Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Tree Physiol ; 37(9): 1218-1228, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938056

RESUMO

Leaves have to acclimatize to heterogeneous radiation fields inside forest canopies in order to efficiently exploit diverse light conditions. Short-term effects of light quality on photosynthetic gas exchange, leaf water use and hydraulic traits were studied on Betula pendula Roth shoots cut from upper and lower thirds of the canopy of 39- to 35-year-old trees growing in natural forest stand, and illuminated with white, red or blue light in the laboratory. Photosynthetic machinery of the leaves developed in different spectral conditions acclimated differently with respect to incident light spectrum: the stimulating effect of complete visible spectrum (white light) on net photosynthesis is more pronounced in upper-canopy layers. Upper-canopy leaves exhibit less water saving behaviour, which may be beneficial for the fast-growing pioneer species on a daily basis. Lower-canopy leaves have lower stomatal conductance resulting in more efficient water use. Spectral gradients existing within natural forest stands represent signals for the fine-tuning of stomatal conductance and tree water relations to afford lavish water use in sun foliage and enhance leaf water-use efficiency in shade foliage sustaining greater hydraulic limitations. Higher sensitivity of hydraulic conductance of shade leaves to blue light probably contributes to the efficient use of short duration sunflecks by lower-canopy leaves.


Assuntos
Betula/efeitos da radiação , Luz , Folhas de Planta/efeitos da radiação , Fotossíntese , Árvores/efeitos da radiação
2.
Plant Cell Environ ; 38(5): 953-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25041067

RESUMO

We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive.


Assuntos
Aclimatação/efeitos da radiação , Betula/efeitos da radiação , Estômatos de Plantas/efeitos da radiação , Plântula/efeitos da radiação , Água/fisiologia , Betula/fisiologia , Clorofila/metabolismo , Secas , Fotossíntese/efeitos da radiação , Plântula/fisiologia , Raios Ultravioleta
3.
Physiol Plant ; 149(4): 499-514, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23496144

RESUMO

Elevations of carbon dioxide, temperature and ultraviolet-B (UBV) radiation in the growth environment may have a high impact on the accumulation of carbon in plants, and the different factors may work in opposite directions or induce additive effects. To detect the changes in the growth and phytochemistry of silver birch (Betula pendula) seedlings, six genotypes were exposed to combinations of ambient or elevated levels of CO2 , temperature and UVB radiation in top-closed chambers for 7 weeks. The genotypes were relatively similar in their responses, and no significant interactive effects of three-level climate factors on the measured parameters were observed. Elevated UVB had no effect on growth, nor did it alter plant responses to CO2 and/or temperature in combined treatments. Growth in all plant parts increased under elevated CO2 , and height and stem biomass increased under elevated temperature. Increased carbon distribution to biomass did not reduce its allocation to phytochemicals: condensed tannins, most flavonols and phenolic acids accumulated under elevated CO2 and elevated UVB, but this effect disappeared under elevated temperature. Leaf nitrogen content decreased under elevated CO2 . We conclude that, as a result of high genetic variability in phytochemicals, B. pendula seedlings have potential to adapt to the tested environmental changes. The induction in protective flavonoids under UVB radiation together with the positive impact of elevated CO2 and temperature mitigates possible UVB stress effects, and thus atmospheric CO2 concentration and temperature are the climate change factors that will dictate the establishment and success of birch at higher altitudes in the future.


Assuntos
Betula/fisiologia , Dióxido de Carbono/farmacologia , Carbono/metabolismo , Nitrogênio/metabolismo , Estresse Fisiológico , Betula/efeitos dos fármacos , Betula/crescimento & desenvolvimento , Betula/efeitos da radiação , Biomassa , Mudança Climática , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos da radiação , Temperatura , Raios Ultravioleta
4.
Physiol Plant ; 144(2): 146-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22224454

RESUMO

Recent molecular and physiological studies have demonstrated that ultraviolet-B radiation (UV-B) can affect some of the processes involved in leaf growth, but the phases of leaf growth affected have not been clearly delimited. We used functional growth analysis to assess the effects of UV-B radiation on the time course of leaf growth in seedlings of two birch species (Betula pendula and Betula pubescens). Our aim was to identify the phase(s) of leaf development affected by UV-B radiation. In a greenhouse study, 1-year-old birch seedlings were subjected to three daily doses of supplemental UV-B radiation treatments (UV-B⁺) and no UV-B radiation controls (UV-B⁻). Leaf growth measurements every 2 days were complemented by assessment of other functional traits over a 4-week period at the start of the growing season. Using fitted curves, we were able to determine that the rate of leaf expansion was slowed by the UV-B⁺ treatment in leaves of B. pendula because of a slower maximum leaf growth rate compared with plants under the UV-B⁻ controls, but that compensation toward the end of the period of expansion negated this difference when leaves reached their final size. UV-B⁺ had little effect on the rate of B. pubescens leaf growth despite a larger reduction in leaf final size due to UV-B⁺ than occurred in B. pendula leaves. In conclusion, effective regulation ameliorated the effects of UV-B radiation on leaf and seedling growth in B. pendula, whereas in B. pubescens, reductions in leaf final size under UV-B⁺ were consistent with a slightly reduced rate of height growth.


Assuntos
Betula/crescimento & desenvolvimento , Betula/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Análise de Variância , Betula/anatomia & histologia , Clorofila/metabolismo , Fenóis/metabolismo , Folhas de Planta/anatomia & histologia , Característica Quantitativa Herdável , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Especificidade da Espécie , Fatores de Tempo
5.
Physiol Plant ; 143(3): 261-70, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21883252

RESUMO

The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure.


Assuntos
Betula/metabolismo , Betula/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Aclimatação , Betula/química , Finlândia , Flavonoides/biossíntese , Epiderme Vegetal/química , Epiderme Vegetal/metabolismo , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/química , Luz Solar , Fatores de Tempo , Raios Ultravioleta
6.
Tree Physiol ; 30(7): 923-34, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20519675

RESUMO

Ultraviolet (UV) radiation is an important environmental factor for plant communities; however, plant responses to solar UV are not fully understood. Here, we report differential effects of solar UV-A and UV-B radiation on the expression of flavonoid pathway genes and phenolic accumulation in leaves of Betula pendula Roth (silver birch) seedlings grown outdoors. Plants were exposed for 30 days to six UV treatments created using three types of plastic film. Epidermal flavonoids measured in vivo decreased when UV-B was excluded. In addition, the concentrations of six flavonoids determined by high-performance liquid chromatography-mass spectrometry declined linearly with UV-B exclusion, and transcripts of PAL and HYH measured by quantitative real-time polymerase chain reaction were expressed at lower levels. UV-A linearly regulated the accumulation of quercetin-3-galactoside and quercetin-3-arabinopyranoside and had a quadratic effect on HYH expression. Furthermore, there were strong positive correlations between PAL expression and accumulation of four flavonols under the UV treatments. Our findings in silver birch contribute to a more detailed understanding of plant responses to solar UV radiation at both molecular and metabolite levels.


Assuntos
Betula/metabolismo , Betula/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fenóis/metabolismo , Luz Solar , Raios Ultravioleta , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Plântula/efeitos da radiação
7.
Oecologia ; 164(1): 163-75, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20473770

RESUMO

Enhanced ultraviolet-B (UV-B) radiation may have multiple effects on both plants and animals and affect plant-herbivore interactions directly and indirectly by inducing changes in host plant quality. In this study, we examined combined effects of UV-B and herbivory on the defence of the mountain birch (Betula pubescens ssp. czerepanovii) and also the effects of enhanced UV-B radiation on a geometrid with an outbreak cycle: the autumnal moth (Epirrita autumnata). We established an experiment mimicking ozone depletion of 30% (a relevant level when simulating ozone depletion above Northern Lapland). Both arctic species responded only slightly to the enhanced level of UV-B radiation, which may indicate that these species are already adapted to a broader range of UV-B radiation. UV-B exposure slightly induced the accumulation of myricetin glycosides but had no significant effect on the contents of quercetin or kaempferol derivatives. Mountain birch seedlings responded more efficiently to herbivory wounding than to enhanced UV-B exposure. Herbivory induced the activities of foliar oxidases that had earlier been shown to impair both feeding and growth of moth larvae. In contrast, the contents of foliar phenolics did not show the same response in different clones, except for a decrease in the contents of tannin precursors. The induction of foliar phenoloxidase activities is a specific defence response of mountain birches against insect herbivory. To conclude, our results do not support the hypothesis that the outbreak cycle of the autumnal moth can be explained by the cycles of solar activity and UV-B.


Assuntos
Betula/efeitos da radiação , Interações Hospedeiro-Parasita/efeitos da radiação , Mariposas/efeitos da radiação , Fenóis/metabolismo , Raios Ultravioleta , Animais , Betula/enzimologia , Betula/parasitologia , Comportamento Alimentar , Larva/efeitos da radiação , Monofenol Mono-Oxigenase/metabolismo , Plântula/enzimologia , Plântula/parasitologia , Plântula/efeitos da radiação
8.
Oecologia ; 161(4): 719-28, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19597848

RESUMO

Solar ultraviolet (UV)-A and UV-B radiation were excluded from branches of grey alder (Alnus incana) and white birch (Betula pubescens) trees in a field experiment. Leaf litter collected from these trees was used in microcosm experiments under laboratory conditions. The aim was to evaluate the effects of the different UV treatments on litter chemical quality (phenolic compounds, C, N and lignin) and the subsequent effects of these changes on soil fauna and decomposition processes. We measured the decomposition rate of litter, growth of woodlice (Porcellio scaber), soil microbial respiration and abundance of nematodes and enchytraeid worms. In addition, the chemical quality of woodlice feces was analyzed. The exclusion of both UV-A and UV-B had several effects on litter chemistry. Exclusion of UV-B radiation decreased the C content in litter in both tree species. In alder litter, UV exclusion affected concentration of phenolic groups variably, whereas in birch litter there were no significant differences in phenolic compounds. Moreover, further effects on microbial respiration and chemical quality of woodlice feces were apparent. In both tree species, microbial CO(2) evolution was lower in soil with litter produced under exclusion of both UV-A and UV-B radiation when compared to soil with control litter. The N content was higher in the feces of woodlice eating alder litter produced under exclusion of both UV-A and UV-B compared to the control. In addition, there were small changes in the concentration of individual phenolic compounds analyzed from woodlice feces. Our results demonstrate that both UV-A and UV-B alter litter chemistry which in turn affects decomposition processes.


Assuntos
Alnus/efeitos da radiação , Betula/efeitos da radiação , Ecossistema , Folhas de Planta/efeitos da radiação , Microbiologia do Solo , Solo/análise , Raios Ultravioleta , Alnus/metabolismo , Animais , Betula/metabolismo , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos da radiação , Nitrogênio/metabolismo , Fenóis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
9.
Environ Pollut ; 156(1): 152-61, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18262319

RESUMO

Phenogenetic response of silver birch populations and half-sib families to separate and combined elevated ozone (O(3)) concentrations and ultraviolet-B (UV-B) radiation dozes was studied at juvenile age in the climatic chambers. Significant population and family effects were found for seedling height, lamina width, and leaf damage. The exposure to UV-B radiation decreased genetic variation at the stage of seed germination. Complex exposure to UV-B and O(3) caused an increase of genetic variation at the stage of intensive seedling growth: seedling height genetic variation in separate treatments increased from 23.7-38.6 to 33.7-65.7%, the increase for lamina width was from 10.2-13.9 to 13.6-31.8%. Different populations and families demonstrated differing response to elevated complex UV-B and O(3) exposure. Changes of genetic intra-population variation were population-specific. Such changes in genetic variation under the impact of stressors can alter adaptation, stability, and competitive ability of regenerating populations in a hardly predictive way.


Assuntos
Poluentes Atmosféricos/farmacologia , Betula/efeitos dos fármacos , Oxidantes Fotoquímicos/farmacologia , Ozônio/farmacologia , Raios Ultravioleta , Betula/genética , Betula/crescimento & desenvolvimento , Betula/efeitos da radiação , Variação Genética/efeitos dos fármacos , Variação Genética/efeitos da radiação , Modelos Biológicos , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
10.
Electron. j. biotechnol ; 8(1): 17-23, Apr. 2005. tab, graf
Artigo em Inglês | LILACS | ID: lil-448778

RESUMO

The effect of Red light (R), Far-red light (FR) and R/FR combinations on shoot growth of latitudinal ecotypes of B. pendula was studied using special diodes that emit monochromatic lights. When a 12 hrs PAR (110 µmol m-2 s-1) was extended with R, FR or R/FR ratios, lower intensities of monochromatic lights could not prevent growth cessation. At 25 µmol m-2 s-1, FR compared to R enhanced stem elongation in all ecotypes. This was due to the inhibitive effect of R on internode elongation. When day-length was extended by R/FR at various ratios, there was continuous shoot elongation, but was found to be declining with increasing ratios. The more the R, the shorter were the internodes of each plant. B. pendula ecotypes produced branches when PAR light during the day was extended by incandescent light, but did not do so when the light extensions were made by monochromatic R or FR or their combination. Branching increased with decreasing latitude of the ecotype.


Assuntos
Betula/crescimento & desenvolvimento , Betula/efeitos da radiação , Ecossistema , Fotossíntese/efeitos da radiação , Luz , Fitocromo/fisiologia , Morfogênese/efeitos da radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA