enzymes (hTopo I and hTopo IIα). Biological activity results were found very promising for the future due to two compounds, 5-nitro-2-(4-butylphenyl)benzoxazole (1i) and 2-(4-butylphenyl)oxazolo[4,5-b]pyridine (2i), that inhibited hTopo IIα with 2 µM IC50 value. These two compounds were also found to be more active than reference drug etoposide. However, 1i and 2i did not show any satisfactory cyctotoxic activity on the HeLa, WiDR, A549, and MCF7 cancer cell lines. Moreover, molecular docking and molecular dynamic simulations studies for the most active compounds were applied in order to understand the mechanism of inhibition activity of hTopo IIα. In addition, in silico ADME/Tox studies were performed to predict drug-likeness and pharmacokinetic properties of all the tested compounds.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Descoberta de Drogas , Oxazóis/farmacologia , Pirimidinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA