Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 792
Filtrar
1.
J Environ Manage ; 359: 121077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718604

RESUMO

Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.


Assuntos
Microplásticos , Bifenil Polibromatos , Esgotos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Microplásticos/toxicidade , Anaerobiose , Espécies Reativas de Oxigênio/metabolismo
2.
Chem Biol Interact ; 397: 111075, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815667

RESUMO

Polybrominated biphenyls (PBBs) are associated with an increased risk of thyroid cancer; however, relevant mechanistic studies are lacking. In this study, we investigated the mechanisms underlying PBB-induced human thyroid cancer. Molecular docking and molecular dynamics methods were employed to investigate the metabolism of PBBs by the cytochrome P450 enzyme under aryl hydrocarbon receptor mediation into mono- and di-hydroxylated metabolites. This was taken as the molecular initiation event. Subsequently, considering the interactions of PBBs and their metabolites with the thyroxine-binding globulin protein as key events, an adverse outcome pathway for thyroid cancer caused by PBBs exposure was constructed. Based on 2D quantitative structure activity relationship (2D-QSAR) models, the contribution of amino acid residues and binding energy were analyzed to understand the mechanism underlying human carcinogenicity (adverse effect) of PBBs. Hydrogen bond and van der Waals interactions were identified as key factors influencing the carcinogenic adverse outcome pathway of PBBs. Analysis of non-bonding forces revealed that PBBs and their hydroxylation products were predominantly bound to the thyroxine-binding globulin protein through hydrophobic and hydrogen bond interactions. The key amino acids involved in hydrophobic interactions were alanine 330, arginine 381 and lysine 270, and the key amino acids involved in hydrogen bond interactions were arginine 381 and lysine 270. This study provides valuable insights into the mechanisms underlying human health risk associated with PBBs exposure.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Bifenil Polibromatos , Relação Quantitativa Estrutura-Atividade , Humanos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/química , Bifenil Polibromatos/metabolismo , Ligação de Hidrogênio , Neoplasias da Glândula Tireoide/induzido quimicamente , Neoplasias da Glândula Tireoide/metabolismo , Globulina de Ligação a Tiroxina/metabolismo , Globulina de Ligação a Tiroxina/química , Ligação Proteica , Sítios de Ligação , Carcinógenos/toxicidade , Carcinógenos/química , Interações Hidrofóbicas e Hidrofílicas , Simulação por Computador , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/química
3.
Toxicology ; 505: 153837, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763426

RESUMO

Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.


Assuntos
Disruptores Endócrinos , Estresse Oxidativo , Bifenil Polibromatos , Progesterona , Testículo , Testosterona , Animais , Masculino , Bifenil Polibromatos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Ratos , Disruptores Endócrinos/toxicidade , Testosterona/sangue , Progesterona/sangue , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Epididimo/efeitos dos fármacos , Epididimo/patologia , Epididimo/metabolismo , Ratos Sprague-Dawley , Tamanho do Órgão/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga
4.
Environ Sci Pollut Res Int ; 31(23): 33547-33560, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683431

RESUMO

The widespread occurrence of emerging brominated flame retardant tetrabromobisphenol S (TBBPS) has become a major environmental concern. In this study, a nanoscale zero-valent iron (nZVI) impregnated organic montmorillonite composite (nZVI-OMT) was successfully prepared and utilized to degrade TBBPS in aqueous solution. The results show that the nZVI-OMT composite was very stable and reusable as the nZVI was well dispersed on the organic montmorillonite. Organic montmorillonite clay layers provide a strong support, facilitate well dispersion of the nZVI chains, and accelerate the overall TBBPS transformation with a degradation rate constant 5.5 times higher than that of the original nZVI. Four major intermediates, including tribromobisphenol S (tri-BBPS), dibromobisphenol S (di-BBPS), bromobisphenol S (BBPS), and bisphenol S (BPS), were detected by high-resolution mass spectrometry (HRMS), indicating sequential reductive debromination of TBBPS mediated by nZVI-OMT. The effective elimination of acute ecotoxicity predicted by toxicity analysis also suggests that the debromination process is a safe and viable option for the treatment of TBBPS. Our results have shown for the first time that TBBPS can be rapidly degraded by an nZVI-OMT composite, expanding the potential use of clay-supported nZVI composites as an environmentally friendly material for wastewater treatment and groundwater remediation.


Assuntos
Bentonita , Retardadores de Chama , Ferro , Bentonita/química , Ferro/química , Bifenil Polibromatos/química
5.
Chemosphere ; 353: 141378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442777

RESUMO

Tetrabromobisphenol A bis (2- hydroxyethyl) ether (TBBPA-DHEE), as one of the main derivatives of Tetrabromobisphenol A, been attracted attention for its health risks. In this study, the neurotoxicity, mechanism, and susceptivity of TBBPA-DHEE exposure to sexually developing male rats were systematically studied. Neurobehavioral research showed that TBBPA-DHEE exposure could significantly affect the behavior, learning,and memory abilities of male-developing rats, and aggravate their depression. TBBPA-DHEE exposure could inhibit the secretion of neurotransmitters. Transcriptomics studies show that TBBPA-DHEE can significantly affect gene expression, and a total of 334 differentially expressed genes are enriched. GO function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of genes related to synapses and cell components. KEGG function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of signal pathways related to nerves, nerve development, and signal transduction. Susceptibility analysis showed that female rats were more susceptible to TBBPA-DHEE exposure than male rats. Therefore, TBBPA-DHEE exposure has neurodevelopmental toxicity to male developmental rats, and female developmental rats are more susceptible than male developmental rats. Its possible molecular mechanism is that TBBPA-DHEE may inhibit the secretion of neurotransmitters and affect signal pathways related to neurodevelopment and signal transduction.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Feminino , Masculino , Ratos , Animais , Éter , Ratos Sprague-Dawley , Éteres , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Etil-Éteres , Neurotransmissores , Retardadores de Chama/toxicidade , Retardadores de Chama/análise
6.
Food Funct ; 15(7): 3411-3419, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470815

RESUMO

Tetrabromobisphenol A (TBBPA) is a global pollutant. When TBBPA is absorbed by the body through various routes, it can have a wide range of harmful effects on the body. Green tea polyphenols (GTPs) can act as antioxidants, resisting the toxic effects of TBBPA on animals. The effects and mechanisms of GTP and TBBPA on oxidative stress, inflammation and apoptosis in the mouse lung are unknown. Therefore, we established in vivo and in vitro models of TBBPA exposure and GTP antagonism using C57 mice and A549 cells and examined the expression of factors related to oxidative stress, autophagy, inflammation and apoptosis. The results of the study showed that the increase in reactive oxygen species (ROS) levels after TBBPA exposure decreased the expression of autophagy-related factors Beclin1, LC3-II, ATG3, ATG5, ATG7 and ATG12 and increased the expression of p62; oxidative stress inhibits autophagy levels. The increased expression of the pro-inflammatory factors IL-1ß, IL-6 and TNF-α decreased the expression of the anti-inflammatory factor IL-10 and activation of the NF-κB p65/TNF-α pathway. The increased expression of Bax, caspase-3, caspase-7 and caspase-9 and the decreased expression of Bcl-2 activate apoptosis-related pathways. The addition of GTP attenuated oxidative stress levels, restored autophagy inhibition and reduced the inflammation and apoptosis levels. Our results suggest that GTP can attenuate the toxic effects of TBBPA by modulating ROS, reducing oxidative stress levels, increasing autophagy and attenuating inflammation and apoptosis in mouse lung and A549 cells. These results provide fundamental information for exploring the antioxidant mechanism of GTP and further for studying the toxic effects of TBBPA.


Assuntos
Lesão Pulmonar , NF-kappa B , Bifenil Polibromatos , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Estresse Oxidativo , Apoptose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Polifenóis/farmacologia , Chá , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia
7.
Toxicol Lett ; 394: 11-22, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387762

RESUMO

BACKGROUND: The incidence of endocrine-related cancer, which includes tumors in major endocrine glands such as the breast, thyroid, pituitary, and prostate, has been increasing year by year. Various studies have indicated that brominated flame retardants (BFRs) are neurotoxic, endocrine-toxic, reproductive-toxic, and even carcinogenic. However, the epidemiological relationship between BFR exposure and endocrine-related cancer risk remains unclear. METHODS: We searched the PubMed, Google Scholar, and Web of Science databases for articles evaluating the association between BFR exposure and endocrine-related cancer risk. The odds ratio (OR) and its corresponding 95% confidence interval (95% CI) were used to assess the association. Statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. Begg's test was performed to evaluate the publication bias. RESULTS: We collected 15 studies, including 6 nested case-control and 9 case-control studies, with 3468 cases and 4187 controls. These studies assessed the risk of breast cancer, thyroid cancer, and endocrine-related cancers in relation to BFR levels. Our findings indicate a significant association between BFR exposure in adipose tissue and an increased risk of breast cancer. However, this association was not observed for thyroid cancer. Generally, BFR exposure appears to elevate the risk of endocrine-related cancers, with a notable increase in risk linked to higher levels of BDE-28, a specific polybrominated diphenyl ether congener. CONCLUSIONS: In conclusion, although this meta-analysis has several limitations, our results suggest that BFR exposure is a significant risk factor for breast cancer, and low-brominated BDE-28 exposure could significantly increase the risk of endocrine-related cancers. Further research is essential to clarify the potential causal relationships between BFRs and endocrine-related cancers, and their carcinogenic mechanisms.


Assuntos
Neoplasias da Mama , Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Humanos , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Fatores de Risco , Hidrocarbonetos Bromados/toxicidade
8.
J Environ Manage ; 354: 120302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401492

RESUMO

Tetrabromobisphenol A (TBBPA) that widely exists in soil and poses a potential threat to ecological environment urgently needs economically efficient remediation techniques. This study utilized both homogeneous Fe2⁺ solution and heterogeneous iron-based nanomaterials (chemically synthesized nano zero-valence iron (nZVI) and green-synthesized iron nanoparticles (G-Fe NPs)) to activate persulfate (PS) and assess their efficacy in degrading TBBPA in soil. The results demonstrate the superior performance of heterogeneous catalytic systems (WG-Fe NPs/PS (82.07%) and WnZVI/PS (78.32%)) over homogeneous catalytic system (WFe2+/PS (71.69%)), In addition, G-Fe NPs and nZVI effectively controlled the slow release of Fe2+. The optimization analysis using response surface methodology (RSM) reveal the remarkable significance of the experimental model based on the box-behnken design. RSM show that G-Fe NPs/PS exhibited optimal process parameters and predicted the maximum soil TBBPA degradation efficiency reaching 98.77%. The results of density functional theory calculations suggest that C-Br are the primary targets for electrophilic substitution reactions. Based on the f0 value and △G, the degradation pathway of TBBPA is inferred to involve a sequential debromination process, followed by the cleavage of intermediate carbon-carbon bonds and subsequent oxidation reactions. Hence, G-Fe NPs/PS not only facilitate waste resource utilization but also hold significant application potential.


Assuntos
Ferro , Bifenil Polibromatos , Poluentes Químicos da Água , Ferro/química , Solo , Oxirredução , Carbono , Poluentes Químicos da Água/química
9.
Environ Sci Technol ; 58(9): 4127-4136, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382014

RESUMO

Tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) has come into use as an alternative to hexabromocyclododecane (HBCD), but it is unclear whether TBBPA-DBMPE has less hazard than HBCD. Here, we compared the bioaccumulation and male reproductive toxicity between TBBPA-DBMPE and HBCD in mice following long-term oral exposure after birth. We found that the concentrations of TBBPA-DBMPE in livers significantly increased with time, exhibiting a bioaccumulation potency not substantially different from HBCD. Lactational exposure to 1000 µg/kg/d TBBPA-DBMPE as well as 50 µg/kg/d HBCD inhibited testis development in suckling pups, and extended exposure up to adulthood resulted in significant molecular and cellular alterations in testes, with slighter effects of 50 µg/kg/d TBBPA-DBMPE. When exposure was extended to 8 month age, severe reproductive impairments including reduced sperm count, increased abnormal sperm, and subfertility occurred in all treated animals, although 50 µg/kg/d TBBPA-DBMPE exerted lower effects than 50 µg/kg/d HBCD. Altogether, all data led us to conclude that TBBPA-DBMPE exerted weaker male reproductive toxicity than HBCD at the same doses but exhibited bioaccumulation potential roughly equivalent to HBCD. Our study fills the data gap regarding the bioaccumulation and toxicity of TBBPA-DBMPE and raises concerns about its use as an alternative to HBCD.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Animais , Camundongos , Retardadores de Chama/toxicidade , Éter , Bioacumulação , Sêmen , Hidrocarbonetos Bromados/toxicidade , Bifenil Polibromatos/toxicidade , Éteres , Etil-Éteres
10.
J Hazard Mater ; 465: 133390, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38163409

RESUMO

Tetrabromobisphenol A (TBBPA) analogues have been investigated for their prevalent occurrence in environments and potential hazardous effects to humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. Using a developed toxicokinetic model framework, we quantified the bioaccumulation, biotransformation and trophic transfer of tetrabromobisphenol S (TBBPS) and tetrabromobisphenol A di(allyl ether) (TBBPA-DAE) during trophic transfer from brine shrimp (Artemia salina) to zebrafish (Danio rerio). The results showed that the two TBBPA analogues could be readily accumulated by brine shrimp, and the estimated bioconcentration factor (BCF) value of TBBPS (5.68 L kg-1 ww) was higher than that of TBBPA-DAE (1.04 L kg-1 ww). The assimilation efficiency (AE) of TBBPA-DAE in zebrafish fed brine shrimp was calculated to be 16.3%, resulting in a low whole-body biomagnification factor (BMF) in fish (0.684 g g-1 ww). Based on the transformation products screened using ultra-high-performance liquid chromatograph-high resolution mass spectrometry (UPLC-HRMS), oxidative debromination and hydrolysis were identified as the major transformation pathways of TBBPS, while the biotransformation of TBBPA-DAE mainly took place through ether bond breaking and phase-II metabolism. Lower accumulation of TBBPA as a metabolite than its parent chemical was observed in both brine shrimp and zebrafish, with metabolite parent concentration factors (MPCFs) < 1. The investigated BCFs for shrimp of the two TBBPA analogues were only 3.77 × 10-10 - 5.59 × 10-3 times of the theoretical Kshrimp-water based on the polyparameter linear free energy relationships (pp-LFERs) model, and the BMF of TBBPA-DAE for fish was 0.299 times of the predicted Kshrimp-fish. Overall, these results indicated the potential of the trophic transfer in bioaccumulation of specific TBBPA analogues in higher trophic-level aquatic organisms and pointed out biotransformation as an important mechanism in regulating their bioaccumulation processes. ENVIRONMENTAL IMPLICATION: The internal concentration of a pollutant in the body determines its toxicity to organisms, while bioaccumulation and trophic transfer play important roles in elucidating its risks to ecosystems. Tetrabromobisphenol A (TBBPA) analogues have been extensively investigated for their adverse effects on humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. This study investigated the bioaccumulation, biotransformation and trophic transfer of TBBPS and TBBPA-DAE in a simulated di-trophic food chain. This state-of-art study will provide a reference for further research on this kind of emerging pollutant in aquatic environments.


Assuntos
Poluentes Ambientais , Perciformes , Bifenil Polibromatos , Poluentes Químicos da Água , Animais , Humanos , Cadeia Alimentar , Bioacumulação , Ecossistema , Peixe-Zebra/metabolismo , Biotransformação , Perciformes/metabolismo , Poluentes Ambientais/análise , Éteres , Poluentes Químicos da Água/análise
11.
Fish Shellfish Immunol ; 146: 109382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242263

RESUMO

The extensive application of Tetrabromobisphenol A (TBBPA) leads to the pollution of part of the water environment and brings great safety risks to aquatic animals. As a natural extract, tea polyphenols (TPs) have antioxidant and anti-inflammatory effects. Gills are one of the immune organs of fish and constitute the first line of defense of the immune system. However, it was unclear whether TPs could mitigate TBBPA-induced gills injury. Therefore, an animal model was established to investigate the effect of TPs on TBBPA-induced gills. The results indicated that TBBPA changed the coefficient and tissue morphology of carp gills. In addition, TBBPA induced oxidative stress and inflammation, leading to ferroptosis and apoptosis in carp gills. Dietary addition of TPs significantly improved the antioxidant capacity of carp, effectively inhibited the overexpression of TLR4/NF-κB and its mediated inflammatory response. Moreover, TPs restored iron metabolism, reduced the expression of pro-apoptotic factors thereby alleviating ferroptosis and apoptosis in carp gills. This study enriched the protective effect of TPs and provided a new way to improve the innate immunity of carp.


Assuntos
Carpas , Ferroptose , Bifenil Polibromatos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Antioxidantes/metabolismo , Receptor 4 Toll-Like/genética , Carpas/metabolismo , Brânquias , Polifenóis/farmacologia , Polifenóis/metabolismo , Transdução de Sinais , Proteínas de Peixes , Inflamação/induzido quimicamente , Inflamação/veterinária , Inflamação/metabolismo , Apoptose , Chá/metabolismo
12.
J Hazard Mater ; 465: 133469, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219585

RESUMO

The bulky phenolic compound tetrabromobisphenol A (TBBPA) is a brominated flame retardant used in a wide range of products; however, it diffuses into the environment, and has been reported to have toxic effects. Although it is well-known that white-rot fungi degrade TBBPA through ligninolytic enzymes, no other metabolic enzymes have yet been identified, and the toxicity of the reaction products and their risks have not yet been examined. We found that the white-rot fungus Phanerochaete sordida YK-624 converted TBBPA to TBBPA-O-ß-D-glucopyranoside when grown under non-ligninolytic-enzyme-producing conditions. The metabolite showed less cytotoxicity and mitochondrial toxicity than TBBPA in neuroblastoma cells. From molecular biological and genetic engineering experiments, two P. sordida glycosyltransferases (PsGT1c and PsGT1e) that catalyze the glycosylation of TBBPA were newly identified; these enzymes showed dramatically different glycosylation activities for TBBPA and bisphenol A. The results of computational analyses indicated that the difference in substrate specificity is likely due to differences in the structure of the substrate-binding pocket. It appears that P. sordida YK-624 takes up TBBPA, and reduces its cytotoxicity via these glycosyltransferases.


Assuntos
Phanerochaete , Bifenil Polibromatos , Biotransformação , Phanerochaete/metabolismo , Bifenil Polibromatos/metabolismo , Glicosiltransferases/metabolismo
13.
Environ Pollut ; 341: 122895, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949162

RESUMO

The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) is a recommended substitute for hexabromocyclododecane (HBCD), a banned persistent organic pollutant, yet its potential toxicities remains largely unexplored. Here, we investigated the effects of a long-term exposure to TBBPA-DBMPE at nominal doses of 50 and 1000 µg/kg/d on lipid homeostasis in CD-1 mice, in comparison with 50 µg/kg/d HBCD as a positive control. Male pups received chemical treatments through maternal administration via drinking water from postnatal day 0-21, followed by direct administration through drinking water after weaning. On the 23rd week after treatment, the oral lipid tolerance test revealed that low-dose TBBPA-DBMPE as well as HBCD affected lipid tolerance, although the fasting serum triglyceride (TG) levels were not altered. When chemical treatment was extended to the 32nd week, TBBPA-DBMPE-treated animals displayed adipocyte hypertrophy in both white adipose tissue (eWAT) and brown adipose tissue (BAT) and hepatic steatosis, which was largely consistent with the effects of HBCD. These findings indicate that like HBCD, TBBPA-DBMPE led to increased lipid load in mice. Interestingly, we also observed intestinal histological changes, coupled with increased expression of lipid absorption-related genes in both HBCD and TBBPA-DBMPE treatments, suggesting increased lipid absorption. This was supported by in vitro findings that both HBCD and TBBPA-DBMPE promoted lipid accumulation in IEC-6 cells under the stress of oleic acid for 6 h, implying that altered lipid absorption by the intestine may partly contributed to increased lipid load in mice. Overall, the effects of 50 µg/kg/d TBBPA-DBMPE in terms of some parameters were comparable with 50 µg/kg/d HBCD, suggesting that TBBPA-DBMPE may not be an ideal substitute of HBCD.


Assuntos
Água Potável , Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Camundongos , Animais , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Éter , Hidrocarbonetos Bromados/toxicidade , Hidrocarbonetos Bromados/análise , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Éteres , Etil-Éteres , Lipídeos
14.
Environ Sci Technol ; 58(2): 1299-1311, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38113523

RESUMO

Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in electronics manufacturing, has caused global contamination due to improper e-waste disposal. Its persistence, bioaccumulation, and potential carcinogenicity drive studies of its transformation and underlying (a)biotic interactions. This study achieved an anaerobic enrichment culture capable of reductively dehalogenating TBBPA to the more bioavailable bisphenol A. 16S rRNA gene amplicon sequencing and quantitative PCR confirmed that successive dehalogenation of four bromide ions from TBBPA was coupled with the growth of both Dehalobacter sp. and Dehalococcoides sp. with growth yields of 5.0 ± 0.4 × 108 and 8.6 ± 4.6 × 108 cells per µmol Br- released (N = 3), respectively. TBBPA dehalogenation was facilitated by solid humin and reduced humin, which possessed the highest organic radical signal intensity and reducing groups -NH2, and maintained the highest dehalogenation rate and dehalogenator copies. Genome-centric metatranscriptomic analyses revealed upregulated putative TBBPA-dehalogenating rdhA (reductive dehalogenase) genes with humin amendment, cprA-like Dhb_rdhA1 gene in Dehalobacter species, and Dhc_rdhA1/Dhc_rdhA2 genes in Dehalococcoides species. The upregulated genes of lactate fermentation, de novo corrinoid biosynthesis, and extracellular electron transport in the humin amended treatment also stimulated TBBPA dehalogenation. This study provided a comprehensive understanding of humin-facilitated organohalide respiration.


Assuntos
Substâncias Húmicas , Bifenil Polibromatos , Anaerobiose , RNA Ribossômico 16S/genética , Biodegradação Ambiental
15.
Environ Sci Pollut Res Int ; 30(58): 121465-121474, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37950125

RESUMO

Tetrabromobisphenol A bis (allyl ether) (TBBPA-BAE) is an extensively used brominated flame retardant, which has raised considerable concern because of its neurotoxic and endocrine disruption effects on aquatic organisms. However, previous studies mainly focused on the parent compound before modification, tetrabromobisphenol A (TBBPA), and little information is available about the bioconcentration and biotransformation of TBBPA derivatives in fish. In this study, we investigated the tissue-specific uptake, elimination kinetic, and biotransformation of TBBPA-BAE in common carp (Cyprinus carpio). The fish were exposed to TBBPA-BAE at environmentally relevant concentrations (20 µg·L-1) for 28 days, followed by 14 days of depuration. The results showed TBBPA-BAE could rapidly accumulate in common carp. Among the seven tissues studied, the highest concentrations of TBBPA-BAE were observed in the liver (6.00 µg·g-1 wet weight [ww]) on day 24, while the longest residence time was observed in the kidney (t1/2 values of 18.7 days). Biotransformation of TBBPA-BAE was documented in the in vivo experiments, and 14 different phase I and phase II metabolites were identified in the liver. These findings suggest the biotransformation products of TBBPA-BAE should be considered for a comprehensive risk evaluation.


Assuntos
Carpas , Retardadores de Chama , Bifenil Polibromatos , Animais , Carpas/metabolismo , Bioacumulação , Éter , Biotransformação , Éteres , Bifenil Polibromatos/metabolismo , Etil-Éteres , Retardadores de Chama/metabolismo
16.
Environ Res ; 239(Pt 1): 117312, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806482

RESUMO

BACKGROUND: Polybrominated biphenyls (PBBs), a class of endocrine disrupting chemicals, were the main chemicals present in one of the largest industrial accidents in the United States. We investigated the association between serum PBB-153 levels and autoimmune disorders among members of the Michigan PBB Registry. METHODS: Eight hundred and ninety-five members of the registry had both a serum PBB-153 measurement and had completed one or more questionnaires about autoimmune disorders. Autoimmune disorders were examined collectively and within specific organ systems. Sex-stratified unadjusted and adjusted log-binomial models were used to examine the association between tertiles of serum PBB-153 levels and autoimmune disorders. Models were adjusted by lifestage at exposure (in utero, childhood, adulthood), smoking history (never, past, current), and total serum lipid levels (continuous). We utilized cubic spline models to investigate non-linearity between serum PBB-153 levels and the prevalence of autoimmune disorders. RESULTS: Approximately 12.9% and 20.7% of male and female participants reported having one or more autoimmune disorders, respectively. After adjustment for potential confounders, we observed no association between PBB-153 tertiles and the composite classification of 'any autoimmune disorder' in either sex. We observed some evidence for an association between serum PBB-153 levels and rheumatoid arthritis in males and females; however, this was not statistically significant in females. We also observed some evidence for an association between serum PBB-153 levels and neurological- and thyroid-related autoimmune disorders in females, but again this was not statistically significant. Additionally, we identified dose-response curves for serum PBB-153 levels and the prevalence of autoimmune disorders that differed by lifestage of exposure and sex. CONCLUSIONS: We observed some evidence that increasing serum PBB-153 levels were associated with three specified autoimmune disorders. Studies focusing on these three autoimmune disorders and the potential non-linear trend differences by lifestage of exposure warrant further investigation.


Assuntos
Doenças Autoimunes , Bifenil Polibromatos , Feminino , Humanos , Masculino , Adulto , Criança , Michigan/epidemiologia , Prevalência , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/epidemiologia , Sistema de Registros
17.
Environ Sci Technol ; 57(40): 15266-15276, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37773091

RESUMO

The uptake, translocation, and transformation of 2,2',4,4'-tetra brominated diphenyl ether (BDE-47) in wheat (Triticum aestivum L.) were comprehensively investigated by hydroponic experiments using compound-specific stable isotope analysis (CSIA) and transcriptome analysis. The results indicated that BDE-47 was quickly adsorbed on epidermis of wheat roots and then absorbed in roots via water and anion channels as well as an active process dependent on energy. A small fraction of BDE-47 in roots was subjected to translocation acropetally, and an increase of δ13C values in shoots than roots implied that BDE-47 in roots had to cross at least one lipid bilayer to enter the vascular bundle via transporters. In addition, accompanied by the decreasing concentrations, δ13C values of BDE-47 showed the increasing trend with time in shoots, indicating occurrence of BDE-47 transformation. OH-PBDEs were detected as transformation products, and the hydroxyl group preferentially substituted at the ortho-positions of BDE-47. Based on transcriptome analysis, genes encoding polybrominated diphenyl ether (PBDE)-metabolizing enzymes, including cytochrome P450 enzymes, nitrate reductases, and glutathione S-transferases, were significantly upregulated after exposure to BDE-47 in shoots, further evidencing BDE-47 transformation. This study first reported the stable carbon isotope fractionation of PBDEs during translocation and transformation in plants, and application of CSIA and transcriptome analysis allowed systematically characterize the environmental behaviors of pollutants in plants.


Assuntos
Éteres Difenil Halogenados , Bifenil Polibromatos , Éteres Difenil Halogenados/análise , Triticum/genética , Éter , Etil-Éteres , Isótopos de Carbono , Bifenil Polibromatos/análise , Perfilação da Expressão Gênica
18.
Sci Total Environ ; 894: 164850, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331384

RESUMO

Bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and their substitutes are commonly used in everyday products. However, large-scale internal exposure levels of them in China, the factors influencing on them, and the associated health risks were not systematically investigated still. In the present study, there were 1157 morning urine samples collected from residents of 26 provincial capitals in China for the measurement of BPA and seven bisphenol analogues, as well as TBBPA and its substitutes, i.e., tetrachlorobisphenol A and 4,4'-sulphonylbis(2,6-dibromophenol). The concentrations of Σ8bisphenols and Σ3TBBPAs ranged from

Assuntos
Compostos Benzidrílicos , População do Leste Asiático , Exposição Ambiental , Bifenil Polibromatos , Humanos , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/urina , China , Exposição Ambiental/análise , Fenol/urina , Fenóis/urina , Água Potável/análise
19.
Sci Total Environ ; 890: 164227, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211115

RESUMO

The transformation products and mechanism of tetrabromobisphenol A (TBBPA) derivatives are still largely unknown compared with TBBPA. In this paper, sediment, soil and water samples (15 sites, 45 samples) collected in a river flowing through brominated flame retardant manufacturing zone were analyzed to determine TBBPA derivatives, byproducts, and transformation products. TBBPA derivatives and byproducts were detected with concentrations ranging from none detection to 1.1 × 104 ng/g dw and with detection frequencies of 0-100 % in all samples. The concentrations of TBBPA derivatives such as TBBPA bis(2,3-dibromopropyl) ether (TBBPA-BDBPE) and TBBPA bis(allyl ether) in sediment and soil samples were higher than that of TBBPA. In addition, the occurrence of various unknown bromobisphenol A allyl ether analogs in the samples was further confirmed by using 11 synthesized analogs, which might be produced during the waste treatment process of the factories. The possible transformation pathways of TBBPA-BDBPE were revealed for the first time by using UV/base/persulfate (PS) as designed photooxidation waste treatment system in the laboratory. Ether bond cleavage, debromination, and ß-scission contributed to the transformation of TBBPA-BDBPE and the occurrence of transformation products in the environment. The concentrations of the transformation products of TBBPA-BDBPE ranged from none detection to 3.4 × 102 ng/g dw. These data provide new insights into the fate of TBBPA derivatives in environmental compartments.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Éter , Éteres , Bifenil Polibromatos/análise , Retardadores de Chama/análise , Solo
20.
Environ Toxicol Pharmacol ; 98: 104056, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592678

RESUMO

Tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) are brominated flame retardants commonly used in a variety of industrial and consumer products. In this study, we performed RNA sequencing analysis of PC12 cells to clarify the mechanisms by which TBBPA and HBCD induce neurotoxicity. Differential expression analysis demonstrated that 636 and 271 genes were differentially expressed after TBBPA and HBCD treatment, respectively. Gene Ontology (GO) enrichment analysis revealed that genes annotated with the GO term "endoplasmic reticulum unfolded protein response" were upregulated in both TBBPA- and HBCD-treated groups. Furthermore, protein expression of endoplasmic reticulum stress markers, such as HSPA5 and DDIT3, as well as cleaved caspase-3, an apoptosis marker, were induced by TBBPA and HBCD. We also found that the cytotoxicity induced by TBBPA and HBCD was blocked by necrostatin-1, a necroptosis inhibitor, indicating the contribution of necroptosis. Our findings provide new insight into the mechanisms of toxicity induced by these chemicals.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Animais , Ratos , Retardadores de Chama/análise , Células PC12 , Necroptose , Estresse do Retículo Endoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA