Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Nutrients ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931243

RESUMO

The brain-derived neurotrophic factor (BDNF) plays a crucial role during neuronal development as well as during differentiation and synaptogenesis. They are important proteins present in the brain that support neuronal health and protect the neurons from detrimental signals. The results from the present study suggest BDNF expression can be increase up to ~8-fold by treating the neuroblastoma cells SHSY-5Y with an herbal extract of Oroxylum indicum (50 µg/mL) and ~5.5-fold under lipopolysaccharides (LPS)-induced inflammation conditions. The Oroxylum indicum extract (Sabroxy) was standardized to 10% oroxylin A, 6% chrysin, and 15% baicalein. In addition, Sabroxy has shown to possess antioxidant activity that could decrease the damage caused by the exacerbation of radicals during neurodegeneration. A mode of action of over expression of BDNF with and without inflammation is proposed for the Oroxylum indicum extract, where the three major hydroxyflavones exert their effects through additive or synergistic effects via five possible targets including GABA, Adenoside A2A and estrogen receptor bindings, anti-inflammatory effects, and reduced mitochondrial ROS production.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Flavanonas , Inflamação , Lipopolissacarídeos , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Extratos Vegetais/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Linhagem Celular Tumoral , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Flavanonas/farmacologia , Bignoniaceae/química , Regulação para Cima/efeitos dos fármacos , Flavonoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia
2.
Mol Biochem Parasitol ; 259: 111629, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38750697

RESUMO

Leishmaniases comprise a group of infectious parasitic diseases caused by various species of Leishmania and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-Leishmania activity of a dichloromethane fraction (DCMF) extracted from Arrabidaea brachypoda roots. This fraction inhibited the viability of L. infantum, L. braziliensis, and L. Mexicana promastigotes, with IC50 values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against L. infantum amastigotes (IC50 = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC50 = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC50 found for all Leishmania species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.


Assuntos
Antiprotozoários , Bignoniaceae , Flavonoides , Leishmania , Simulação de Acoplamento Molecular , Extratos Vegetais , Bignoniaceae/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/química , Animais , Leishmania/efeitos dos fármacos , Leishmania/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Camundongos , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Células RAW 264.7
3.
J Complement Integr Med ; 21(1): 1-13, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207283

RESUMO

OBJECTIVES: Markhamia lutea (M. lutea, Bignoniaceae) is mainly found in tropical/neotropical regions of America, Africa and Asia. The plant's leaves, stems or roots are used to treat anaemia, bloody diarrhoea, parasitic and microbial infections. This study evaluates anti-inflammatory properties (in vitro) of Markhamia lutea and their curative effects on paclitaxel-induced intestinal toxicity (in vivo). METHODS: The anti-inflammatory potential of Markhamia lutea was tested over cytokines (TNF-alpha, IL-6, IL-1ß, IL-10), reactive oxygen species (ROS) and enzymes (cyclooxygenase and 5-lipoxygenase). While in vivo, intestinal toxicity was induced for 10 days by oral administration of paclitaxel (3 mg/kg, 0.05 mL). Animals in each group were further treated with aqueous (300 mg/kg) and ethanolic (300 mg/kg) leaves extracts of Markhamia lutea during 7 days and clinical symptoms were recorded, hematological, biochemical and histological analysis were subsequently performed. RESULTS: In vitro, aqueous (250 µg/mL) and ethanolic (250 µg/mL) extracts of Markhamia lutea inhibited the activities of cyclooxygenase 1 (56.67 % and 69.38 %), cyclooxygenase 2 (50.67 % and 62.81 %) and 5-lipoxygenase (77.33 % and 86.00 %). These extracts inhibited the production of intracellular ROS, extracellular ROS and cell proliferation with maximum IC50 of 30.83 µg/mL, 38.67 µg/mL and 19.05 µg/mL respectively for the aqueous extract, then 25.46 µg/mL, 27.64 µg/mL and 7.34 µg/mL respectively for the ethanolic extract. The extracts also inhibited the production of proinflammatory cytokines (TNFα, IL-1ß and IL-6) and stimulated the production of anti-inflammatory cytokines (IL-10). In vivo, after administration of paclitaxel, the aqueous and ethanolic extracts of Markhamia lutea significantly reduced the weight loss, the diarrheal stools and the mass/length intestines ratio of the treated animals compared to the animals of the negative control group. Biochemically, the extracts lead to a significant drop in serum creatinine and alanine aminotransferase levels, followed by a significant increase in alkaline phosphatase. In addition to bringing the haematological parameters back to normal values after disturbance by paclitaxel, the extracts caused tissue regeneration in the treated animals. CONCLUSIONS: In vitro, aqueous and ethanolic extracts of Markhamia lutea showed anti-inflammatory properties (inhibition of COX1, COX2, 5-LOX activities, inhibition of ROS production and cell proliferation); in vivo, the same extracts showed curative properties against intestinal toxicity caused by paclitaxel.


Assuntos
Bignoniaceae , Extratos Vegetais , Ratos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Paclitaxel/toxicidade , Interleucina-10 , Araquidonato 5-Lipoxigenase , Interleucina-6 , Espécies Reativas de Oxigênio , Etanol , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas , Bignoniaceae/química , Intestinos
4.
Environ Res ; 231(Pt 1): 116112, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182829

RESUMO

This study was designed to appraise the antioxidant and anticancer competence of solvent extracts of Tecoma stans (Linn) and analyze the phytoligands interaction against Bcl 2 VEGFR2 through in silico studies. The phytochemical analysis revealed that the ethyl acetate extract contains more number of pharmaceutically valuable phytochemicals than other solvent extracts. Among the various phytochemicals, flavonoid was found as a predominant component, and UV-Vis- spectrophotometer analysis initially confirmed it. Hence, the column chromatogram was performed to purify the flavonoid, and High-performance liquid chromatography (HPLC) was performed. It revealed that the flavonoid enriched fraction by compared with standard flavonoid molecules. About 84.69% and 80.43% of antioxidant activity were found from ethyl acetate extract of bark and flower at the dosage of 80 µg mL-1 with the IC50 value of 47.24 and 43.40 µg mL-1, respectively. In a dose-dependent mode, the ethyl acetate extract of bark and flower showed cytotoxicity against breast cancer cell line MCF 7 (Michigan Cancer Foundation-7) as up to 81.38% and 80.94% of cytotoxicity respectively. Furthermore, the IC50 was found as 208.507 µg mL-1 and 207.38 µg mL-1 for bark and flower extract correspondingly. About 10 medicinal valued flavonoid components were identified from bark (6) and flower (4) ethyl acetate extract through LC-MS analysis. Out of 10 components, the 3,5-O-dicaffeoylquinic acid (ΔG -8.8) and Isorhamnetin-3-O-rutinoside (ΔG -8.3) had the competence to interact with Bcl 2 (B-Cell Lymphoma 2) and VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) respectively with more energy. Hence, these results confirm that the ethyl acetate extract of bark and flower of T. stans has significant medicinal potential and could be used as antioxidant and anticancer agent after some animal performance study.


Assuntos
Antioxidantes , Bignoniaceae , Animais , Antioxidantes/farmacologia , Antioxidantes/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Casca de Planta/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/análise , Flavonoides/farmacologia , Flavonoides/análise , Flores/química , Solventes , Compostos Fitoquímicos/análise , Bignoniaceae/química
5.
Chem Biodivers ; 20(4): e202201203, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36896496

RESUMO

A novel monoterpene alkaloid, named incarvine G, was isolated from the Incarvillea sinensis Lam. Its chemical structure was elucidated using comprehensive spectroscopic methods. Incarvine G is an ester compound comprised of a monoterpene alkaloid and glucose. This compound showed evident inhibition on cell migration, invasion, and cytoskeleton formation of human MDA-MB-231 with low cytotoxicity.


Assuntos
Antineoplásicos , Bignoniaceae , Monoterpenos , Humanos , Alcaloides/farmacologia , Alcaloides/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Bignoniaceae/química , Estrutura Molecular , Monoterpenos/farmacologia , Monoterpenos/química , Inibição de Migração Celular/efeitos dos fármacos
6.
Nat Prod Res ; 37(12): 2070-2075, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36028333

RESUMO

Tecoma stans (L.), popularly known as ipê-mirim, is used in traditional medicine for the treatment of diabetes and digestive problems. The components of the hexane (HE) and methanol (ME) extracts obtained from the pericarp of T. stans were identified by gas chromatography-mass spectrometry (GC-MS) in their methyl ester forms (FAME). The antioxidant and cytotoxic activities of extracts, fatty acids, and methyl esters were evaluated. Methyl linolenate, methyl linoleate, and methyl palmitate were the major compounds in the HE, while methyl hexacosanoate was the main component in the ME. The samples exhibited significant antioxidant potential by DPPH assay. In the Artemia salina larvae bioassay, FAME (HE) and FAME (ME) were considered toxic. This study showed, for the first time to our knowledge, the chemical composition of the hexane and methanol extracts from T. stans pericarp, as well as the antioxidant and cytotoxic activities of the extracts, fatty acids, and methyl esters.


Assuntos
Antineoplásicos , Bignoniaceae , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hexanos , Bignoniaceae/química , Metanol , Ácidos Graxos
7.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500567

RESUMO

Oroxylum indicum is a traditionally used plant in Ayurvedic and folk medicines. The plant is useful for the management of gastrointestinal diseases as well as skin diseases. In the present study, we analyzed the antitumor potential of O. indicum in Dalton's lymphoma ascites tumor cells (DLA) and Ehrlich ascites carcinoma (EAC)-induced solid and ascites tumors. Further, the potential of O. indicum extract (OIM) on skin papilloma induction by dimethyl benz(a) anthracene (DMBA) and croton oil was evaluated. The chemical composition of the extract was analyzed using UPLC-Q-TOF-MS. The predominant compounds present in the extract were demethoxycentaureidin 7-O-rutinoside, isorhamnetin-3-O-rutinoside, baicalein-7-O-glucuronide, 5,6,7-trihydroxyflavone, 3-Hydroxy-3',4',5'-trimethoxyflavone, 5,7-dihydroxy-3-(4-methoxyphenyl) chromen-4-one, and 4'-Hydroxy-5,7-dimethoxyflavanone. Treatment with high-dose OIM enhanced the percentage of survival in ascites tumor-bearing mice by 34.97%. Likewise, high and low doses of OIM reduced the tumor volume in mice by 61.84% and 54.21%, respectively. Further, the skin papilloma formation was brought down by the administration of low- and high-dose groups of OIM (by 67.51% and 75.63%). Overall, the study concludes that the Oroxylum indicum root bark extract is a potentially active antitumor and anticancer agent.


Assuntos
Bignoniaceae , Carcinoma de Ehrlich , Camundongos , Animais , Extratos Vegetais/química , Bignoniaceae/química , Carcinoma de Ehrlich/tratamento farmacológico , Medicina Tradicional , Óleo de Cróton/uso terapêutico
8.
Nat Prod Res ; 36(22): 5793-5797, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36411529

RESUMO

Chemical investigation of the petroleum ether extract of heartwood of Tecomella undulata led to the isolation of tectonaquinone B (1), 2-methylquinizarin (2) along with tecomaquinone I (3), lapachol (4), 2-isopropenylnaphtho[2,3-b]-furan-4,9-quinone (5), dehydro-α-lapachone (6), α-lapachone (7), and ß-lapachone (8). This is the first report of isolation of tectonaquinone B and 2-methylquinizarin from this plant. The structures of compounds were elucidated by advanced spectroscopic methods. Molecular docking study for potential inhibitory action toward CDK7 (cyclin-dependent kinase 7) were performed, which proved that these compounds have high binding affinities with the receptor protein (CDK7). 2-Methylquinizarin exhibited best docking score (-7.70 kcal/mol) among all the tested compounds. The present study showed that 2-methylquinizarin may exhibit potent anticancer activity through inhibiting CDK7 via interaction with Met94.


Assuntos
Bignoniaceae , Simulação de Acoplamento Molecular , Bignoniaceae/química , Extratos Vegetais/farmacologia
9.
Biomolecules ; 12(9)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36139047

RESUMO

Plants of the species Fridericia chica (Bonpl.) L. G. Lohmann (Bignoniaceae), which are widely distributed in Brazil and named crajiru in the state of Amazonas, are known in folk medicine as a traditional medicine in the form of a tea for the treatment of intestinal colic, diarrhea, and anemia, among other diseases. The chemical analysis of extracts of the leaves has identified phenolic compounds, a class of secondary metabolites that provide defense for plants and benefits to the health of humans. Several studies have shown the therapeutic efficacy of F. chica extracts, with antitumor, antiviral, wound healing, anti-inflammatory, and antioxidant activities being among the therapeutic applications already proven. The healing action of F. chica leaf extract has been demonstrated in several experimental models, and shows the ability to favor the proliferation of fibroblasts, which is essential for tissue repair. The anti-inflammatory activity of F. chica has been clearly demonstrated by several authors, who suggest that it is related to the presence of 3-deoxyanthocyanidins, which is capable of inhibiting pro-inflammatory pathways such as the kappa B (NF-kB) nuclear transcription factor pathway. Another important effect attributed to this species is the antioxidant effect, attributed to phenolic compounds interrupting chain reactions caused by free radicals and donating hydrogen atoms or electrons. In conclusion, the species Fridericia chica has great therapeutic potential, which is detailed in this paper with the objective of encouraging new research and promoting the sum of efforts for the inclusion of herbal medicines in health systems around the world.


Assuntos
Antioxidantes , Bignoniaceae , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antivirais/farmacologia , Bignoniaceae/química , Humanos , Hidrogênio , NF-kappa B , Fenóis/análise , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Chá , Cicatrização
10.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897865

RESUMO

Spathodea campanulata is an important medicinal plant with traditional uses in the tropical zone. In the current work, we aimed to determine the chemical profiles and biological effects of extracts (methanolic and infusion (water)) from the leaves and stem bark of S. campanulata. The chemical components of the tested extracts were identified using LC-ESI-QTOF-MS. Biological effects were tested in terms of antioxidant (radical scavenging, reducing power, and metal chelating), enzyme inhibitory (cholinesterase, amylase, glucosidase, and tyrosinase), antineoplastic, and antiviral activities. Fifty-seven components were identified in the tested extracts, including iridoids, flavonoids, and phenolic acids as the main constituents. In general, the leaves-MeOH extract was the most active in the antioxidant assays (DPPH, ABTS, CUPRAC, FRAP, metal chelating, and phosphomolybdenum). Antineoplastic effects were tested in normal (VERO cell line) and cancer cell lines (FaDu, HeLa, and RKO). The leaf infusion, as well as the extracts obtained from stem bark, showed antineoplastic activity (CC50 119.03-222.07 µg/mL). Antiviral effects were tested against HHV-1 and CVB3, and the leaf methanolic extract (500 µg/mL) exerted antiviral activity towards HHV-1, inhibiting the viral-induced cytopathic effect and reducing the viral infectious titre by 5.11 log and viral load by 1.45 log. In addition, molecular docking was performed to understand the interactions between selected chemical components and viral targets (HSV-1 DNA polymerase, HSV-1 protease, and HSV-1 thymidine kinase). The results presented suggest that S. campanulata may be a bright spot in moving from natural sources to industrial applications, including novel drugs, cosmeceuticals, and nutraceuticals.


Assuntos
Bignoniaceae , Farmácia , Antioxidantes/química , Antioxidantes/farmacologia , Antivirais/farmacologia , Bignoniaceae/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
11.
Mol Biol Rep ; 49(9): 8617-8625, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35867291

RESUMO

BACKGROUND: Pyrostegia venusta (Ker Gawl.) Miers occurs in threatened biodiversity hotspots of Cerrado and Atlantic forest biomes in Brazil and is used in traditional medicine to treat various respiratory and skin diseases. METHODS AND RESULTS: This study (i) examined the genetic diversity and structure of six natural populations of P. venusta from different Brazilian regions using sequence-related amplified polymorphism (SRAP) markers; and (ii) compared the intra- and inter-populational levels of the bioactive component verbascoside using high-performance liquid chromatography. The population from Nova Mutum, Mato Grosso, presented the highest genetic variability (Nei index H = 0.2759; Shannon index I = 0.4170; 85.14% polymorphic loci), whereas the population from Araxá, Minas Gerais, presented the lowest genetic variability (H = 0.1811; I = 0.2820; 70.27% polymorphic loci). The intra-populational variability (79%) was significantly higher (p = 0.001) than the inter-populational variability (21%). The populations were clustered into two groups but their genetic differentiation was not associated with geographical origin (Mantel test, r = 0.328; p > 0.05). The verbascoside content significantly differed (p > 0.05) among the six populations and between the individuals from each population. The highest verbascoside levels (> 200 µg/mg extract) were detected in populations from Araxá and Serrana, while the lowest verbacoside levels were detected in populations from Paranaíta and Sinop. CONCLUSIONS: This is the first report on the use of SRAP markers to analyze genetic variability in the family Bignoniaceae. Our findings shall help to better understand the genetic and chemical diversity of P. venusta populations, as well as provide useful information to select the most appropriate individuals to prepare phytomedicines.


Assuntos
Bignoniaceae , Bignoniaceae/química , Bignoniaceae/genética , Variação Genética , Glucosídeos , Fenóis , Polifenóis
12.
PeerJ ; 10: e13693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35818360

RESUMO

Background: Tecoma stans (L.) Juss. ex Kunth is a well-known medicinal plant found in tropical and subtropical regions. It contains a broad range of bioactive compounds that exhibit many biological effects, including antidiabetic, antibacterial, and antioxidative activities. However, the effect of natural peptides from T. stans against cancer progression and free radical production is unknown. This study aims to evaluate the cytotoxic, anti-metastatic, and antioxidative activities of natural peptides from T. stans on A549 cells. Methods: The natural peptides were extracted from the flower of T. stans using the pressurized hot water extraction (PHWE) method, followed by size exclusion chromatography and solid-phase extraction-C18. The cytotoxic and anti-metastatic effects of natural peptides were evaluated using MTT and transwell chamber assays, respectively. The free radical scavenging activity of natural peptides was determined using ABTS, DPPH, and FRAP assays. The cells were pretreated with the IC50 dosage of natural peptides and stimulated with LPS before analyzing intracellular reactive oxygen species (ROS) and proteomics. Results: Natural peptides induced cell toxicity at a concentration of less than 1 ng/ml and markedly reduced cell motility of A549 cells. The cells had a migration rate of less than 10% and lost their invasion ability in the treatment condition. In addition, natural peptides showed free radical scavenging activity similar to standard antioxidants and significantly decreased intracellular ROS in the LPS-induced cells. Proteomic analysis revealed 1,604 differentially expressed proteins. The self-organizing tree algorithm (SOTA) clustered the protein abundances into eleven groups. The volcano plot revealed that the cancer-promoting proteins (NCBP2, AMD, MER34, ENC1, and COA4) were down-regulated, while the secretory glycoprotein (A1BG) and ROS-reducing protein (ASB6) were up-regulated in the treatment group. Conclusion: The anti-proliferative and anti-metastatic activities of natural peptides may be attributed to the suppression of several cancer-promoting proteins. In contrast, their antioxidative activity may result from the up-regulation of ROS-reducing protein. This finding suggests that natural peptides from T. stans are viable for being the new potential anti-cancer and antioxidative agents.


Assuntos
Antioxidantes , Bignoniaceae , Humanos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio , Células A549 , Lipopolissacarídeos , Proteômica , Peptídeos/farmacologia , Radicais Livres , Bignoniaceae/química
13.
Fitoterapia ; 160: 105196, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35427755

RESUMO

Structure-guided isolation of a CH2Cl2-soluble fraction of the heartwood of Catalpa bungei "Jinsi" provided two new naphthoquinones, 9-hydroxy-4-oxo-α-lapachone (1) and 6-hydroxy-4-oxo-α-lapachone (2), together with three undescribed ones (3-5) and six known ones (6-11). The structures were elucidated on the basis of spectroscopic methods including electronic circular dichroism calculation. The antiproliferative effects of these isolates were evaluated in human breast adenocarcinoma cells MCF7. (4R)-4,9-dihydroxy-α-lapachone (5) and (4S)-4,9-dihydroxy-α-lapachone (6) exhibited the significant activities with IC50 values of 2.19 and 2.41 µM, respectively. The structure-activity relationship of 1-11 in the antiproliferative assay was then discussed. The most potent 5 and 6 were found to induce cell arrest in G1 phage through DNA damage. The findings provided some valuable insights for the discovery and structural modification of α-lapachone as antiproliferative lead compounds against human breast adenocarcinoma cells.


Assuntos
Adenocarcinoma , Bignoniaceae , Naftoquinonas , Bignoniaceae/química , Dano ao DNA , Humanos , Estrutura Molecular , Naftoquinonas/química , Naftoquinonas/farmacologia
14.
Biomed Res Int ; 2022: 3319203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187163

RESUMO

Despite the breakthrough in the development of anticancer therapies, plant-derived chemotherapeutics continue to be the basis of treatment for most types of cancers. Fridericia platyphylla is a shrub found in Brazilian cerrado biome which has cytotoxic, anti-inflammatory, and analgesic properties. The aim of this study was to investigate the antiproliferative potential of the crude hydroethanolic extract, subfraction (containing 59.3% of unusual dimeric flavonoids Brachydin E and 40.7% Brachydin F), as well as Brachydin E and Brachydin F isolated from F. platyphylla roots. The cytotoxic activity was evaluated in glioblastoma, lung, prostate, and colorectal human tumor cell lines. The crude hydroethanolic extract did not present cytotoxic activity, but its subfraction presented lower IC50 values for glioblastoma (U-251) and prostate adenocarcinoma (PC-3) cell lines. Brachydins E and F significantly reduced cell viability, proliferation, and clonogenic potential of PC-3, inducing them to the process of regulated cell death. In silico studies have indicated nuclear receptors as targets for Brachydins E and F, and molecular docking has pointed out their binding into glucocorticoid receptor (GR) ligand pocket. Targeting GR pathway has been described as a therapeutic strategy, especially for prostate cancer. These results suggest that Brachydin E and Brachydin F are promising compounds to be further explored for their antitumor effects.


Assuntos
Antineoplásicos/química , Bignoniaceae/química , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Antineoplásicos/farmacologia , Brasil , Linhagem Celular Tumoral , Humanos , Raízes de Plantas/química
15.
Chem Biodivers ; 19(1): e202100566, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34793623

RESUMO

Infections caused by microorganisms are a major cause of morbidity and mortality worldwide, and natural products continue to be important sources for the discovery of new antimicrobial agents. Ursolic acid is a triterpene with known antibacterial action, being naturally found in plants, such as Jaracanda oxyphylla and Jacaranda caroba (Bignoniaceae). Ursolic acid derivative esters have revealed potential biological activities, such as antitumor, antiviral, and antibacterial activity. In this study, sixteen esters (1-16) were synthesized from ursolic acid using DIC/DMAP and characterized by infrared (IR), nuclear magnetic resonance (1 H- and 13 C-NMR) and mass spectrometry. All ursolic acid esters were evaluated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and the yeast Candida albicans. Six compounds are herein described for the first time (3, 9, 11, 13, 14 and 16) with yields up to 91.6 %. Compounds 11 (3ß-(3,4-dimethoxybenzoyl)ursolic acid) and 15 (3ß-nicotinoylursolic acid) displayed promising antifungal activity, with inhibition of C. albicans growth of 93.1 and 95.9 %, respectively.


Assuntos
Anti-Infecciosos/síntese química , Ésteres/química , Triterpenos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bignoniaceae/química , Bignoniaceae/metabolismo , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/farmacologia , Ácido Ursólico
16.
Cardiovasc Toxicol ; 22(1): 67-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623620

RESUMO

Administration of Chemotherapeutics, especially doxorubicin (DOX) and cyclophosphamide (CPS), is commonly associated with adverse effects such as myelosuppression and cardiotoxicity. At this time, few approved therapeutic options are currently available for the management of chemotherapy-associated cardiotoxicity. Thus, identification of novel therapeutics with potent cardioprotective properties and minimal adverse effects are pertinent in treating Doxorubicin and Cyclophosphamide-induced cardiotoxicity. Oroxylum indicum extract (OIE, Sabroxy®) is a natural product known to possess several beneficial biological functions including antioxidant, anti-inflammatory and cytoprotective effects. We therefore set to investigate the cardioprotective effects of OIE against Doxorubicin and Cyclophosphamide-induced cardiotoxicity and explore the potential cardioprotective mechanisms involved. Adult male mice were treated with DOX and CPS in combination, OIE alone, or a combination of OIE and DOX & CPS. Swimming test was performed to assess cardiac function. Markers of oxidative stress were assessed by levels of reactive oxygen species (ROS), nitrite, hydrogen peroxide, catalase, and glutathione content. The activity of interleukin converting enzyme and cyclooxygenase was determined as markers of inflammation. Mitochondrial function was assessed by measuring Complex-I activity. Apoptosis was assessed by Caspase-3 and protease activity. Mice treated with DOX and CPS exhibited reduced swim rate, increased oxidative stress, increased inflammation, and apoptosis in the heart tissue. These cardiotoxic effects were significantly reduced by co-administration of OIE. Furthermore, computational molecular docking studies revealed potential binding of DOX and CPS to tyrosine hydroxylase which validated our in vivo findings regarding the inhibition of tyrosine hydroxylase activity. Our current findings indicated that OIE counteracts Doxorubicin and Cyclophosphamide-induced cardiotoxicity-through inhibition of ROS-mediated apoptosis and by blocking the effect on tyrosine hydroxylase. Taken together, our findings suggested that OIE possesses cardioprotective effects to counteract potentially fatal cardiac complications associated with chemotherapy treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bignoniaceae , Cardiopatias/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Bignoniaceae/química , Cardiotoxicidade , Ciclofosfamida , Modelos Animais de Doenças , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Molecules ; 26(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34946511

RESUMO

Oroxylum indicum, of the Bignoniaceae family, has various ethnomedical uses such as an astringent, anti-inflammatory, anti-bronchitis, anti-helminthic and anti-microbial, including anticancer properties. The druggability of OI stem bark extract was determined by its molecular docking interactions with PARP and Caspase-3, two proteins involved in cell survival and death. Note that 50 µg/mL of Oroxylum indicum extract (OIE) showed a significant (p < 0.05%) toxicity to HSC-3 cells. MTT aided cell viability and proliferation assay demonstrated that 50 µg/mL of OIE displayed significant (p < 0.5%) reduction in cell number at 4 h of incubation time. Cell elongation and spindle formation was noticed when HSC-3 cells were treated with 50 µg/mL of OIE. OIE initiated DNA breakage and apoptosis in HSC-3 cells, as evident from DNA ladder assay and calcein/EB staining. Apoptosis potential of OIE is confirmed by flow cytometer and triple-staining (live cell/apoptosis/necrosis) assay. Caspase-3/7 fluorescence quenching (LANCE) assay demonstrated that 50 µg/mL of OIE significantly enhanced the RFU of caspases-3/7, indicating that the apoptosis potential of OIE is probably through the activation of caspases. Immuno-cytochemistry of HSC-3 cells treated with 50 µg/mL of OIE showed a significant reduction in mitochondrial bodies as well as a reduction in RFU in 60 min of incubation time. Immunoblotting studies clearly showed that treatment of HSC-3 cells with OI extract caused caspase-3 activation and PARP deactivation, resulting in apoptotic cell death. Overall, our data indicate that OIE is an effective apoptotic agent for human squamous carcinoma cells and it could be a future cancer chemotherapeutic target.


Assuntos
Antineoplásicos Fitogênicos , Apoptose , Bignoniaceae , Mitocôndrias , Casca de Planta , Extratos Vegetais , Humanos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Bignoniaceae/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade , Microambiente Tumoral/efeitos dos fármacos
18.
Toxins (Basel) ; 13(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822532

RESUMO

Fridericia chica (Bignoniaceae) is a traditional medicinal plant. The aim of this research was to determine the protective effects of the hydroethanolic extract from the F. chica leaves (HEFc) against the cytotoxicity of zearalenone (α-ZEL) and ß-ZEL on SH-SY5Y cells. Free radical scavenging activity of HEFc was evaluated using the DPPH method. The cytotoxicity of both zearalenone metabolites and HEFc was examined using MTT test, as was the cytoprotective effects of the HEFc on cells treated with these mycotoxins. The chemical composition of HEFc was determined using UPLC-QTOF-MS/MS. HEFc elicited good DPPH radical scavenging activity following a concentration-dependent relationship. Cells exposed to α-ZEL exhibited a viability ˂50% after 48 h of treatment (25 and 50 µM), while those exposed to ß-ZEL showed viability ˂50% (100 µM) and ˂25% (25-100 µM) after 24 and 48 h of exposure, respectively. HEFc showed a significant increase in cell viability after exposure to α-ZEL (25 and 50 µM) and ß-ZEL (6-100 µM) (p < 0.05). UPLC-QTOF-MS/MS analyses allowed the identification of 10 phytochemical components in the HEFc. In short, the hydroethanolic extract of F. chica grown in Colombian Caribbean can protect against the effects of mycotoxins and it is a valuable source of compounds with antioxidant properties.


Assuntos
Bignoniaceae/química , Neuroblastoma/metabolismo , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Zearalenona/farmacologia , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/química , Folhas de Planta/química , Substâncias Protetoras/química
19.
Bioorg Chem ; 114: 105126, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217978

RESUMO

Oroxylum indicum (Sonapatha) is traditionally used to cure several human ailments. Therefore, the cell killing effect of chloroform, ethanol, and water extracts of Sonapatha was studied in cultured HeLa cells treated with 0-100 µg/mL of these extracts/doxorubicin by MTT assay. Since ethanol extract was most cytotoxic its effect was further investigated by clonogenic, apoptosis, necrosis, and lactate dehydrogenase assays. The mechanism of cytotoxicity of Sonapatha was determined at the molecular level by estimation of caspase 8 and 3 activities and Western blot analysis of NF-κB, COX-2, Nrf2, and RASSF7 which are overexpressed in neoplastic cells. HeLa cells treated with Sonapatha extract exhibited a concentration and time-dependent rise in the cytotoxicity as indicated by the MTT assay. Ethanol extract of Sonapatha (0, 20, 40, and 80 µg/mL) reduced clonogenicity, increased DNA fragmentation, apoptotic and necrotic indices, lactate dehydrogenase release, caspase 8 and 3 activities and inhibited the overexpression of NF-κB, COX-2, Nrf2, and RASSF7 in HeLa cells concentration-dependently.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Bignoniaceae/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
20.
Arq. bras. med. vet. zootec. (Online) ; 73(2): 513-516, Mar.-Apr. 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1248925

RESUMO

A doxorrubicina (dox) é um medicamento antineoplásico que induz cardiotoxicidade por estresse oxidativo. Os flavonoides são antioxidantes extraídos de plantas como Camellia sinensis e Arrabidaea chica (Fridericia chica). Esta pesquisa objetivou avaliar efeitos protetores do extrato de A. chica (AC), comparado ao de C. sinensis (CS), frente ao estresse oxidativo induzido pela dox, no coração. Cardiomiócitos e células neoplásicas MDA-MB 231 foram incubados com AC e CS. Depois, adicionou-se dox e avaliaram-se taxas de viabilidade e morte celular. A citometria de fluxo para o ensaio de iodeto de propídeo (IP) em cardiomiócitos mostrou as seguintes taxas de morte celular: controle 53%; dox 78% (maior que controle, P=0,015); AC_12,5µg/mL + dox 65% (menor que dox, P=0,031); AC_25µg/mL + dox 62% (menor que dox, P=0,028); AC_50µg/mL + dox 63% (menor que dox, P=0,030); CS_12,5µg/mL + dox 71% (menor que dox, P=0,040); CS_25µg/ml + dox 69% (menor que dox, P=0,037); CS_50µg/mL + dox 74% (menor que dox, P=0,044). Resultados das células MDA-MB 231 mostraram que nenhum extrato interferiu na atividade antitumoral da dox. Os dados de IP foram corroborados pelos de MTT. Este estudo reporta promissora utilização de A. chica na prevenção da cardiotoxicidade induzida pela dox.(AU)


Assuntos
Animais , Ratos , Extratos Vegetais/uso terapêutico , Doxorrubicina , Bignoniaceae/química , Cardiotoxicidade/terapia , Cardiotoxicidade/veterinária , Plantas Medicinais , Flavonoides/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA