Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
J Rehabil Med ; 56: jrm34141, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770700

RESUMO

OBJECTIVE: To describe and evaluate the combination of osseointegration and nerve transfers in 3 transhumeral amputees. DESIGN: Case series. PATIENTS: Three male patients with a unilateral traumatic transhumeral amputation. METHODS: Patients received a combination of osseointegration and targeted muscle reinnervation surgery. Rehabilitation included graded weight training, range of motion exercises, biofeedback, table-top prosthesis training, and controlling the actual device. The impairment in daily life, health-related quality of life, and pain before and after the intervention was evaluated in these patients. Their shoulder range of motion, prosthesis embodiment, and function were documented at a 2- to 5-year follow-up. RESULTS: All 3 patients attended rehabilitation and used their myoelectric prosthesis on a daily basis. Two patients had full shoulder range of motion with the prosthesis, while the other patient had 55° of abduction and 45° of anteversion. They became more independent in their daily life activities after the intervention and incorporated their prosthesis into their body scheme to a high extent. CONCLUSION: These results indicate that patients can benefit from the combined procedure. However, the patients' perspective, risks of the surgical procedures, and the relatively long rehabilitation procedure need to be incorporated in the decision-making.


Assuntos
Amputados , Membros Artificiais , Transferência de Nervo , Osseointegração , Amplitude de Movimento Articular , Humanos , Masculino , Osseointegração/fisiologia , Adulto , Amputados/reabilitação , Transferência de Nervo/métodos , Amplitude de Movimento Articular/fisiologia , Biônica , Resultado do Tratamento , Músculo Esquelético , Pessoa de Meia-Idade , Úmero/cirurgia , Qualidade de Vida , Amputação Traumática/reabilitação , Amputação Traumática/cirurgia , Atividades Cotidianas
2.
Biomaterials ; 308: 122566, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38603824

RESUMO

Achieving sufficient bone regeneration in large segmental defects is challenging, with the structure of bone repair scaffolds and their loaded bioactive substances crucial for modulating the local osteogenic microenvironment. This study utilized digital laser processing (DLP)-based 3D printing technology to successfully fabricate high-precision methacryloylated polycaprolactone (PCLMA) bionic bone scaffold structures. Adipose-derived stem cell-engineered nanovesicles (ADSC-ENs) were uniformly and stably modified onto the bionic scaffold surface using a perfusion device, constructing a conducive microenvironment for tissue regeneration and long bone defect repair through the scaffold's structural design and the vesicles' biological functions. Scanning electron microscopy (SEM) examination of the scaffold surface confirmed the efficient loading of ADSC-ENs. The material group loaded with vesicles (PCLMA-BAS-ENs) demonstrated good cell compatibility and osteogenic potential when analyzed for the adhesion and osteogenesis of primary rabbit bone marrow mesenchymal stem cells (BMSCs) on the material surface. Tested in a 15 mm critical rabbit radial defect model, the PCLMA-BAS-ENs scaffold facilitated near-complete bone defect repair after 12 weeks. Immunofluorescence and proteomic results indicated that the PCLMA-BAS-ENs scaffold significantly improved the osteogenic microenvironment at the defect site in vivo, promoted angiogenesis, and enhanced the polarization of macrophages towards M2 phenotype, and facilitated the recruitment of BMSCs. Thus, the PCLMA-BAS-ENs scaffold was proven to significantly promote the repair of large segmental bone defects. Overall, this strategy of combining engineered vesicles with highly biomimetic scaffolds to promote large-segment bone tissue regeneration holds great potential in orthopedic and other regenerative medicine applications.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , Osteogênese , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Animais , Coelhos , Alicerces Teciduais/química , Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Biônica , Poliésteres/química , Tecido Adiposo/citologia
3.
Nanoscale ; 16(12): 6095-6108, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38444228

RESUMO

In photothermal therapy (PTT), the photothermal conversion of the second near-infrared (NIR-II) window allows deeper penetration and higher laser irradiance and is considered a promising therapeutic strategy for deep tissues. Since cancer remains a leading cause of deaths worldwide, despite the numerous treatment options, we aimed to develop an improved bionic nanotheranostic for combined imaging and photothermal cancer therapy. We combined a gold nanobipyramid (Au NBP) as a photothermal agent and MnO2 as a magnetic resonance enhancer to produce core/shell structures (Au@MnO2; AM) and modified their surfaces with homologous cancer cell plasma membranes (PM) to enable tumour targeting. The performance of the resulting Au@MnO2@PM (AMP) nanotheranostic was evaluated in vitro and in vivo. AMP exhibits photothermal properties under NIR-II laser irradiation and has multimodal in vitro imaging functions. AMP enables the computed tomography (CT), photothermal imaging (PTI), and magnetic resonance imaging (MRI) of tumours. In particular, AMP exhibited a remarkable PTT effect on cancer cells in vitro and inhibited tumour cell growth under 1064 nm laser irradiation in vivo, with no significant systemic toxicity. This study achieved tumour therapy guided by multimodal imaging, thereby demonstrating a novel strategy for the use of bionic gold nanoparticles for tumour PTT under NIR-II laser irradiation.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Terapia Fototérmica , Nanomedicina Teranóstica/métodos , Ouro/farmacologia , Compostos de Manganês/farmacologia , Compostos de Manganês/química , Biônica , Nanopartículas Metálicas/uso terapêutico , Óxidos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imagem Multimodal/métodos , Linhagem Celular Tumoral
4.
Anal Chim Acta ; 1300: 342446, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38521574

RESUMO

BACKGROUND: In vitro toxicity assessment studies with various experimental models and exposure modalities frequently generate diverse outcomes. In the prevalent experimental, aerosol pollutants are dissolved in culture medium through capture for exposure to two-dimensional planar cellular models in multiwell plates via immersion. However, this approach can generate restricted and inconclusive experimental data, significantly constraining the applicability of risk assessment outcomes. Herein, the in vitro cocultivation of lung epithelial and/or vascular endothelial cells was performed using self-designed bionic-lung microfluidic chip housing a gas-concentration gradient generator (GCGG) unit. Exposure experiments involving a concentration gradient of cigarette smoke (CS) aerosol were then conducted through an original assembled real-time aerosol exposure system. RESULTS: Transcriptomic analysis revealed a potential involvement of the cGMP-signaling pathway following online CS aerosol exposure on different cell culture models. Furthermore, distinct responses to different concentrations of CS aerosol exposure on different culture models were highlighted by detecting inflammation- and oxidative stress-related biomarkers (i.e., cell viability, reactive oxygen species, nitric oxide, IL-6, IL-8, TNF-α, GM-CSF, malondialdehyde, and superoxide dismutase). SIGNIFICANT: The results underscore the importance of improving chip biomimicry while addressing multi-throughput demands, given the substantial influence of the coculture model on cellular responses triggered by CS. Furthermore, the coculture model exhibited a mutually beneficial protective effect on cells at low CS concentrations within the GCGG unit, yet revealed a mutually amplified damaging effect at higher CS concentrations in contrast to the monoculture model.


Assuntos
Fumar Cigarros , Microfluídica , Técnicas de Cocultura , Células Endoteliais , Biônica , Pulmão , Nicotiana , Aerossóis
5.
Eur Rev Med Pharmacol Sci ; 28(4): 1375-1383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38436170

RESUMO

OBJECTIVE: The aim of this study was to compare the difference between proximal femoral bionic nail (PFBN) and hip replacement (HR) for femoral intertrochanteric fracture. MATERIALS AND METHODS: A retrospective analysis of the differences in operative time, length of stay, postoperative Harris score, and postoperative mortality between patients with femoral intertrochanteric fracture treated by PFBN and HR admitted to Jinzhai County People's Hospital from October 2020 to September 2022 was performed. RESULTS: A total of 56 patients with femoral intertrochanteric fracture, 26 with PFBN and 30 with HR, were included in the study. There were no differences in the length of surgery, pre- and post-operative hemoglobin, or post-operative Harris score at 3 months between the two groups. Compared to the HR group, the PFBN group had a lower total cost, shorter hospital stays, and lower mortality but a longer ambulation time, with a difference of 3.36 weeks. CONCLUSIONS: PFBN may be a promising new treatment for femoral intertrochanteric fracture.


Assuntos
Fraturas do Fêmur , Fraturas do Quadril , Humanos , Biônica , Estudos Retrospectivos , Fraturas do Quadril/cirurgia , Fêmur
6.
Biomater Adv ; 158: 213799, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364326

RESUMO

The tendon-bone interface heals through scar tissue, while the lack of a natural interface gradient structure and collagen fibre alignment leads to the occurrence of retearing. Therefore, the promotion of tendon healing has become the focus of regenerative medicine. The purpose of this study was to develop a gradient COL1/ hydroxyapatite (HAp) biomaterial loaded with human amniotic mesenchymal stem cells (hAMSCs). The performance of common cross-linking agents, Genipin, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), and dual cross-linked materials were compared to select the best cross-linking mechanism to optimize the biological and mechanical properties of the scaffold. The optimal COL1/HAp-loaded with hAMSCs were implanted into the tendon-bone rotator cuff interfaces in rats and the effect on the tendon-bone healing was assessed by micro-CT, histological analysis, and biomechanical properties. The results showed that Genipin and EDC/NHS dual cross-linked COL1/HAp had good biological activity and mechanical properties and promoted the proliferation and differentiation of hAMSCs. Animal experiments showed that the group using a scaffold loaded with hAMSCs had excellent continuity and orientation of collagen fibers, increased fibrocartilage and bone formation, and significantly higher biomechanical functions than the control group at the interface at 12 weeks post operation. This study demonstrated that dual cross-linked gradient COL1/HAp-loaded hAMSCs could promote interface healing, thereby providing a feasible strategy for tendon-bone interface regeneration.


Assuntos
Iridoides , Células-Tronco Mesenquimais , Manguito Rotador , Humanos , Animais , Ratos , Durapatita , Biônica , Tendões , Fatores Imunológicos , Colágeno
7.
Redox Biol ; 70: 103051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301594

RESUMO

The significant regulatory role of palmitoylation modification in cancer-related targets has been demonstrated previously. However, the biological functions of Nrf2 in stomach cancer and whether the presence of Nrf2 palmitoylation affects gastric cancer (GC) progression and its treatment have not been reported. Several public datasets were used to look into the possible link between the amount of palmitoylated Nrf2 and the progression and its outcome of GC in patients. The palmitoylated Nrf2 levels in tumoral and peritumoral tissues from GC patients were also evaluated. Both loss-of-function and gain-of-function via transgenic experiments were performed to study the effects of palmitoylated Nrf2 on carcinogenesis and the pharmacological function of 2-bromopalmitate (2-BP) on the suppression of GC progression in vitro and in vitro. We discovered that Nrf2 was palmitoylated in the cytoplasmic domain, and this lipid posttranslational modification causes Nrf2 stabilization by inhibiting ubiquitination, delaying Nrf2 destruction via the proteasome and boosting nuclear translocation. Importantly, we also identify palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 2 (DHHC2) as the primary acetyltransferase required for the palmitoylated Nrf2 and indicate that the suppression of Nrf2 palmitoylation via 2-bromopalmitate (2-BP), or the knockdown of DHHC2, promotes anti-cancer immunity in vitro and in mice model-bearing xenografts. Of note, based on the antineoplastic mechanism of 2-BP, a novel anti-tumor drug delivery system ground 2-BP and oxaliplatin (OXA) dual-loading gold nanorods (GNRs) with tumor cell membrane coating biomimetic nanoparticles (CM@GNRs-BO) was established. In situ photothermal therapy is done using near-infrared (NIR) laser irradiation to help release high-temperature-triggered drugs from the CM@GNRs-BO reservoir when needed. This is done to achieve photothermal/chemical synergistic therapy. Our findings show the influence and linkage of palmitoylated Nrf2 with tumoral and peritumoral tissues in GC patients, the underlying mechanism of palmitoylated Nrf2 in GC progression, and novel possible techniques for addressing Nrf2-associated immune evasion in cancer growth. Furthermore, the bionic nanomedicine developed by us has the characteristics of dual drugs delivery, homologous tumor targeting, and photothermal and chemical synergistic therapy, and is expected to become a potential platform for cancer treatment.


Assuntos
Antineoplásicos , Carcinoma , Nanopartículas , Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fator 2 Relacionado a NF-E2/genética , Biônica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química , Aciltransferases/genética , Aciltransferases/metabolismo
8.
ACS Appl Mater Interfaces ; 16(7): 8538-8553, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343191

RESUMO

Large osseous void, postsurgical neoplastic recurrence, and slow bone-cartilage repair rate raise an imperative need to develop functional scaffold in clinical osteosarcoma treatment. Herein, a bionic bilayer scaffold constituting croconaine dye-polyethylene glycol@sodium alginate hydrogel and poly(l-lactide)/hydroxyapatite polymer matrix is fabricated to simultaneously achieve a highly efficient killing of osteosarcoma and an accelerated osteochondral regeneration. First, biomimetic osteochondral structure along with adequate interfacial interaction of the bilayer scaffold provide a structural reinforcement for transverse osseointegration and osteochondral regeneration, as evidenced by upregulated specific expressions of collagen type-I, osteopontin, and runt-related transcription factor 2. Meanwhile, thermal ablation of the synthesized nanoparticles and mitochondrial dysfunction caused by continuously released hydroxyapatite induce residual tumor necrosis synergistically. To validate the capabilities of inhibiting tumor growth and promoting osteochondral regeneration of our proposed scaffold, a novel orthotopic osteosarcoma model simulating clinical treatment scenarios of bone tumors is established on rats. Based on amounts of in vitro and in vivo results, an effective killing of osteosarcoma and a suitable osteal-microenvironment modulation of such bionic bilayer composite scaffold are achieved, which provides insightful implications for photonic hyperthermia therapy against osteosarcoma and following osseous tissue regeneration.


Assuntos
Hipertermia Induzida , Osteossarcoma , Ratos , Animais , Alicerces Teciduais/química , Biônica , Materiais Biocompatíveis/química , Durapatita/química , Regeneração Óssea , Osteossarcoma/terapia , Microambiente Tumoral
9.
Sci Rep ; 14(1): 1024, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200135

RESUMO

Scalar translocation is a severe form of intra-cochlear trauma during cochlear implant (CI) electrode insertion. This study explored the hypothesis that the dimensions of the cochlear basal turn and orientation of its inferior segment relative to surgically relevant anatomical structures influence the scalar translocation rates of a pre-curved CI electrode. In a cohort of 40 patients implanted with the Advanced Bionics Mid-Scala electrode array, the scalar translocation group (40%) had a significantly smaller mean distance A of the cochlear basal turn (p < 0.001) and wider horizontal angle between the inferior segment of the cochlear basal turn and the mastoid facial nerve (p = 0.040). A logistic regression model incorporating distance A (p = 0.003) and horizontal facial nerve angle (p = 0.017) explained 44.0-59.9% of the variance in scalar translocation and correctly classified 82.5% of cases. Every 1mm decrease in distance A was associated with a 99.2% increase in odds of translocation [95% confidence interval 80.3%, 100%], whilst every 1-degree increase in the horizontal facial nerve angle was associated with an 18.1% increase in odds of translocation [95% CI 3.0%, 35.5%]. The study findings provide an evidence-based argument for the development of a navigation system for optimal angulation of electrode insertion during CI surgery to reduce intra-cochlear trauma.


Assuntos
Implante Coclear , Implantes Cocleares , Traumatismos Craniocerebrais , Humanos , Cóclea/cirurgia , Eletrodos Implantados , Biônica , Translocação Genética
10.
Nat Commun ; 15(1): 10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169465

RESUMO

Tactile function is essential for human life as it enables us to recognize texture and respond to external stimuli, including potential threats with sharp objects that may result in punctures or lacerations. Severe skin damage caused by severe burns, skin cancer, chemical accidents, and industrial accidents damage the structure of the skin tissue as well as the nerve system, resulting in permanent tactile sensory dysfunction, which significantly impacts an individual's daily life. Here, we introduce a fully-implantable wireless powered tactile sensory system embedded artificial skin (WTSA), with stable operation, to restore permanently damaged tactile function and promote wound healing for regenerating severely damaged skin. The fabricated WTSA facilitates (i) replacement of severely damaged tactile sensory with broad biocompatibility, (ii) promoting of skin wound healing and regeneration through collagen and fibrin-based artificial skin (CFAS), and (iii) minimization of foreign body reaction via hydrogel coating on neural interface electrodes. Furthermore, the WTSA shows a stable operation as a sensory system as evidenced by the quantitative analysis of leg movement angle and electromyogram (EMG) signals in response to varying intensities of applied pressures.


Assuntos
Pele Artificial , Humanos , Biônica , Tato/fisiologia , Pele , Cicatrização , Órgãos dos Sentidos
11.
Khirurgiia (Mosk) ; (1): 110-118, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38258697

RESUMO

OBJECTIVE: To evaluate the immediate results of ankle replacement with original prosthesis in a patient with severe post-traumatic deformation of the distal tibia. MATERIAL AND METHODS: When developing the original design of ankle prosthesis, we considered foreign analogues of classical and revision models of ankle prostheses taking into account their shortcomings. In this case, an integrated approach was used. Extensive work has been carried out to select materials for prosthetic components. Experimental work with mesenchymal stromal cells of bone marrow was aimed at testing cytotoxicity and biological compatibility. The staff of the department of designing biomechanical structures of the Research Institute of Bionics and Personalized Medicine of the Samara State Medical University carefully studied the proposed design of endoprosthesis using the Ansys software. After cadaver tests on full-scale models, we performed surgical intervention in a patient with severe post-traumatic deformity of the lower third of the left tibia. RESULTS: Our studies revealed convenience and certain advantages of intraoperative installation of original ankle prosthesis. Along with this, this clinical example indicated come features that must be taken into account in revision ankle replacement to avoid possible postoperative consequences. CONCLUSION: Original ankle prosthesis makes it possible to replace the distal tibia and preserve limb function.


Assuntos
Tornozelo , Tíbia , Humanos , Tíbia/cirurgia , Implantação de Prótese , Biônica , Cadáver
12.
ACS Nano ; 18(4): 3053-3072, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237054

RESUMO

The progressive worsening of disc degeneration and related nonspecific back pain are prominent clinical issues that cause a tremendous economic burden. Activation of reactive oxygen species (ROS) related inflammation is a primary pathophysiologic change in degenerative disc lesions. This pathological state is associated with M1 macrophages, apoptosis of nucleus pulposus cells (NPC), and the ingrowth of pain-related sensory nerves. To address the pathological issues of disc degeneration and discogenic pain, we developed MnO2@TMNP, a nanomaterial that encapsulated MnO2 nanoparticles with a TrkA-overexpressed macrophage cell membrane (TMNP). Consequently, this engineered nanomaterial showed high efficiency in binding various inflammatory factors and nerve growth factors, which inhibited inflammation-induced NPC apoptosis, matrix degradation, and nerve ingrowth. Furthermore, the macrophage cell membrane provided specific targeting to macrophages for the delivery of MnO2 nanoparticles. MnO2 nanoparticles in macrophages effectively scavenged intracellular ROS and prevented M1 polarization. Supportively, we found that MnO2@TMNP prevented disc inflammation and promoted matrix regeneration, leading to downregulated disc degenerative grades in the rat injured disc model. Both mechanical and thermal hyperalgesia were alleviated by MnO2@TMNP, which was attributed to the reduced calcitonin gene-related peptide (CGRP) and substance P expression in the dorsal root ganglion and the downregulated Glial Fibrillary Acidic Protein (GFAP) and Fos Proto-Oncogene (c-FOS) signaling in the spinal cord. We confirmed that the MnO2@TMNP nanomaterial alleviated the inflammatory immune microenvironment of intervertebral discs and the progression of disc degeneration, resulting in relieved discogenic pain.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Neuralgia , Humanos , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Citocinas/metabolismo , Biônica , Compostos de Manganês/farmacologia , Óxidos/farmacologia , Óxidos/uso terapêutico , Óxidos/metabolismo , Inflamação/metabolismo
13.
Diabetes Care ; 47(1): 101-108, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874987

RESUMO

OBJECTIVE: Cystic fibrosis-related diabetes (CFRD) affects up to 50% of adults with cystic fibrosis and adds significant morbidity and treatment burden. We evaluated the safety and efficacy of automated insulin delivery with the iLet bionic pancreas (BP) in adults with CFRD in a single-center, open-label, random-order, crossover trial. RESEARCH DESIGN AND METHODS: Twenty participants with CFRD were assigned in random order to 14 days each on the BP or their usual care (UC). No restrictions were placed on diet or activity. The primary outcome was the percent time sensor-measured glucose was in target range 70-180 mg/dL (time in range [TIR]) on days 3-14 of each arm, and key secondary outcomes included mean continuous glucose monitoring (CGM) glucose and the percent time sensor-measured glucose was in hypoglycemic range <54 mg/dL. RESULTS: TIR was significantly higher in the BP arm than the UC arm (75 ± 11% vs. 62 ± 22%, P = 0.001). Mean CGM glucose was lower in the BP arm than in the UC arm (150 ± 19 vs. 171 ± 45 mg/dL, P = 0.007). There was no significant difference in percent time with sensor-measured glucose <54 mg/dL (0.27% vs. 0.36%, P = 1.0), although self-reported symptomatic hypoglycemia episodes were higher during the BP arm than the UC arm (0.7 vs. 0.4 median episodes per day, P = 0.01). No episodes of diabetic ketoacidosis or severe hypoglycemia occurred in either arm. CONCLUSIONS: Adults with CFRD had improved glucose control without an increase in CGM-measured hypoglycemia with the BP compared with their UC, suggesting that this may be an important therapeutic option for this patient population.


Assuntos
Fibrose Cística , Diabetes Mellitus Tipo 1 , Hipoglicemia , Adulto , Humanos , Insulina/uso terapêutico , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Biônica , Glicemia , Sistemas de Infusão de Insulina , Hipoglicemiantes/uso terapêutico , Hipoglicemia/tratamento farmacológico , Insulina Regular Humana/uso terapêutico , Pâncreas
14.
J Orthop Surg Res ; 18(1): 926, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053203

RESUMO

BACKGROUND: Dynamic hip screws (DHS) and proximal femoral nail anti-rotation (PFNA) were recommended for basicervical femoral neck fracture (BFNF), however, with high rate of postoperative femoral neck shortening. The proximal femoral bionic nail (PFBN) was designed to decrease the postoperative complications associated with DHS and PFNA. The aim of this study is to compare the biomechanical characters of DHS, PFNA, and PFBN for fixation of BFNF. METHODS: Using finite element analysis, we created a three-dimensional model of the BFNF for this investigation. The PFBN group, the PFNA group and the DHS + DS group were our three test groups. For each fracture group, the von Mises stress and displacements of the femur and internal fixation components were measured under 2100 N axial loads. RESULTS: The PFBN group demonstrated the lowest stress on the implants, significantly lower than the PFNA and DHS + DS groups. In terms of stress on the implants, the PFBN group exhibited the best performance, with the lowest stress concentration at 112.0 MPa, followed by the PFNA group at 124.8 MPa and the DHS + DS group at 149.8 MPa. The PFBA group demonstrated the smallest displacement at the fracture interface, measuring 0.21 mm, coupled with a fracture interface pressure of 17.41 MPa, signifying excellent stability. CONCLUSIONS: Compared with DHS and PFNA, PFBN has advantages in stress distribution and biological stability. We believe the concept of triangle fixation will be helpful to reduce femoral neck shortening associated with DHS and PFNA and thus improve the prognosis of BFNF.


Assuntos
Fraturas do Colo Femoral , Fixação Intramedular de Fraturas , Fraturas do Quadril , Humanos , Fraturas do Quadril/cirurgia , Pinos Ortopédicos , Parafusos Ósseos , Biônica , Análise de Elementos Finitos , Fraturas do Colo Femoral/cirurgia , Fêmur/cirurgia , Fixação Interna de Fraturas/métodos , Fixação Intramedular de Fraturas/métodos
15.
Int J Nanomedicine ; 18: 7729-7744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115989

RESUMO

Aim: To produce pH-responsive bionic high photothermal conversion nanoparticles actively targeting tumors for sensitizing photothermal therapy (PTT). Materials and Methods: The bionic nanoparticles (ICG-PEI@HM NPs) were prepared by electrostatic adsorption of indocyanine green (ICG) coupled to polyethyleneimine (PEI) and modified with tumor cell membranes. In vitro and in vivo experiments were conducted to investigate the efficacy of ICG-PEI@HM-mediated PTT. Results: The intelligent responsiveness of ICG-PEI@HM to pH promoted the accumulation of ICG and enhanced the PTT performance of ICG-PEI@HM NPs. Compared with free ICG, NPs exhibited great photothermal stability, cellular uptake, and active tumor targeting for PTT. Conclusion: ICG-PEI@HM NPs can enhance the efficacy of PTT and can be used as a new strategy for the construction of photothermal agents.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Biônica , Neoplasias/patologia , Verde de Indocianina/farmacologia , Membrana Celular/patologia , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Fototerapia
16.
J Drug Target ; 31(10): 1065-1080, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962304

RESUMO

Nanoparticle-based drug delivery systems have found extensive use in delivering oncology therapeutics; however, some delivery vehicles still exhibit rapid immune clearance, lack of biocompatibility and insufficient targeting. In recent years, bionanoparticles constructed from tumour cell membranes have gained momentum as tumour-targeting therapeutic agents. Cancer cell membrane-coated nanoparticles (CCMCNPs) typically consist of a drug-loaded nanoparticle core coated with cancer cell membrane. CCMCNPs retain homologous tumour cell surface antigens, receptors and proteins, and it has been shown that the modified nanoparticles exhibit better homologous targeting, immune escape and biocompatibility. CCMCNPs are now widely used in a variety of cancer treatments, including photothermal, photodynamic and sonodynamic therapies, chemotherapy, immunotherapy, chemodynamical therapy or other combination therapies. This article presents different therapeutic approaches using multimodal antitumour therapy-combination of two or more therapies that treat tumours synergistically-based on tumour cell membrane systems. The advantages of CCMCNPs in different cancer treatments in recent years are summarised, thus, providing new strategies for cancer treatment research.


Assuntos
Nanopartículas , Neoplasias , Humanos , Biônica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Fototerapia
17.
Biomater Sci ; 12(1): 187-198, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981869

RESUMO

Macrophage-hitchhiked arsenic/AB bionic preparations were developed to improve the therapeutic effect on liver cancer by means of the tumor-targeting ability of macrophages in vivo. In vitro and in vivo cellular uptake assays demonstrated that arsenic/AB, with negatively charged particles of around 100-200 nm size, could hitchhike to macrophages. Dissolution experiments of arsenic/AB showed that arsenic/AB could delay the release of arsenic and ensure the safety of macrophages during its transport. Histological examination confirmed the safety of the preparations for major organs. In vivo distribution experiment showed that the arsenic/AB bionic preparations could rapidly accumulate in tumors, and in vivo treatment experiment showed a significant tumor inhibition of arsenic/AB. The therapeutic mechanism of liver cancer might be that the arsenic/AB bionic preparations could inhibit tumor growth by reducing inflammatory response and inhibiting CSF1 secretion to block CSF1R activation to induce more differentiation of tumor-associated macrophages (TAMs) towards the anti-tumor M1 phenotype. Therefore, we concluded that the arsenic/AB bionic preparations could improve the distribution of arsenic in vivo by hitchhiking on macrophages as well as make it have tumor targeting and deep penetration abilities, thus increasing the therapeutic effect of arsenic on liver cancer with reduced side effects.


Assuntos
Arsênio , Neoplasias Hepáticas , Humanos , Arsênio/farmacologia , Biônica , Neoplasias Hepáticas/tratamento farmacológico , Macrófagos , Fenótipo , Microambiente Tumoral
18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(10): 1198-1204, 2023 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-37848313

RESUMO

Objective: To evaluate effectiveness of proximal femur bionic nail (PFBN) in treatment of intertrochanteric fractures in the elderly compared to the proximal femoral nail antirotation (PFNA). Methods: A retrospective analysis was made on 48 geriatric patients with intertrochanteric fractures, who met the selection criteria and were admitted between January 2020 and December 2022. Among them, 24 cases were treated with PFBN fixation after fracture reduction (PFBN group), and 24 cases were treated with PFNA fixation (PFNA group). There was no significant difference in baseline data such as age, gender, cause of injury, side and type of fracture, time from injury to operation, and preoperative mobility score, American Society of Anesthesiologists (ASA) score, Alzheimer's disease degree scoring, self-care ability score, osteoporosis degree (T value), and combined medical diseases between the two groups ( P>0.05). The operation time, intraoperative blood loss, number of blood transfusions, transfusion volume, length of hospital stay, occurrence of complications, weight-bearing time after operation, and postoperative visual analogue scale (VAS) score, walking ability score, mobility score, self-care ability score were recorded and compared between the two groups. And the radiographic assessment of fracture reduction quality and postoperative stability, and fracture healing time were recorded. Results: The operations in both groups were successfully completed. All patients were followed up 6-15 months with an average time of 9.8 months in PFBN group and 9.6 months in PFNA group. The operation time was significantly longer in PFBN group than in PFNA group ( P<0.05), but there was no significant difference in intraoperative blood loss, number of blood transfusions, transfusion volume, length of hospital stay, change in activity ability score, and change in self-care ability score between the two groups ( P>0.05). The weight-bearing time after operation was significantly shorter in PFBN group than in PFNA group ( P<0.05), and the postoperative VAS score and walking ability score were significantly better in PFBN group than in PFNA group ( P<0.05). Radiographic assessment showed no significant difference in fracture reduction scores and postoperative stability scores between the two groups ( P>0.05). All fractures healed and there was no significant difference in fracture healing time between the two groups ( P>0.05). The incidence of complications was significantly lower in PFBN group (16.7%, 4/24) than in PFNA group (45.8%, 11/24) ( P<0.05). Conclusion: Compared with PFNA, PFBN in the treatment of elderly intertrochanteric fractures can effectively relieve postoperative pain, shorten bed time, reduce the risk of complications, and facilitate the recovery of patients' hip joint function and walking ability.


Assuntos
Fixação Intramedular de Fraturas , Fraturas do Quadril , Humanos , Idoso , Estudos Retrospectivos , Biônica , Perda Sanguínea Cirúrgica , Resultado do Tratamento , Pinos Ortopédicos , Fraturas do Quadril/cirurgia , Fêmur
19.
Sci Rep ; 13(1): 18387, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884628

RESUMO

In 2018, during our first clinical study on the kineticomyographic (KMG)-controlled bionic hand, we implanted three magnetic tags inside the musculotendinous junction of three paired extensor-flexor transferred tendons. However, the post-operative tissue adhesions affected the independent movements of the implanted tags and consequently the distinct patterns of the obtained signals. To overcome this issue, we modified our surgical procedure from a one-stage tendon transfer to a two-stage. During the first surgery, we created three tunnels using silicon rods for the smooth tendon gliding. In the second stage, we transferred the same three pairs of the forearm agonist-antagonist tendons through the tunnels and implanted the magnetic tags inside the musculotendinous junction. Compared to our prior clinical investigation, fluoroscopy and ultrasound evaluations revealed that the surgical modification in the current study yielded more pronounced independent movements in two specific magnetic tags associated with fingers (maximum 5.7 mm in the first trial vs. 28 mm in the recent trial with grasp and release) and thumb (maximum 3.2 mm in the first trial vs. 9 mm in the current trial with thumb flexion-extension). Furthermore, we observed that utilizing the flexor digitorum superficialis (FDS) tendons for the flexor component in finger and thumb tendon transfer resulted in more independent movements of the implanted tags, compared with the flexor digitorum profundus (FDP) in the prior research. This study can help us plan for our future five-channel bionic limb design by identifying the gestures with the most significant independent tag displacement.


Assuntos
Biônica , Tendões , Tendões/cirurgia , Dedos , Transferência Tendinosa/métodos , Músculo Esquelético
20.
ACS Nano ; 17(21): 21394-21410, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37870500

RESUMO

Immunotherapy is an effective adjunct to surgery for preventing tumor recurrence and metastasis in postoperative tumor patients. Although mimicking microbial invasion and immune activation pathways can effectively stimulate the immune system, the limited capacity of microbial components to bind antigens and adjuvants restricts the development of this system. Here, we construct bionic yeast carriers (BYCs) by in situ polymerization of mesoporous silica nanoparticles (MSNs) within the yeast capsules (YCs). BYCs can mimic the yeast infection pathway while utilizing the loading capacity of MSNs for multiple substances. Pore size and hydrophobicity-modified BYC can be loaded with both antigen and adjuvant R848. Oral or subcutaneous injection uptake of coloaded BYCs demonstrated positive therapeutic effects as a tumor therapeutic vaccine in both the transplantation tumor model and the metastasis tumor model. 57% of initial 400 mm3 tumor recurrence models are completely cured with coloaded BYCs via combination therapy with surgery, utilizing surgically resected tumors as antigens. The BYCs construction and coloading strategy will provide insights and optimistic approaches for the development of effective and controllable cancer vaccine carriers.


Assuntos
Vacinas Anticâncer , Nanopartículas , Humanos , Saccharomyces cerevisiae , Biônica , Recidiva Local de Neoplasia/prevenção & controle , Adjuvantes Imunológicos , Antígenos , Dióxido de Silício , Porosidade , Portadores de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA