Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.899
Filtrar
1.
J Phys Chem Lett ; 15(20): 5344-5349, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38738950

RESUMO

Hydrophobic mismatch between a lipid membrane and embedded transmembrane peptides or proteins plays a role in their lateral localization and function. Earlier studies have resolved numerous mechanisms through which the peptides and membrane proteins adapt to mismatch, yet the energetics of lateral sorting due to hydrophobic mismatch have remained elusive due to the lack of suitable computational or experimental protocols. Here, we pioneer a molecular dynamics simulation approach to study the sorting of peptides along a membrane thickness gradient. Peptides of different lengths tilt and diffuse along the membrane to eliminate mismatch with a rate directly proportional to the magnitude of mismatch. We extract the 2-dimensional free energy profiles as a function of local thickness and peptide orientation, revealing the relative contributions of sorting and tilting, and suggesting their thermally accessible regimes. Our approach can readily be applied to study other membrane systems of biological interest where hydrophobic mismatch, or membrane thickness in general, plays a role.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Peptídeos , Peptídeos/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Termodinâmica , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
2.
Protein Sci ; 33(6): e5016, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747381

RESUMO

RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.


Assuntos
Proteínas 14-3-3 , Nanoestruturas , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Humanos , Nanoestruturas/química , Multimerização Proteica , Ligação Proteica , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
3.
Curr Opin Struct Biol ; 86: 102813, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598982

RESUMO

Oxidative stress leads to the production of oxidized phospholipids (oxPLs) that modulate the biophysical properties of phospholipid monolayers and bilayers. As many immune cells are responsible for surveilling cells and tissues for the presence of oxPLs, oxPL-dependent mechanisms have been suggested as targets for treating chronic kidney disease, atherosclerosis, diabetes, and cancer metastasis. This review details recent experimental and computational studies that characterize oxPLs' behaviors in various monolayers and bilayers. These studies investigate how the tail length and polar functional groups of OxPLs impact membrane properties, how oxidized membranes can be stabilized, and how membrane integrity is generally affected by oxidized lipids. In addition, for oxPL-containing membrane modeling and simulation, CHARMM-GUI Membrane Builder has been extended to support a variety of oxPLs, accelerating the simulation system building process for these biologically relevant lipid bilayers.


Assuntos
Bicamadas Lipídicas , Oxirredução , Fosfolipídeos , Fosfolipídeos/metabolismo , Fosfolipídeos/química , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Simulação de Dinâmica Molecular , Modelos Moleculares
4.
J Chem Inf Model ; 64(8): 3430-3442, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38588472

RESUMO

Peptide dendrimers are a type of branched, symmetric, and topologically well-defined molecule that have already been used as delivery systems for nucleic acid transfection. Several of the most promising sequences showed high efficiency in many key steps of transfection, namely, binding siRNA, entering cells, and evading the endosome. However, small changes to the peptide dendrimers, such as in the hydrophobic core, the amino acid chirality, or the total available charges, led to significantly different experimental results with unclear mechanistic insights. In this work, we built a computational model of several of those peptide dendrimers (MH18, MH13, and MH47) and some of their variants to study the molecular details of the structure and function of these molecules. We performed CpHMD simulations in the aqueous phase and in interaction with a lipid bilayer to assess how conformation and protonation are affected by pH in different environments. We found that while the different peptide dendrimer sequences lead to no substantial structural differences in the aqueous phase, the total charge and, more importantly, the total charge density are key for the capacity of the dendrimer to interact and destabilize the membrane. These dendrimers become highly charged when the pH changes from 7.5 to 4.5, and the presence of a high charge density, which is decreased for MH47 that has four fewer titratable lysines, is essential to trigger membrane destabilization. These findings are in excellent agreement with the experimental data and help us to understand the high efficiency of some dendrimers and why the dendrimer MH47 is unable to complete the transfection process. This evidence provides further understanding of the mode of action of these peptide dendrimers and will be pivotal for the future design of new sequences with improved transfection capabilities.


Assuntos
Dendrímeros , Endossomos , Peptídeos , Dendrímeros/química , Endossomos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Concentração de Íons de Hidrogênio , Eletricidade Estática , Modelos Moleculares
5.
ACS Synth Biol ; 13(4): 1382-1392, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38598783

RESUMO

The functional analysis of protein nanopores is typically conducted in planar lipid bilayers or liposomes exploiting high-resolution but low-throughput electrical and optical read-outs. Yet, the reconstitution of protein nanopores in vitro still constitutes an empiric and low-throughput process. Addressing these limitations, nanopores can now be analyzed using the functional nanopore (FuN) screen exploiting genetically encoded fluorescent protein sensors that resolve distinct nanopore-dependent Ca2+ in- and efflux patterns across the inner membrane of Escherichia coli. With a primary proof-of-concept established for the S2168 holin, and thereof based recombinant nanopore assemblies, the question arises to what extent alternative nanopores can be analyzed with the FuN screen and to what extent alternative fluorescent protein sensors can be adapted. Focusing on self-assembling membrane peptides, three sets of 13 different nanopores are assessed for their capacity to form nanopores in the context of the FuN screen. Nanopores tested comprise both natural and computationally designed nanopores. Further, the FuN screen is extended to K+-specific fluorescent protein sensors and now provides a capacity to assess the specificity of a nanopore or ion channel. Finally, a comparison to high-resolution biophysical and electrophysiological studies in planar lipid bilayers provides an experimental benchmark for future studies.


Assuntos
Nanoporos , Bicamadas Lipídicas/metabolismo , Lipossomos , Peptídeos/metabolismo , Canais Iônicos
6.
J Phys Chem B ; 128(9): 2100-2113, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412510

RESUMO

The ability of antimicrobial peptides to efficiently kill their bacterial targets depends on the efficiency of their binding to the microbial membrane. In the case of enterocins, there is a three-part interaction: initial binding, unpacking of helices on the membrane surface, and permeation of the lipid bilayer. Helical unpacking is driven by disruption of the peptide hydrophobic core when in contact with membranes. Enterocin 7B is a leaderless enterocin antimicrobial peptide produced from Enterococcus faecalis that functions alone, or with its cognate partner enterocin 7A, to efficiently kill a wide variety of Gram-stain positive bacteria. To better characterize the role that tertiary structural plasticity plays in the ability of enterocin 7B to interact with the membranes, a series of arginine single-site mutants were constructed that destabilize the hydrophobic core to varying degrees. A series of experimental measures of structure, stability, and function, including CD spectra, far UV CD melting profiles, minimal inhibitory concentrations analysis, and release kinetics of calcein, show that decreased stabilization of the hydrophobic core is correlated with increased efficiency of a peptide to permeate membranes and in killing bacteria. Finally, using the computational technique of adaptive steered molecular dynamics, we found that the atomistic/energetic landscape of peptide mechanical unfolding leads to free energy differences between the wild type and its mutants, whose trends correlate well with our experiment.


Assuntos
Bacteriocinas , Bacteriocinas/farmacologia , Bacteriocinas/química , Bacteriocinas/metabolismo , Enterococcus faecalis , Peptídeos/metabolismo , Bactérias Gram-Positivas , Bicamadas Lipídicas/metabolismo , Hidrocarbonetos Aromáticos com Pontes
7.
Commun Biol ; 7(1): 242, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418613

RESUMO

The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through ß-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Lipídeos de Membrana/metabolismo , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Transdução de Sinais
8.
J Biol Chem ; 300(2): 105627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211817

RESUMO

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


Assuntos
Ácido Oleico , Peptídeos , Staphylococcus aureus , Microscopia Crioeletrônica , Ácidos Graxos Insaturados , Bicamadas Lipídicas/metabolismo , Fosfatos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
9.
Prog Biophys Mol Biol ; 187: 9-20, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211711

RESUMO

Amyloidosis is a condition involving a disparate group of pathologies characterized by the extracellular deposition of insoluble fibrils composed of broken-down proteins. These proteins can accumulate locally, causing peculiar symptoms, or in a widespread way, involving many organs and. causing severe systemic failure. The damage that is created is related not only to the accumulation of. amyloid fibrils but above all to the precursor oligomers of the fibrils that manage to enter the cell in a very particular way. This article analyzes the current state of research related to the entry of these oligomers into the cell membrane and the theories related to their toxicity. The paper proposed here not only aims to review the contents in the literature but also proposes a new vision of amyloid toxicity. that could occur in a multiphase process catalyzed by the cell membrane itself. In this process, the denaturation of the lipid bilayer is followed by the stabilization of a pore through energetically favorable self-assembly processes which are achieved through particular oligomeric structures.


Assuntos
Amiloide , Bicamadas Lipídicas , Amiloide/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo
10.
Mol Pharmacol ; 105(3): 155-165, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38164594

RESUMO

The three arms of the unfolded protein response (UPR) surveil the luminal environment of the endoplasmic reticulum (ER) and transmit information through the lipid bilayer to the cytoplasm to alert the cell of stress conditions within the ER lumen. That same lipid bilayer is the site of de novo synthesis of phospholipids and sphingolipids. Thus, it is no surprise that lipids are modulated by and are modulators of ER stress. Given that sphingolipids have both prosurvival and proapoptotic effects, they also exert opposing effects on life/death decisions in the face of prolonged ER stress detected by the UPR. In this review, we will focus on several recent studies that demonstrate how sphingolipids affect each arm of the UPR. We will also discuss the role of sphingolipids in the process of immunogenic cell death downstream of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiating factor 2α (eIF2α) arm of the UPR. Furthermore, we will discuss strategies to target the sphingolipid metabolic pathway that could potentially act synergistically with agents that induce ER stress as novel anticancer treatments. SIGNIFICANCE STATEMENT: This review provides the readers with a brief discussion of the sphingolipid metabolic pathway and the unfolded protein response. The primary focus of the review is the mechanism(s) by which sphingolipids modulate the endoplasmic reticulum (ER) stress response pathways and the critical role of sphingolipids in the process of immunogenic cell death associated with the ER stress response.


Assuntos
Morte Celular Imunogênica , Neoplasias , Humanos , Bicamadas Lipídicas/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo , Neoplasias/metabolismo , Esfingolipídeos/metabolismo
11.
Biophys J ; 122(23): 4503-4517, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37905401

RESUMO

Lipid oxidation is a universal degradative process of cell membrane lipids that is induced by oxidative stress and reactive oxygen and nitrogen species (RONS) in multiple pathophysiological situations. It has been shown that certain oxidized lipids alter membrane properties, leading to a loss of membrane function. Alteration of membrane properties is thought to depend on the initial membrane lipid composition, such as the number of acyl chain unsaturations. However, it is unclear how oxidative damage is related to biophysical properties of membranes. We therefore set out to quantify lipid oxidation through various analytical methods and determine key biophysical membrane parameters using model membranes containing lipids with different degrees of lipid unsaturation. As source for RONS, we used cold plasma, which is currently developed as treatment for infections and cancer. Our data revealed complex lipid oxidation that can lead to two main permeabilization mechanisms. The first one appears upon direct contact of membranes with RONS and depends on the formation of truncated oxidized phospholipids. These lipids seem to be partly released from the bilayer, implying that they are likely to interact with other membranes and potentially act as signaling molecules. This mechanism is independent of lipid unsaturation, does not rely on large variations in lipid packing, and is most probably mediated via short-living RONS. The second mechanism takes over after longer incubation periods and probably depends on the continued formation of lipid oxygen adducts such as lipid hydroperoxides or ketones. This mechanism depends on lipid unsaturation and involves large variations in lipid packing. This study indicates that polyunsaturated lipids, which are present in mammalian membranes rather than in bacteria, do not sensitize membranes to instant permeabilization by RONS but could promote long-term damage.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Animais , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio , Oxigênio , Mamíferos/metabolismo
12.
Biochem Soc Trans ; 51(5): 1857-1869, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37767549

RESUMO

Glycerophospholipids, sphingolipids and cholesterol assemble into lipid bilayers that form the scaffold of cellular membranes, in which proteins are embedded. Membrane composition and membrane protein profiles differ between plasma and intracellular membranes and between the two leaflets of a membrane. Lipid distributions between two leaflets are mediated by lipid translocases, including flippases and scramblases. Flippases use ATP to catalyze the inward movement of specific lipids between leaflets. In contrast, bidirectional flip-flop movements of lipids across the membrane are mediated by scramblases in an ATP-independent manner. Scramblases have been implicated in disrupting the lipid asymmetry of the plasma membrane, protein glycosylation, autophagosome biogenesis, lipoprotein secretion, lipid droplet formation and communications between organelles. Although scramblases in plasma membranes were identified over 10 years ago, most progress about scramblases localized in intracellular membranes has been made in the last few years. Herein, we review the role of scramblases in regulating lipid distributions in cellular membranes, focusing primarily on intracellular membrane-localized scramblases.


Assuntos
Membranas Intracelulares , Bicamadas Lipídicas , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
13.
Free Radic Biol Med ; 208: 372-383, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657762

RESUMO

Cold atmospheric pressure plasma (CAP)-assisted cancer therapy has become a popular topic in plasma biomedical research. Membrane lipid oxidation and local electric fields are two important factors in plasma-cell interactions, and the study of their synergistic effect is highly significant for optimizing the regulatory mechanism of the plasma-induced apoptosis of cancer cells. In this paper, a model of oxidized phospholipids was established, and the transmembrane process of reactive species was simulated by the classical molecular dynamics (MD) method under the conditions of oxidation and an electric field. The results showed that hydrophilic reactive oxygen species could not penetrate the membrane lipids through oxidation. The formation of electroporation provided a new channel for reactive species to penetrate the membrane, and the oxidation effect reduced the electric field threshold of membrane electroporation. Our simulation could provide theoretical support for the plasma-induced apoptosis of cancer cells at the microscopic level, provide mechanistic guidance for the practical application of plasma-induced cancer therapy, and promote the development of CAP in the field of cancer therapy.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Transporte Biológico , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo
14.
STAR Protoc ; 4(3): 102454, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37515758

RESUMO

In membrane proteins, a transmembrane region and a juxtamembrane region play important roles in its function. Here, we present a protocol for characterizing membrane protein dynamics between the juxtamembrane region of the single transmembrane protein and acidic membrane. We describe steps for solid-phase peptide synthesis, peptide purification, and labeling. We then detail reconstitution of the transmembrane peptide into lipid bilayers and its evaluation and structural analysis. For complete details on the use and execution of this protocol, please refer to Prasada Rao et al.1.


Assuntos
Proteínas de Membrana , Peptídeos , Membrana Celular/metabolismo , Peptídeos/química , Proteínas de Membrana/metabolismo , Bicamadas Lipídicas/metabolismo , Membranas/metabolismo
15.
STAR Protoc ; 4(3): 102460, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516969

RESUMO

Chemokine receptors, a subfamily of G-protein-coupled receptors (GPCRs), are responsible for cell migration during physiological processes as well as in diseases like inflammation and cancers. Here, we present a protocol for solubilizing, purifying, and reconstituting complexes of chemokine receptors with their ligands in "nanodiscs," soluble lipid bilayers that mimic the native environment of membrane receptors. The protocol yields chemokine receptor complexes with sufficient purity and yield for structural and biophysical studies and should be applicable to other GPCRs.


Assuntos
Receptores de Quimiocinas , Receptores Acoplados a Proteínas G , Humanos , Receptores de Quimiocinas/genética , Receptores Acoplados a Proteínas G/metabolismo , Bicamadas Lipídicas/metabolismo
16.
Sci Rep ; 13(1): 11471, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454209

RESUMO

Transient receptor potential melastatin 2 (TRPM2) cation channel activity is required for insulin secretion, immune cell activation and body heat control. Channel activation upon oxidative stress is involved in the pathology of stroke and neurodegenerative disorders. Cytosolic Ca2+, ADP-ribose (ADPR) and phosphatidylinositol-4,5-bisphosphate (PIP2) are the obligate activators of the channel. Several TRPM2 cryo-EM structures have been resolved to date, yet functionality of the purified protein has not been tested. Here we reconstituted overexpressed and purified TRPM2 from Nematostella vectensis (nvTRPM2) into lipid bilayers and found that the protein is fully functional. Consistent with the observations in native membranes, nvTRPM2 in lipid bilayers is co-activated by cytosolic Ca2+ and either ADPR or ADPR-2'-phosphate (ADPRP). The physiological metabolite ADPRP has a higher apparent affinity than ADPR. In lipid bilayers nvTRPM2 displays a large linear unitary conductance, its open probability (Po) shows little voltage dependence and is stable over several minutes. Po is high without addition of exogenous PIP2, but is largely blunted by treatment with poly-L-Lysine, a polycation that masks PIP2 headgroups. These results indicate that PIP2 or some other activating phosphoinositol lipid co-purifies with nvTRPM2, suggesting a high PIP2 binding affinity of nvTRPM2 under physiological conditions.


Assuntos
Anêmonas-do-Mar , Canais de Cátion TRPM , Animais , Bicamadas Lipídicas/metabolismo , Canais de Cátion TRPM/metabolismo , Adenosina Difosfato Ribose/metabolismo , Cátions/metabolismo , Anêmonas-do-Mar/metabolismo , Cálcio/metabolismo
17.
J Med Chem ; 66(10): 7054-7062, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37186548

RESUMO

The development of cyclic peptides that exhibit pH-sensitive membrane permeation is a promising strategy for tissue-selective drug delivery. We investigated the pH-dependent interactions of designed cyclic peptides bearing noncanonical amino acids of long acidic side chains with lipid membranes, including surface binding, insertion, and translocation across the membrane. As the length of the side chain of acidic amino acid increased, the binding affinity of the peptides to phosphatidylcholine bilayer surfaces decreased, while the pH for the 50% insertion of the peptides into the bilayers increased. The pH for membrane permeation of the peptides increased with the side chain length, resulting in specific membrane permeation at pH ∼6.5. The longer side chain of acidic amino acids improved the maximum rate of membrane permeation at low pH, where both entropic and enthalpic contributions affected the permeation. Our peptide also showed intracellular delivery of cargo molecules into living cells in a pH-dependent manner.


Assuntos
Bicamadas Lipídicas , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Bicamadas Lipídicas/metabolismo , Aminoácidos , Peptídeos/química , Concentração de Íons de Hidrogênio
18.
ACS Appl Mater Interfaces ; 15(10): 12766-12776, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866935

RESUMO

As the threat of antibiotic resistance increases, there is a particular focus on developing antimicrobials against pathogenic bacteria whose multidrug resistance is especially entrenched and concerning. One such target for novel antimicrobials is the ATP-binding cassette (ABC) transporter MsbA that is present in the plasma membrane of Gram-negative pathogenic bacteria where it is fundamental to the survival of these bacteria. Supported lipid bilayers (SLBs) are useful in monitoring membrane protein structure and function since they can be integrated with a variety of optical, biochemical, and electrochemical techniques. Here, we form SLBs containing Escherichia coli MsbA and use atomic force microscopy (AFM) and structured illumination microscopy (SIM) as high-resolution microscopy techniques to study the integrity of the SLBs and incorporated MsbA proteins. We then integrate these SLBs on microelectrode arrays (MEA) based on the conducting polymer poly(3,4-ethylenedioxy-thiophene) poly(styrene sulfonate) (PEDOT:PSS) using electrochemical impedance spectroscopy (EIS) to monitor ion flow through MsbA proteins in response to ATP hydrolysis. These EIS measurements can be correlated with the biochemical detection of MsbA-ATPase activity. To show the potential of this SLB approach, we observe not only the activity of wild-type MsbA but also the activity of two previously characterized mutants along with quinoline-based MsbA inhibitor G907 to show that EIS systems can detect changes in ABC transporter activity. Our work combines a multitude of techniques to thoroughly investigate MsbA in lipid bilayers as well as the effects of potential inhibitors of this protein. We envisage that this platform will facilitate the development of next-generation antimicrobials that inhibit MsbA or other essential membrane transporters in microorganisms.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Técnicas Biossensoriais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo
19.
Toxins (Basel) ; 15(2)2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36828480

RESUMO

Cyt proteins are insecticidal proteins originally from Bacillus thuringiensis. The lipid binding of the Cyt2Aa2 protein depends on the phase of the lipid bilayer. In this work, the importance of the conserved T144 residue in the αD-ß4 loop for lipid binding on fluid lipid membranes was investigated via atomic force microscopy (AFM). Lipid membrane fluidity could be monitored for the following lipid mixture systems: POPC/DPPC, POPC/SM, and DOPC/SM. AFM results revealed that the T144A mutant was unable to bind to pure POPC bilayers. Similar topography between the wildtype and T144A mutant was seen for the POPC/Chol system. Small aggregates of T144A mutant were observed in the POPC and DOPC domains of the lipid mixture systems. In addition, the T144A mutant had no cytotoxic effect against human colon cancer cells. These results suggest that alanine replacement into threonine 144 hinders the binding of Cyt2Aa2 on liquid lipid membranes. These observations provide a possibility to modify the Cyt2Aa2 protein to specific cells via lipid phase selection.


Assuntos
Proteínas de Bactérias , Treonina , Humanos , Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/metabolismo , Fluidez de Membrana , Mutação , Fosfatidilcolinas
20.
Biochim Biophys Acta Biomembr ; 1865(3): 184118, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621762

RESUMO

Numerous pathophysiological conditions are associated with the misfolding and aggregation of proteins into insoluble amyloid fibrils. The mechanisms by which this process leads to cellular dysfunction remain elusive, though several hypotheses point toward the perturbation of the cell plasma membrane by pre-fibrillar intermediates and/or amyloid growth. However, current models to study membrane perturbations are largely limited to synthetic lipid vesicles and most of experimental approaches cannot be transposed to complex cell-derived plasma membrane systems. Herein, vesicles originating from the plasma membrane of erythrocytes and ß-pancreatic cells were used to study the perturbations induced by an amyloidogenic peptide, the islet amyloid polypeptide (IAPP). These biologically relevant lipid vesicles displayed a characteristic clustering in the presence of the amyloidogenic peptide, which was able to rupture membranes. By exploiting Förster resonance energy transfer (FRET), a rapid, simple, and potentially high-throughput assay to detect membrane perturbations of intact mammalian cell plasma membrane vesicles was implemented. The FRET kinetics of membrane perturbations closely correlated with the kinetics of thioflavin-T fluorescence associated with amyloid formation. This novel kinetics assay expands the toolbox available to study amyloid-associated membrane damage, bridging the gap between synthetic lipid vesicles and living cells.


Assuntos
Células Secretoras de Insulina , Bicamadas Lipídicas , Animais , Bicamadas Lipídicas/metabolismo , Fluorescência , Membrana Celular/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Amiloide , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA