Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.370
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pediatr Surg Int ; 40(1): 215, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102122

RESUMO

PURPOSE: We investigated the relationship between bile amylase (AMY) levels and biliary epithelial changes in pancreaticobiliary maljunction (PBM), a congenital anomaly characterized by pancreaticobiliary reflux due to duct fusion outside the duodenal wall. METHODS: We enrolled 43 children with congenital biliary dilatation (CBD) of Todani types Ia, Ic, and IVa who underwent surgery at the Hokkaido Medical Center for Child Health and Rehabilitation between November 2007 and June 2023. We defined total AMY exposure in bile as bile AMY levels multiplied by the patient's age (months), representing amount of estimated AMY exposure until surgery. We retrospectively investigated the relationships between bile AMY levels and clinicopathological findings. RESULTS: All patients exhibited hyperplasia in the gallbladder and bile duct epithelium, with dysplasia observed in 13 cases, but no carcinoma. Exposure to bile AMY ≥ 662,400 IU/L × months was an independent risk factor for dysplasia. CONCLUSION: The amount of estimated AMY exposure in bile rather than AMY levels in the bile is an independent risk factor for dysplasia in the biliary mucosa.


Assuntos
Amilases , Vesícula Biliar , Humanos , Masculino , Feminino , Vesícula Biliar/patologia , Vesícula Biliar/anormalidades , Estudos Retrospectivos , Lactente , Amilases/metabolismo , Dilatação Patológica , Pré-Escolar , Bile/metabolismo , Má Junção Pancreaticobiliar , Mucosa/patologia , Criança , Ductos Biliares/anormalidades , Ductos Biliares/patologia , Recém-Nascido , Fatores de Risco
2.
Clin Chim Acta ; 562: 119841, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964568

RESUMO

BACKGROUND: Glycoprotein-2 (GP2) IgA is a predictor of disease severity in primary sclerosing cholangitis (PSC). We examined GP2's occurrence in the biliary tract, the site of inflammation. METHODS: GP2 was analyzed using ELISA, immunoblotting, mass spectrometry, and immunohistochemistry. The samples included: 20 bile and 30 serum samples from PSC patients, 23 bile and 11 serum samples from patients with gallstone disease (GD), 15 bile samples from healthy individuals undergoing liver-donation surgery (HILD), 20 extracts of gallstones (GE) obtained during cholecystectomy, and 101 blood-donor sera. RESULTS: Biliary GP2 concentrations were significantly higher in patients with PSC and GD than in HILD (p < 0.0001). Serum GP2 levels were similar in PSC and GD patients, and controls, but lower than in bile (p < 0.0001). GP2 was detected in all 20 GEs. Mass spectrometry identified GP2 in the bile of 2 randomly selected GD and 2 PSC patients, and in none of 2 HILD samples. GP2 was found in peribiliary glands in 8 out of 12 PSC patients, showing morphological changes in acinar cells, but not in GD-gallbladders. CONCLUSIONS: GP2 is present in bile of PSC and GD patients. It is synthesized in the peribiliary glands of PSC patients, supporting a pathogenic role for biliary GP2 in PSC.


Assuntos
Bile , Colangite Esclerosante , Cálculos Biliares , Humanos , Colangite Esclerosante/metabolismo , Colangite Esclerosante/patologia , Cálculos Biliares/metabolismo , Cálculos Biliares/química , Cálculos Biliares/patologia , Bile/química , Bile/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Adulto Jovem , Proteínas Ligadas por GPI
3.
J Pharm Biomed Anal ; 248: 116291, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852297

RESUMO

Pinocembrin-7-O-ß-D-glucoside (PCBG) isolated from Penthorum chinense Pursh was proven to display a wide range of pharmacological effects including hepatoprotection, anti-hepatoma and antifungal activities, etc. The research aims to qualitatively analyze the metabolites of PCBG in rat plasma, urine, bile and feces, and further perform the excretion study of PCBG and its major metabolite pinocembrin (PCB). Fifteen rats were divided into three groups (n=5 for each group) for blood, bile, urine and feces collection, respectively. After PCBG suspension was intragastrically administered to rats at 50 mg/kg, biological samples were collected and processed. The metabolites in each matrix were detected by UHPLC-Q-Exactive-MS/MS. A total of 111 metabolites were observed in plasma, urine, bile and feces, which include hydroxylated, sulfated and glucuronized metabolites, etc. In addition, an UHPLC-MS/MS method was established and applied for the excretion quantification of PCBG and PCB in rat urine, bile, and feces samples. Studies on excretion have shown that PCBG is mainly excreted through feces. The cumulative excretion rates of PCBG and PCB in rat urine, bile and feces were (4.5±2.4)%, (0.2±0.1)% and (18.4±10.5)%, respectively. After hydrolysis by ß-glucuronidase/sulfatase, the excretion rates of PCB in urine and bile were (5.7±2.8)% and (8.9±4.2)%. This study contributes to preclinical research on PCBG and explains its pharmacological effects.


Assuntos
Bile , Fezes , Flavanonas , Glucosídeos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ratos , Fezes/química , Espectrometria de Massas em Tandem/métodos , Masculino , Bile/metabolismo , Bile/química
4.
Cells ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38891057

RESUMO

The identification of anticancer therapies using next-generation sequencing (NGS) is necessary for the treatment of cholangiocarcinoma. NGS can be easily performed when cell blocks (CB) are obtained from bile stored overnight. We compared NGS results of paired CB and surgically resected specimens (SRS) from the same cholangiocarcinoma cases. Of the prospectively collected 64 bile CBs from 2018 to 2023, NGS was performed for three cases of cholangiocarcinoma that could be compared with the SRS results. The median numbers of DNA and RNA reads were 95,077,806 [CB] vs. 93,161,788 [SRS] and 22,101,328 [CB] vs. 24,806,180 [SRS], respectively. We evaluated 588 genes and found that almost all genetic alterations were attributed to single-nucleotide variants, insertions/deletions, and multi-nucleotide variants. The coverage rate of variants in SRS by those found in CB was 97.9-99.2%, and the coverage rate of SRS genes by CB genes was 99.6-99.7%. The NGS results of CB fully covered the variants and genetic alterations observed in paired SRS samples. As bile CB is easy to prepare in general hospitals, our results suggest the potential use of bile CB as a novel method for NGS-based evaluation of cholangiocarcinoma.


Assuntos
Bile , Colangiocarcinoma , Sequenciamento de Nucleotídeos em Larga Escala , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Bile/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Idoso , Mutação/genética
5.
Mol Nutr Food Res ; 68(10): e2300620, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708685

RESUMO

SCOPE: Milk extracellular vesicles (EVs) are nanosized particles with potential immune bioactivities. This study examines their fate during in vitro infant gastrointestinal digestion (GI). METHODS AND RESULTS: Bovine milk is digested using the in vitro INFOGEST method, adjusted for the infant. To unravel the contribution of digestive enzymes from bile, milk is treated with digestive enzymes, bile, or a combination of both. EVs are collected posttreatment using differential ultracentrifugation. EVs characterization includes electrophoresis, immunoblotting, nanoparticle tracking analysis, and atomic force microscopy. EVs protein markers programmed cell death 6-interacting protein (ALIX), tumor susceptibility gene 101 (TSG101), cluster of differentiation 9 (CD9), and xanthine dehydrogenase (XDH) are detected after gastric digestion (G60), but their signal intensity is significantly reduced by intestinal conditions (p < 0.05). Enzyme digestion, compared to bile treatment (I60 + bile), results in a significant reduction of signal intensities for TSG101 and CD9 (p < 0.05). Nanoparticle tracking analysis shows a significant reduction (p < 0.05) of EV numbers at the end of the intestinal phase. EVs are detected by atomic force microscopy at the end of the intestinal phase, showing that intact EVs can survive upper gut digestion. CONCLUSION: Intact EVs can be found at the end of the intestinal phase. However, digestive enzymes and bile reduce the quantity and characteristics of EVs, with digestive enzymes playing a larger role.


Assuntos
Bile , Digestão , Vesículas Extracelulares , Leite , Vesículas Extracelulares/metabolismo , Animais , Bile/metabolismo , Digestão/fisiologia , Leite/química , Bovinos , Proteínas de Ligação a DNA , Fatores de Transcrição , Complexos Endossomais de Distribuição Requeridos para Transporte
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167225, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749218

RESUMO

BACKGROUND: Acute kidney injury (AKI) causes distant liver injury, to date, which causes poor outcomes of patients with AKI. Many studies have been performed to overcome AKI-associated liver injury. However, those studies have mainly focused on hepatocytes, and AKI-induced liver injury still remains a clinical problem. Here, we investigated the implication of cholangiocytes and their primary cilia which are critical in final bile secretion. Cholangiocyte, a lining cell of bile ducts, are the only liver epithelial cell containing primary cilium (a microtubule-based cell surface signal-sensing organelle). METHODS: Cystathione γ-lyase (CSE, a transsulfuration enzyme) deficient and wild-type mice were subjected to kidney ischemia followed by reperfusion (KIR). Some mice were administered with N-acetyl-cysteine (NAC). RESULTS: KIR damaged hepatocytes and cholagiocytes, disrupted cholangiocytes primary cilia, released the disrupted ciliary fragments into the bile, and caused abnormal bile secretion. Glutathione (GSH) and H2S levels in the livers were significantly reduced by KIR, resulting in increased the ratio oxidized GSH to total GSH, and oxidation of tissue and bile. CSE and cystathione ß-synthase (CBS) expression were lowered in the liver after KIR. NAC administration increased total GSH and H2S levels in the liver and attenuated KIR-induced liver injuries. In contrast, Cse deletion caused the reduction of total GSH levels and worsened KIR-induced liver injuries, including primary cilia damage and abnormal bile secretion. CONCLUSIONS: These results indicate that KIR causes cholangiocyte damage, cholangiocytes primary cilia disruption, and abnormal bile secretion through reduced antioxidative ability of the liver.


Assuntos
Bile , Cílios , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Cílios/metabolismo , Cílios/patologia , Camundongos , Bile/metabolismo , Masculino , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Camundongos Endogâmicos C57BL , Glutationa/metabolismo , Camundongos Knockout , Fígado/patologia , Fígado/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/genética , Rim/metabolismo , Rim/patologia , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Ductos Biliares/patologia , Ductos Biliares/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia
7.
Gut ; 73(8): 1350-1363, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38458750

RESUMO

OBJECTIVE: The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites. DESIGN: Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics. Biliary molecules able to induce mast cell (MC) degranulation were revealed by in vitro and in vivo experiments, including liquid chromatography-mass spectrometry (MS)/MS and bioluminescence resonance energy transfer assays. Histamine (HA) receptor expression in CCA was mapped using a single-cell mRNA sequence. HA receptor functions were elucidated by patient-derived xenografts (PDX) in humanised mice and orthotopic models in MC-deficient mice. Genes involved in HA-induced proliferation were screened by CRISPR/Cas9. RESULTS: Bile HA was elevated in CCA and indicated poorer prognoses. Cancer-associated fibroblasts (CAFs)-derived stem cell factor (SCF) recruited MCs, and bile N,N-dimethyl-1,4-phenylenediamine (DMPD) stimulated MCs to release HA through G protein-coupled receptor subtype 2 (MRGPRX2)-Gαq signalling. Bile-induced MCs released platelet-derived growth factor subunit B (PDGF-B) and angiopoietin 1/2 (ANGPT1/2), which enhanced CCA angiogenesis and lymphangiogenesis. Histamine receptor H1 (HRH1) and HRH2 were predominantly expressed in CCA cells and CAFs, respectively. HA promoted CCA cell proliferation by activating HRH1-Gαq signalling and hastened CAFs to secrete hepatocyte growth factor by stimulating HRH2-Gαs signalling. Solute carrier family 22 member 3 (SLC22A3) inhibited HA-induced CCA proliferation by importing bile HA into cells for degradation, and SLC22A3 deletion resulted in HA accumulation. CONCLUSION: Bile HA is released from MCs through DMPD stimulation and degraded via SLC22A3 import. Different HA receptors exhibit a distinct expression profile in CCA and produce different oncogenic effects. MCs promote CCA progression in a CCA-bile interplay pattern.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Mastócitos , Microambiente Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Mastócitos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Animais , Humanos , Camundongos , Bile/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/metabolismo , Histamina/metabolismo , Proliferação de Células , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Degranulação Celular
8.
Curr Top Med Chem ; 24(8): 722-736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303538

RESUMO

Hepatobiliary system cancers have demonstrated an increasing incidence rate in the past years. Without the presence of early symptoms, the majority of such cancers manifest with a set of similar symptoms, such as cholestasis resulting in posthepatic icterus. Differential diagnosis of hepatobiliary cancers is required for the therapy selection, however, the similarity of the symptoms complicates diagnostics. Thus, the search for molecular markers is of high interest for such patients. Cholangiocarcinoma (CCA) is characterized by a poor prognosis due to a low resectability rate, which occurs because this disease is frequently beyond the limits of surgical therapy at the time of diagnosis. The CCA is diagnosed by the combination of clinical/biochemical features, radiological methods, and non-specific serum tumor biomarkers, although invasive examination is still needed. The main disadvantage is limited specificity and sensitivity, which complicates early diagnostics. Therefore, prognostic and predictive biomarkers are still lacking and urgently needed for early diagnosis. In contrast to serum, bile is more accessible to identify biliary disease due to its simpler composition. Moreover, bile can contain higher concentrations of tumor biomarkers due to its direct contact with the tumor. It is known that the composition of the main bile component - bile acids, may vary during different diseases of the biliary tract. This review summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in serum and bile and provides an overview of the methods of bile acids analysis.


Assuntos
Neoplasias dos Ductos Biliares , Bile , Biomarcadores Tumorais , Colangiocarcinoma , Humanos , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/patologia , Bile/química , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/análise
9.
Environ Res ; 250: 118347, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309567

RESUMO

The accidental spill of petroleum asphalt cement (PAC) in São Raimundo (SR Harbor, located on the Rio Negro (Manaus, Amazonas, Brazil) was monitored through the analysis of polyciclic aromatic hydrocarbons (PAHs) in water and a set of biomarkers in fishes (exposure biomarkes: PAHs-type metabolites concentrations in bile; the activities of ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in liver. Effect biomarkers: lipid peroxidation concentration (LPO) in liver, acetylcholinesterase activity in brain, and genotoxic DNA damage in erythrocytes). Two fish species, Acarichthys heckelii and Satanoperca jurupari, were collected 10, 45, and 90 days after the PAC spill in São Raimundo. At the same time, fish were collected from the Tupé Sustainable Development Reserve (Tupé) which served as a reference area. The sampling periods were related to the rising waters of the natural flood pulse of the Rio Negro. Higher concentrations of PAHs in water were observed at 10 and 45 days and returned to the values of TP 90 days after the PAC spill, a period in which harbor waters rose about 0.2 m. Unlike the PAHs in water, biomarker responses in both fish species significantly increased following the PAC spill in SR. Hepatic ethoxyresorufin-O-deethylase (EROD), PAH-like metabolites in bile, and erythrocyte DNA damage increases, together with inhibition of acetylcholinesterase (AChE) activity in the brain were the most evident responses for both fish species. The calculated pyrolytic index showed mixed sources of PAHs (petrogenic and pyrolytic). The applied PCA-FA indicated important relationships between dissolved organic carbon (DOC) and PAHs concentrations in water, where DOC and PAHs concentrations contributed to biomarkers responses for both fish species in all collection periods.


Assuntos
Biomarcadores , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Brasil , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Biomarcadores/metabolismo , Poluição por Petróleo/efeitos adversos , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glutationa Transferase/metabolismo , Monitoramento Ambiental , Peixes/metabolismo , Acetilcolinesterase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Bile/química , Bile/metabolismo
10.
J Biosci Bioeng ; 137(5): 403-411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413317

RESUMO

Estimation of the biliary clearance of drugs and their metabolites in humans is crucial for characterizing hepatobiliary disposition and potential drug-drug interactions. Sandwich-cultured hepatocytes, while useful for in vitro bile analysis, require cell destruction for bile recovery, limiting long-term or repeated dose drug effect evaluations. To overcome this limitation, we investigated the feasibility of coculturing a human hepatic carcinoma cell line (HepG2-NIAS cells) and a human cholangiocarcinoma cell line (TFK-1 cells) using the collagen vitrigel membrane in a variety of coculture configurations. The coculture configuration with physiological bile flow increased the permeability of fluorescein-labeled bile acids (CLF) across the HepG2-NIAS cell layer by approximately 1.2-fold compared to the HepG2-NIAS monoculture. This enhancement was caused by paracellular leakage due to the loosened tight junctions of HepG2-NIAS, confirmed by the use of an inhibitor for bile acid transporters, the increase of permeability of dextran, and the decrease of the transepithelial electrical resistance (TEER) value. Based on the results of loosening hepatic tight junctions via coculture with TFK-1 in the CLF permeability assay, we next attempted to collect the CLF accumulated in the bile canaliculi of HepG2-NIAS. The recovery of the CLF accumulated in the bile canaliculi was increased 1.4 times without disrupting hepatic tight junctions by the coculture of HepG2-NIAS cells and TFK-1 cells compared to the monoculture of HepG2-NIAS cells. This non-destructive bile recovery has the potential as a tool for estimating the biliary metabolite and provides valuable insights to improve in vitro bile analysis.


Assuntos
Bile , Junções Íntimas , Humanos , Bile/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Técnicas de Cocultura , Células Cultivadas , Hepatócitos
11.
J Pharm Biomed Anal ; 241: 115984, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266453

RESUMO

Flonoltinib Maleate (FM) is a dual-target inhibitor that selectively suppresses Janus kinase 2/FMS-like tyrosine kinase 3 (JAK2/FLT3), which is currently in phase I/IIa clinical trial in China for the treatment of myeloproliferative neoplasms (MPNs). In this research, we used [14C]-labeled FM (14C-FM) to investigate the distribution, metabolism, and excretion of FM in rats using High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry/Radioactivity Monitoring (HPLC-HRMS/RAM) and liquid scintillation counter. The results revealed that FM displayed widespread distribution in rats. Furthermore, FM demonstrated rapid clearance without any observed risk of organ toxicity attributed to accumulation. Profiling of FM metabolites in rat plasma, feces, urine, and bile identified a total of 17 distinct metabolites, comprising 7 phase I metabolites and 10 phase II metabolites. The major metabolic reactions involved oxygenation, dealkylation, methylation, sulfation, glucuronidation and glutathione conjugation. Based on these findings, a putative metabolic pathway of FM in rats was proposed. The overall recovery rate in the excretion experiment ranged from 93.04 % to 94.74 %. The results indicated that FM undergoes extensive hepatic metabolism in SD rats, with the majority being excreted through bile as metabolites and ultimately eliminated via feces. A minor fraction of FM (<10 %) was excreted through renal excretion in the form of urine. Integration of the current results with previous pharmacokinetic investigations of FM in rats and dogs enables a comprehensive elucidation of the in vivo ADME processes and characteristics of FM, thereby establishing a solid foundation for subsequent clinical investigations of FM.


Assuntos
Bile , Maleatos , Ratos , Animais , Cães , Ratos Sprague-Dawley , Distribuição Tecidual , Bile/metabolismo , Fezes/química , Maleatos/análise , Maleatos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Administração Oral
12.
J Gastrointest Cancer ; 55(2): 800-808, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38280173

RESUMO

INTRODUCTION: Previously we demonstrated that elevated serum CYFRA 21 - 1 is a reliable diagnostic and prognostic biomarker for biliary tract cancers. This study aims to explore the diagnostic performance of bile CYFRA 21 - 1 (bCYFRA 21 - 1) in discriminating malignant biliary obstruction (MBO) caused by cholangiocarcinoma (CCA). METHODS: 77 CCA patients ((17 intrahepatic CCA (iCCA), 49 perihilar CCA (pCCA) and 11 distal CCA (dCCA)) and 43 benign patients with biliary obstruction were enrolled. Serum and bile levels of CYFRA 21 - 1, carcinoembryonic antigen (CEA) and carbohydrate antigen 19 - 9 (CA19-9) were quantified. Diagnostic performances of these biomarkers were estimated by receiver operator characteristic curves. Subgroups analysis of these tumor markers among CCA subtypes was performed. RESULTS: High bCYFRA 21 - 1 (cut-off value of 59.25 ng/mL with sensitivity of 0.889 and specificity of 0.750) and high bile to serum ratio of CYFRA 21 - 1 (b/sCYFRA 21 - 1, cut-off value of 31.55 with sensitivity of 0.741 and specificity of 0.778) achieved better diagnostic performance than any other biomarker in discriminating MBO. Subgroup analysis revealed that bCYFRA 21 - 1 was significantly elevated in all CCA subtypes; moreover b/sCYFRA 21 - 1 was upregulated in pCCA and dCCA (the mean b/sCYFRA 21 - 1 of pCCA was highest among CCA subtypes: 57.90, IQR 29.82-112.27). CONCLUSIONS: Both high biliary CYFRA 21 - 1 and high bile to serum ratio of CYFRA 21 - 1 were reliable diagnostic biomarkers for MBO caused by CCA.


Assuntos
Antígenos de Neoplasias , Neoplasias dos Ductos Biliares , Bile , Biomarcadores Tumorais , Colangiocarcinoma , Colestase , Queratina-19 , Humanos , Queratina-19/sangue , Queratina-19/análise , Antígenos de Neoplasias/sangue , Antígenos de Neoplasias/análise , Masculino , Colangiocarcinoma/complicações , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangue , Feminino , Pessoa de Meia-Idade , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/sangue , Neoplasias dos Ductos Biliares/complicações , Bile/metabolismo , Biomarcadores Tumorais/sangue , Idoso , Colestase/diagnóstico , Colestase/sangue , Colestase/etiologia , Colestase/complicações , Antígeno CA-19-9/sangue , Prognóstico , Antígeno Carcinoembrionário/sangue , Adulto , Diagnóstico Diferencial
13.
Hepatology ; 79(2): 307-322, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140231

RESUMO

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS: Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS: CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , Animais , Camundongos , Dinoprostona , MicroRNAs/genética , Bile/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Hidroxiprostaglandina Desidrogenases/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
14.
Lab Chip ; 24(2): 375-382, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38126571

RESUMO

Cholangiocarcinoma (CCA) is an aggressive cancer that originates from the epithelial cells lining the bile ducts. Due to its location deep within the body and nonspecific symptoms in the early stages, it is often diagnosed at the advanced stage, thus leading to worse prognosis. Circulating tumor cells within liquid biopsies (i.e. blood) have been considered as promising biomarkers for CCA diagnosis, though current methods for profiling them are not satisfactory in terms of sensitivity and specificity. Herein we developed a new cancer cell probing and immuno-tracking assay known as "CAPTURE", which was performed on an integrated microfluidic system (IMS) to automate CCA diagnosis from bile with a sample amount of only 1 mL. The assay utilized magnetic beads surface-coated with two affinity reagents, a nucleic acid aptamer (HN16) and a glycosaminoglycan (SCH 45-mix), for capturing cancer cells in bile; the "gold standard" anti-epithelial cell adhesion molecule was used as a comparison. In a single-blind test of 54 CCA-positive (+) and 102 CCA-negative (-) clinical samples, sensitivities and specificities of 96 and 80%, respectively, were documented with the CAPTURE assay on-bench. An IMS composed of a centrifugal module for sample pretreatment and a CAPTURE module for cell capture and staining was integrated with a new "vertical integration module" for detecting cancer cells from bile without human intervention. Furthermore, a novel micro-tier structure within the centrifugal module was designed to block passage of gallbladder stones with diameters >1 mm, thereby preventing their interference during the subsequent CAPTURE assay. Improved sensitivity and specificity (100 & 83%, respectively) by using three affinity reagents were achieved on the IMS when using 26 clinical bile samples, confirming its clinical bio-applicability for CCA diagnosis. This approach could be therefore used for early-stage CCA diagnostics, ideally enabling effective treatment, as well as reducing potential for relapse.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Biomarcadores Tumorais/análise , Bile/química , Bile/metabolismo , Microfluídica , Método Simples-Cego , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia
15.
EMBO Rep ; 24(12): e57972, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37962001

RESUMO

Mitochondrial and peroxisomal anchored protein ligase (MAPL) is a dual ubiquitin and small ubiquitin-like modifier (SUMO) ligase with roles in mitochondrial quality control, cell death and inflammation in cultured cells. Here, we show that MAPL function in the organismal context converges on metabolic control, as knockout mice are viable, insulin-sensitive, and protected from diet-induced obesity. MAPL loss leads to liver-specific activation of the integrated stress response, inducing secretion of stress hormone FGF21. MAPL knockout mice develop fully penetrant spontaneous hepatocellular carcinoma. Mechanistically, the peroxisomal bile acid transporter ABCD3 is a primary MAPL interacting partner and SUMOylated in a MAPL-dependent manner. MAPL knockout leads to increased bile acid production coupled with defective regulatory feedback in liver in vivo and in isolated primary hepatocytes, suggesting cell-autonomous function. Together, our findings establish MAPL function as a regulator of bile acid synthesis whose loss leads to the disruption of bile acid feedback mechanisms. The consequences of MAPL loss in liver, along with evidence of tumor suppression through regulation of cell survival pathways, ultimately lead to hepatocellular carcinogenesis.


Assuntos
Bile , Proteínas Mitocondriais , Ubiquitina-Proteína Ligases , Animais , Camundongos , Bile/metabolismo , Ácidos e Sais Biliares , Fígado/metabolismo , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas
16.
Biomed Pharmacother ; 168: 115640, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806086

RESUMO

NASH is a highly prevalent metabolic syndrome that has no specific approved agents up to now. BBBP, which mainly contains bile acids, possess various pharmacological properties and some bile acids are available for NASH treatment. Herein, the therapeutic effects and underlying mechanisms of BBBP against NASH were systemically evaluated. In this study, mice received an HFHS diet over a 20-week period to induce NASH with or without BBBP intervention were used to evaluate the effect and underlying mechanisms of BBBP against NASH. Our results demonstrated that BBBP attenuated hepatic steatosis, reduced body weight gain and lipid concentrations, and improved sensitivity to insulin and tolerance to glucose in mice fed an HFHS diet. Metabolomics and transcriptomic analysis revealed that BBBP suppressed the arginine biosynthesis by up-regulating NOS3 expression and the PI3K-Akt signaling pathway was also regulated by BBBP, as indicated by 55 DEGs. Bioinformatic analysis predicted the regulatory effect of the FXR/PXR-PI3K-AKT-NOS3 axis on arginine biosynthesis-related metabolites. These results were further confirmed by the significantly increased mRNA and protein levels of NOS3, PI3K (Pik3r2), and AKT1. And the increased levels of arginine biosynthesis related-metabolites, such as urea, aspartic acid, glutamic acid, citrulline, arginine, and ornithine, were confirmed accurately based on targeted metabolomics analysis. Together, our study uncoded the complicated mechanisms of anti-NASH activities of BBBP, and provided critical evidence inspiring the discovery of innovative therapies based on BBBP in the treatment of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ursidae , Animais , Camundongos , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Dieta , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pós/farmacologia , Pós/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
Front Cell Infect Microbiol ; 13: 1254016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868349

RESUMO

Background: Clonorchiasis is an important foodborne parasitic disease. However, eggs of Clonorchis sinensis (C. sinensis) cannot be detected in feces during biliary obstruction. Moreover, many diseases can cause biliary obstruction, such as gallstones, adenocarcinoma, cholangiocarcinoma and Ascaris lumbricoides infection. Therefore, it is of great significance to distinguish between patients of biliary obstruction and biliary obstruction with C. sinensis infection. Methods: A total of 48 biliary obstruction patients were enrolled, including 23 infected with C. sinensis (C. sinensis) (OB+C.s) and 25 non-infected subjects (OB). The bile samples were collected by endoscopic retrograde cholangiopancreatography and analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Additionally, multivariate statistical analysis methods were employed to identify differential metabolites. Next, bile amino acid levels were determined by targeted metabolomics analysis. Result: A total of 146 and 132 significant metabolites were identified in electrospray ionization (ESI)+ and ESI- modes, respectively. The levels of amino acids (asparagine, glutamate, ornithine) and polyamines (spermidine and spermine) were significantly changed. Targeted analysis showed that the levels of amino acids (such as L-arginine, L-glutamine, L-lysine, L-propionic, and L-tyrosine) were lower in OB+C.s patients compared to those in OB patients. Marked metabolic pathways were involved in "Glutathione metabolism", "Caffeine metabolism", "Alanine, aspartate and glutamate metabolism", "Arginine and proline metabolism", "Purine metabolism", "Beta-Alanine metabolism", and "D-glutamine and D-glutamate metabolism". Conclusion: These results show that there were significant differences between OB+C.s and OB patients, especially in amino acids. The metabolic signature and perturbations in metabolic pathways may help to better distinguish OB+C.s and OB patients.


Assuntos
Colestase , Clonorquíase , Clonorchis sinensis , Animais , Humanos , Clonorquíase/complicações , Clonorquíase/parasitologia , Bile/química , Bile/metabolismo , Bile/parasitologia , Clonorchis sinensis/metabolismo , Colestase/complicações , Colestase/metabolismo , Aminoácidos/metabolismo , Glutamina/metabolismo , Metaboloma , Glutamatos/análise , Glutamatos/metabolismo
18.
Pharmacol Res Perspect ; 11(6): e1145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37885335

RESUMO

Daprodustat is an oral small molecule hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor (PHI) approved in Japan and the United States for the treatment of anemia associated with chronic kidney disease. This phase 1, nonrandomized, 2-period, crossover study in 6 healthy men characterized and quantified the metabolites generated after a microtracer IV infusion of 50 µg (125 nCi) [14 C]-daprodustat administered concomitantly with a nonradiolabeled therapeutic dose of a 6-mg daprodustat tablet, followed by a single oral solution dose of 25 mg (62.5 µCi) [14 C]-daprodustat. High-performance liquid chromatography (HPLC) coupled with radioactivity detection (TopCount or AMS) and HPLC-tandem mass spectrometry (HPLC-MSn ) were used for quantitative measurement and structural identification of radioactive metabolites in plasma, urine, feces, and bile. Following oral administration of [14 C]-daprodustat, unchanged daprodustat was the principal circulating drug-related component, accounting for 40% of plasma radioactivity. Predominant oxidative metabolites M2, M3, M4, and M13 individually represented 6-8% of the plasma radioactivity and together accounted for the majority of radioactivity in urine and feces (53% in both matrices; 12% and 41% of dose, respectively). Unchanged daprodustat was not detected in urine and was only 0.7% of total radioactivity in feces (<0.5% of dose), with the remainder of the dose accounted for by oxidative metabolites. The radio-metabolic profile of duodenal bile following IV infusion of [14 C]-daprodustat was similar to that observed in feces after oral administration. The data suggested that oral daprodustat was extensively absorbed, cleared exclusively by oxidative metabolism, and eliminated via hepatobiliary (primary) and urinary (secondary) excretion.


Assuntos
Barbitúricos , Bile , Humanos , Masculino , Bile/metabolismo , Estudos Cross-Over , Hidrolases/metabolismo
19.
Carcinogenesis ; 44(8-9): 671-681, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-37696683

RESUMO

Extracellular vesicles (EVs) are bilayered membrane vesicles produced by living cells and secreted into the extracellular matrix. Bile is a special body fluid that is secreted by the liver cells, and extracellular vesicles long RNAs (exLRs) have not been explored in bile. In this study, exLR sequencing (exLR-seq) was performed on 19 bile samples from patients with malignant cancer or patients with biliary stones. A total of 8649 mRNAs, 13 823 circRNAs and 1105 lncRNAs were detected. The KEGG pathway analysis revealed that differentially expressed exLRs were enriched in mTOR and AMPK signaling pathway. We identified five mRNAs (EID2, LLPH, ATP6V0A2, RRP9 and MTRNR2L10), three lncRNAs (AC015922.2, AL135905.1 and LINC00921) and six circRNAs (circASH1L, circATP9A, circCLIP1, circRNF138, circTIMMDC1 and circANKRD12) were enriched in bile EV samples with cancer, and these exLRs may be potential markers used to distinguish malignant cancers from benign biliary diseases. Moreover, the tissue/cellular source components of EVs were analyzed using the EV-origin algorithm. The absolute abundance of CD4_naive and Th1 cell source in bile EVs from cancer patients were significantly increased. In summary, our study presented abundant exLRs in human bile EVs and provides some basis for the selection of tumor diagnostic markers.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Bile/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , MicroRNAs/genética
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123139, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37463552

RESUMO

A simple near-infrared (NIR) spectroscopic scheme enabling direct measurement of organic phase extracted from human bile with no spectral interference from the extraction solvent was demonstrated for identification of gallbladder (GB) cancer. This scheme is used to recognize the different lipid contents in bile samples from GB cancer patients using NIR spectroscopy for disease identification. To this end, the extraction solvent should provide an absorption-free NIR region to observe peaks of related metabolite. For this purpose, deuterated chloroform (CDCl3) is uniquely suited as an extraction medium because it has few absorption peaks in the 4380-4100 cm-1 range, where intense peaks for lipids and cholesterol are located. This exploratory study used 37 bile samples (obtained from five normal subjects and nine GB polyp, 11 gallstone, six hepatocellular carcinoma (HCC), and six GB cancer patients). The transmission NIR spectra of the organic phases extracted using CDCl3 in a commercial glass vial were directly measured. The peak intensities of the GB cancer samples were lower than those of the other samples, and the differences were statistically significant, with a confidence interval greater than 99.0%. The lower lipid and cholesterol contents in the organic phases of the GB cancer samples were effectively identified in the corresponding NIR spectra. Therefore, the proposed NIR scheme is simpler and faster than the previous infrared (IR) measurement approach that requires solvent drying to highlight the buried metabolite peaks under a solvent absorption band.


Assuntos
Carcinoma Hepatocelular , Neoplasias da Vesícula Biliar , Neoplasias Hepáticas , Humanos , Bile/química , Bile/metabolismo , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/metabolismo , Clorofórmio/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Colesterol/análise , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA