Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 15955-15964, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814055

RESUMO

Artificial syntheses of biologically active molecules have been fruitful in many bioinspired catalysis applications. Specifically, verdoheme and biliverdin, bearing polypyrrole frameworks, have inspired catalyst designs to address energy and environmental challenges. Despite remarkable progress in benchtop synthesis of verdoheme and biliverdin derivatives, all reported syntheses, starting from metalloporphyrins or inaccessible biliverdin precursors, require multiple steps to achieve the final desired products. Additionally, such synthetic procedures use multiple reactants/redox agents and involve multistep purification/extraction processes that often lower the yield. However, in a single step using atmospheric oxygen, heme oxygenases selectively generate verdoheme or biliverdin from heme. Motivated by such enzymatic pathways, we report a single-step electrosynthesis of verdoheme or biliverdin derivatives from their corresponding meso-aryl-substituted metalloporphyrin precursors. Our electrosynthetic methods have produced a copper-coordinating verdoheme analog in >80% yield at an applied potential of 0.65 V vs ferrocene/ferrocenium in air-exposed acetonitrile solution with a suitable electrolyte. These electrosynthetic routes reached a maximum product yield within 8 h of electrolysis at room temperature. The major products of verdoheme and biliverdin derivatives were isolated, purified, and characterized using electrospray mass spectrometry, absorption spectroscopy, cyclic voltammetry, and nuclear magnetic resonance spectroscopy techniques. Furthermore, X-ray crystallographic data were collected for select cobalt (Co)- and Cu-chelating verdoheme and metal-free biliverdin products. Electrosynthesis routes for the selective modification at the macrocycle ring in a single step are not known yet, and therefore, we believe that this report would advance the scopes of electrosynthesis strategies.


Assuntos
Biliverdina , Biliverdina/química , Biliverdina/metabolismo , Biliverdina/análogos & derivados , Heme/química , Heme/análogos & derivados , Técnicas Eletroquímicas , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase (Desciclizante)/química , Porfirinas/química , Estrutura Molecular
2.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806351

RESUMO

Understanding the photophysical properties and stability of near-infrared fluorescent proteins (NIR FPs) based on bacterial phytochromes is of great importance for the design of efficient fluorescent probes for use in cells and in vivo. Previously, the natural ligand of NIR FPs biliverdin (BV) has been revealed to be capable of covalent binding to the inherent cysteine residue in the PAS domain (Cys15), and to the cysteine residue introduced into the GAF domain (Cys256), as well as simultaneously with these two residues. Here, based on the spectroscopic analysis of several NIR FPs with both cysteine residues in PAS and GAF domains, we show that the covalent binding of BV simultaneously with two domains is the reason for the higher quantum yield of BV fluorescence in these proteins as a result of rigid fixation of the chromophore in their chromophore-binding pocket. We demonstrate that since the attachment sites are located in different regions of the polypeptide chain forming a figure-of-eight knot, their binding to BV leads to shielding of many sites of proteolytic degradation due to additional stabilization of the entire protein structure. This makes NIR FPs with both cysteine residues in PAS and GAF domains less susceptible to cleavage by intracellular proteases.


Assuntos
Biliverdina , Fitocromo , Proteínas de Bactérias/metabolismo , Biliverdina/química , Cisteína/química , Proteínas Luminescentes/metabolismo , Fitocromo/metabolismo
3.
J Mol Biol ; 434(2): 167359, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34798132

RESUMO

Biliverdin-binding serpins (BBSs) are proteins that are responsible for coloration in amphibians and fluoresce in the near-infrared (NIR) spectral region. Here we produced the first functional recombinant BBS of the polka-dot treefrog Boana punctata (BpBBS), assembled with its biliverdin (BV) chromophore, and report its biochemical and photochemical characterization. We determined the crystal structure of BpBBS at 2.05 Å resolution, which demonstrated its structural homology to the mammalian protease inhibitor alpha-1-antitrypsin. BV interaction with BpBBS was studied and it was found that the N-terminal polypeptide (residues 19-50) plays a critical role in the BV binding. By comparing BpBBS with the available NIR fluorescent proteins and expressing it in mammalian cells, we demonstrated its potential as a NIR imaging probe. These results provide insight into the non-inhibitory function of serpins, provide a basis for improving their performance in mammalian cells, and suggest possible paths for the development of BBS-based fluorescent probes.


Assuntos
Biliverdina/química , Biliverdina/metabolismo , Serpinas/química , Serpinas/metabolismo , Animais , Proteínas de Bactérias/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Fitocromo/química , Tetrapirróis/química
4.
Biochem Soc Trans ; 48(6): 2657-2667, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33196077

RESUMO

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10-18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Assuntos
Biliverdina/química , Técnicas Biossensoriais , Corantes Fluorescentes/química , Espectrometria de Fluorescência/instrumentação , Animais , Antozoários , Biofísica , Cianobactérias/metabolismo , Proteínas de Fluorescência Verde/química , Humanos , Peróxido de Hidrogênio/química , Proteínas Luminescentes/química , Camundongos , Nanopartículas/química , Neoplasias/cirurgia , Oxigênio/química , Fotodegradação , Ficobilissomas/química , Fitocromo/química , Espalhamento de Radiação , Espectrometria de Fluorescência/métodos , Trichodesmium/metabolismo , Proteína Vermelha Fluorescente
5.
Theranostics ; 10(25): 11719-11736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052243

RESUMO

Rationale: Photothermal therapy employs the photoabsorbers to generate heat under the near-infrared (NIR) irradiation for thermal tumor ablation. However, NIR irradiation might damage the adjacent tissue due to the leakage of the photoabsorbers and the residual materials after treatment might hinder the local healing process. A bifunctional hydrogel that holds both photothermal property and potent pro-healing ability provides a viable option to resolve this issue. Methods: In this study, we developed a bioinspired green hydrogel (BVSF) with the integration of bioproduct biliverdin into natural derived silk fibroin matrix for antiglioma photothermal therapy and wound healing. Results: The BVSF hydrogel possessed excellent and controllable photothermal activity under NIR irradiation and resulted in effective tumor ablation both in vitro and in vivo. Additionally, the BVSF hydrogel exerted anti-inflammatory effects both in vitro and in vivo, and stimulated angiogenesis and wound healing in a full-thickness defect rat model. Conclusion: Overall, this proof-of-concept study was aimed to determine the feasibility and reliability of using an all-natural green formulation for photothermal therapy and post-treatment care.


Assuntos
Materiais Biomiméticos/administração & dosagem , Neoplasias Encefálicas/terapia , Glioma/terapia , Hidrogéis/administração & dosagem , Terapia Fototérmica/métodos , Animais , Biliverdina/química , Materiais Biomiméticos/química , Bombyx , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Fibroínas/química , Glioma/patologia , Humanos , Hidrogéis/química , Raios Infravermelhos , Injeções Intralesionais , Masculino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Células RAW 264.7 , Ratos , Reprodutibilidade dos Testes , Pele/efeitos dos fármacos , Pele/lesões , Cicatrização/efeitos dos fármacos
6.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810174

RESUMO

Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical "transparency window" of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from RpBphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV.


Assuntos
Biomarcadores/química , Proteínas Luminescentes/química , Ficobilinas/química , Ficocianina/química , Fitocromo/química , Bactérias/química , Proteínas de Bactérias/química , Biliverdina/química , Cisteína/química , Fluorescência , Proteínas Luminescentes/isolamento & purificação , Ligação Proteica , Tetrapirróis/química
7.
ACS Nano ; 13(7): 7690-7704, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31246412

RESUMO

Photoacoustic imaging has emerged as a promising imaging platform with a high tissue penetration depth. However, biodegradable nanoparticles, especially those for photoacoustic imaging, are rare and limited to a few polymeric agents. The development of such nanoparticles holds great promise for clinically translatable diagnostic imaging with high biocompatibility. Metabolically digestible and inherently photoacoustic imaging probes can be developed from nanoprecipitation of biliverdin, a naturally occurring heme-based pigment. The synthesis of nanoparticles composed of a biliverdin network, cross-linked with a bifunctional amine linker, is achieved where spectral tuning relies on the choice of reaction media. Nanoparticles synthesized in water or water containing sodium chloride exhibit higher absorbance and lower fluorescence compared to nanoparticles synthesized in 2-(N-morpholino)ethanesulfonic acid buffer. All nanoparticles display high absorbance at 365 and 680 nm. Excitation at near-infrared wavelengths leads to a strong photoacoustic signal, while excitation with ultraviolet wavelengths results in fluorescence emission. In vivo photoacoustic imaging experiments in mice demonstrated that the nanoparticles accumulate in lymph nodes, highlighting their potential utility as photoacoustic agents for sentinel lymph node detection. The biotransformation of these agents was studied using mass spectroscopy, and they were found to be completely biodegraded in the presence of biliverdin reductase, a ubiquitous enzyme found in the body. Degradation of these particles was also confirmed in vivo. Thus, the nanoparticles developed here are a promising platform for biocompatible biological imaging due to their inherent photoacoustic and fluorescent properties as well as their complete metabolic digestion.


Assuntos
Biliverdina/química , Linfonodos/diagnóstico por imagem , Nanopartículas/química , Imagem Óptica , Técnicas Fotoacústicas , Animais , Biliverdina/síntese química , Biliverdina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Hidrodinâmica , Células MCF-7 , Camundongos , Camundongos Nus , Nanopartículas/metabolismo , Tamanho da Partícula , Propriedades de Superfície , Suínos
8.
Adv Mater ; 31(16): e1900822, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30828877

RESUMO

Photothermal nanomaterials that integrate multimodal imaging and therapeutic functions provide promising opportunities for noninvasive and targeted diagnosis and treatment in precision medicine. However, the clinical translation of existing photothermal nanoagents is severely hindered by their unclear physiological metabolism, which makes them a strong concern for biosafety. Here, the utilization of biliverdin (BV), an endogenic near-infrared (NIR)-absorbing pigment with well-studied metabolic pathways, to develop photothermal nanoagents with the aim of providing efficient and metabolizable candidates for tumor diagnosis and therapy, is demonstrated. It is shown that BV nanoagents with intense NIR absorption, long-term photostability and colloidal stability, and high photothermal conversion efficiency can be readily constructed by the supramolecular multicomponent self-assembly of BV, metal-binding short peptides, and metal ions through the reciprocity and synergy of coordination and multiple noncovalent interactions. In vivo data reveal that the BV nanoagents selectively accumulate in tumors, locally elevate tumor temperature under mild NIR irradiation, and consequently induce efficient photothermal tumor ablation with promising biocompatibility. Furthermore, the BV nanoagents can serve as a multimodal contrast for tumor visualization through both photoacoustic and magnetic resonance imaging. BV has no biosafety concerns, and thereby offers a great potential in precision medicine by integrating multiple theranostic functions.


Assuntos
Biliverdina/metabolismo , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Biliverdina/química , Complexos de Coordenação/química , Xenoenxertos , Humanos , Raios Infravermelhos , Células MCF-7 , Manganês/química , Camundongos , Imagem Multimodal , Imagem Óptica , Técnicas Fotoacústicas , Fototerapia , Nanomedicina Teranóstica
9.
Sci Rep ; 9(1): 1866, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755663

RESUMO

Phytochromes are red/far-red light sensing photoreceptors employing linear tetrapyrroles as chromophores, which are covalently bound to a cysteine (Cys) residue in the chromophore-binding domain (CBD, composed of a PAS and a GAF domain). Recently, near-infrared (NIR) fluorescent proteins (FPs) engineered from bacterial phytochromes binding biliverdin IXα (BV), such as the iRFP series, have become invaluable probes for multicolor fluorescence microscopy and in vivo imaging. However, all current NIR FPs suffer from relatively low brightness. Here, by combining biochemical, spectroscopic and resonance Raman (RR) assays, we purified and characterized an iRFP variant that contains a BV chromophore simultaneously bound to two cysteines. This protein with the unusual double-Cys attached BV showed the highest fluorescence quantum yield (FQY) of 16.6% reported for NIR FPs, whereas the initial iRFP appeared to be a mixture of species with a mean FQY of 11.1%. The purified protein was also characterized with 1.3-fold higher extinction coefficient that together with FQY resulted in almost two-fold brighter fluorescence than the original iRFP as isolated. This work shows that the high FQY of iRFPs with two cysteines is a direct consequence of the double attachment. The PAS-Cys, GAF-Cys and double-Cys attachment each entails distinct configurational constraints of the BV adduct, which can be identified by distinct RR spectroscopic features, i.e. the marker band including the C=C stretching coordinate of the ring A-B methine bridge, which was previously identified as being characteristic for rigid chromophore embedment and high FQY. Our findings can be used to rationally engineer iRFP variants with enhanced FQYs.


Assuntos
Cisteína/química , Proteínas Luminescentes/química , Proteínas de Bactérias/química , Biliverdina/química , Escherichia coli/química , Mutagênese , Fitocromo/química , Ligação Proteica , Domínios Proteicos , Rodopseudomonas/química , Espectrofotometria Ultravioleta , Análise Espectral Raman , Zinco/química , Proteína Vermelha Fluorescente
10.
Int J Mol Sci ; 18(5)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481303

RESUMO

Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains.


Assuntos
Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Proteínas Luminescentes/metabolismo , Fitocromo/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Proteínas de Bactérias/química , Biliverdina/química , Sítios de Ligação , Cisteína/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Fitocromo/química , Fitocromo/genética , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Vermelha Fluorescente
11.
Dalton Trans ; 45(6): 2694-9, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26743022

RESUMO

The reactions of iron(III) hydroxyisoporphyrin, chloro[5-(hydroxy)-5,10,15,20-tetrakis(4-methyl)-5,21H-porphinato]iron(III) [Fe(4-Me-HTPI)(Cl)](-), 1 and chloro[5-(hydroxy)-5,10,15,20-tetrakis(4-methoxy-5,21H-porphinato]iron(III) [Fe(4-OMe-HTPI)(Cl)](-), 2 with different O(-), N(-) and S(-) nucleophiles have been performed to understand the reactivity of iron isoporphyrins with nucleophiles. The treatment of iron(III) hydroxy isoporphyrin with alcohols is found to form ring opened 19-benzoyl-1-alkoxy-bilin iron complexes. When alkyl amines were used the formation of ring opened 19-benzoyl-1-alkylamine-bilin iron complexes was observed, but heterocyclic N-nucleophiles such as pyridine and imidazole form benzoyl bilinone iron complexes. No role of oxygen was found in these nucleophilic ring opening reactions. The treatment of a S-nucleophile such as PhSH is found to reduce iron(III)-hydroxyisoporphyrin in the parent iron(III) porphyrin compound. The ring opening products were characterized using electronic and ESI-mass spectroscopy. The mechanism for the formation of ring opening products is based on the formation of a tetrahedral intermediate at the carbon atom near the saturated meso carbon atom similar to the hydrolytic pathway of verdoheme conversion to biliverdin.


Assuntos
Compostos Férricos/química , Porfirinas/química , Álcoois/química , Biliverdina/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Heme/análogos & derivados , Heme/química , Espectroscopia de Ressonância Magnética , Teoria Quântica
12.
Oncotarget ; 6(27): 24393-403, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26405158

RESUMO

The oncogenic RAS-selective lethal small molecule Erastin triggers a unique iron-dependent form of nonapoptotic cell death termed ferroptosis. Ferroptosis is dependent upon the production of intracellular iron-dependent reactive oxygen species (ROS), but not other metals. However, key regulators remain unknown. The heme oxygenase (HO) is a major intracellular source of iron. In this study, the role of heme oxygenase in Erastin-triggered ferroptotic cancer cell death has been investigated. Zinc protoporphyrin IX (ZnPP), a HO-1 inhibitor, prevented Erastin-triggered ferroptotic cancer cell death. Furthermore, Erastin induced the protein and mRNA levels of HO-1 in HT-1080 fibrosarcoma cells. HO-1+/+ and HO-1-/- fibroblast, HO-1 overexpression, and chycloheximide-treated experiments revealed that the expression of HO-1 has a decisive effects in Erastin-triggered cell death. Hemin and CO-releasing molecules (CORM) promote Erastin-induced ferroptotic cell death, not by biliverdin and bilirubin. In addition, hemin and CORM accelerate the HO-1 expression in the presence of Erastin and increase membranous lipid peroxidation. Thus, HO-1 is an essential enzyme for iron-dependent lipid peroxidation during ferroptotic cell death.


Assuntos
Morte Celular , Regulação Neoplásica da Expressão Gênica , Heme Oxigenase-1/metabolismo , Ferro/química , Proteínas de Membrana/metabolismo , Piperazinas/química , Animais , Bilirrubina/química , Biliverdina/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cicloeximida/química , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Hemina/química , Humanos , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Protoporfirinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
J Nat Prod ; 76(10): 1958-65, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24156291

RESUMO

Bilirubin exhibits antioxidant and antimutagenic effects in vitro. Additional tetrapyrroles that are naturally abundant were tested for antigenotoxicity in Salmonella. Un-/conjugated bilirubin (1 and 2), biliverdin (4), bilirubin and biliverdin dimethyl esters (3 and 5), stercobilin (6), urobilin (7), and protoporphyrin (8) were evaluated at physiological concentrations (0.01-2 µmol/plate; 3.5-714 µM) against the metabolically activated food-borne mutagens aflatoxin B1 (9) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (10). Compound 8 most effectively inhibited the mutagenic effects of 9 in strain TA102 and 10 in TA98. Compound 7 inhibited 9-induced mutagenesis in strain TA98 most effectively, while 1 and 4 were promutagenic in this strain. This is likely due to their competition with mutagens for phase-II detoxification. Mechanistic investigations into antimutagenesis demonstrate that tetrapyrroles react efficiently with a model epoxide of 9, styrene epoxide (11), to form covalent adducts. This reaction is significantly faster than that of 11 with guanine. Hence, the evaluated tetrapyrroles inhibited genotoxicity induced by poly-/heterocyclic amines found in foods, and novel evidence obtained in the present investigation suggests this may occur via chemical scavenging of genotoxic metabolites of the mutagens investigated. This may have important ramifications for maintaining health, especially with regard to cancer prevention.


Assuntos
Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Bilirrubina/farmacologia , Biliverdina/farmacologia , Mutagênese/efeitos dos fármacos , Mutagênicos/farmacologia , Tetrapirróis/farmacologia , Aflatoxina B1/química , Aflatoxina B1/farmacologia , Antimutagênicos/química , Antioxidantes/química , Bilirrubina/química , Biliverdina/química , Alimentos , Humanos , Modelos Biológicos , Estrutura Molecular , Testes de Mutagenicidade , Mutagênicos/química , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Tetrapirróis/química
14.
Phys Chem Chem Phys ; 13(25): 11985-97, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21611667

RESUMO

Bacteriophytochromes (Bphs) are red-light photoreceptor proteins with a photosensory core that consists of three distinct domains, PAS, GAF and PHY, and covalently binds biliverdin (BV) to a conserved cysteine in the PAS domain. In a recent development, PAS-GAF variants were engineered for use as a near-infrared fluorescent marker in mammalian tissues (Tsien and co-workers, Science, 2009, 324, 804-807). Here, we report the fluorescence quantum yield and photochemistry of two highly-related Bphs from Rps. palustris, RpBphP2 (P2) and RpBphP3 (P3) with distinct photoconversion and fluorescence properties. We applied ultrafast spectroscopy to wild type P3 and P2 PAS-GAF proteins and their P3 D216A, Y272F and P2 D202A PAS-GAF-PHY mutant proteins. In these mutants hydrogen-bond interactions between a conserved aspartate (Asp) which connects the BV chromophore with the PHY domains are disrupted. The excited-state lifetime of the truncated P3 and P2 PAS-GAF proteins was significantly longer than in their PAS-GAF-PHY counterparts that constitute the full photosensory core. Mutation of the conserved Asp to Ala in the PAS-GAF-PHY protein had a similar but larger effect. The fluorescence quantum yields of the P3 D216A and Y272F mutants were 0.066, higher than that of wild type P3 (0.043) and similar to the engineered Bph of Tsien and co-workers. We conclude that elimination of a key hydrogen-bond interaction between Asp and a conserved Arg in the PHY domain is responsible for the excited-state lifetime increase in all Bph variants studied here. H/D exchange resulted in a 1.4-1.7 fold increase of excited-state lifetime. The results support a reaction model in which deactivation of the BV chromophore proceeds via excited-state proton transfer from the BV pyrrole nitrogens to the backbone of the conserved Asp or to a bound water. This work may aid in rational structure- and mechanism-based conversion of constructs based on P3 and other BPhs into efficient near-IR, deep tissue, fluorescent markers.


Assuntos
Proteínas de Bactérias/química , Fitocromo/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Biliverdina/química , Ligação de Hidrogênio , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fitocromo/genética , Estrutura Terciária de Proteína , Teoria Quântica , Rodopseudomonas/metabolismo , Espectrometria de Fluorescência
15.
Science ; 324(5928): 804-7, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19423828

RESUMO

Visibly fluorescent proteins (FPs) from jellyfish and corals have revolutionized many areas of molecular and cell biology, but the use of FPs in intact animals, such as mice, has been handicapped by poor penetration of excitation light. We now show that a bacteriophytochrome from Deinococcus radiodurans, incorporating biliverdin as the chromophore, can be engineered into monomeric, infrared-fluorescent proteins (IFPs), with excitation and emission maxima of 684 and 708 nm, respectively; extinction coefficient >90,000 M(-1) cm(-1); and quantum yield of 0.07. IFPs express well in mammalian cells and mice and spontaneously incorporate biliverdin, which is ubiquitous as the initial intermediate in heme catabolism but has negligible fluorescence by itself. Because their wavelengths penetrate tissue well, IFPs are suitable for whole-body imaging. The IFPs developed here provide a scaffold for further engineering.


Assuntos
Biliverdina , Deinococcus/química , Proteínas Luminescentes , Fitocromo , Engenharia de Proteínas , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Biliverdina/química , Biliverdina/metabolismo , Linhagem Celular , Diagnóstico por Imagem , Fluorescência , Humanos , Fígado/anatomia & histologia , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Camundongos , Dados de Sequência Molecular , Fitocromo/química , Fitocromo/genética , Fitocromo/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Espectrofotometria Infravermelho , Imagem Corporal Total
16.
Bioorg Med Chem ; 16(7): 3616-25, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18304823

RESUMO

Bile pigments, including bilirubin and biliverdin are tetrapyrrolic, dicarboxylic acids capable of forming conjugates at their propionic acid groups via ester or amide bonds. They possess substantial antioxidant and anti-mutagenic activities and therefore their intestinal absorption might influence the development of cardiovascular disease and cancer. The aim of this study was to investigate whether altering the physico-chemical properties of bile pigments would improve their permeability in an in vitro assay of absorption. Native and synthetically modified bile pigments were tested for gastrointestinal permeability and metabolic stability using the Caco-2 cell line. In addition, a gross measure of their toxic effects was tested in a red blood cell co-incubation assay. The apparent permeability of unconjugated bilirubin (1), bilirubin ditaurate (2) and biliverdin (3) through Caco-2 cell monolayers was determined to be 10.4+/-1.2x10(-7), 35.2+/-3.4x10(-7) and 37.0+/-1.6x10(-7) cm/s (mean+/-SD), respectively, while biliverdin diglucosamine (4), and biliverdin dioctylamine (5) were impermeable. Unconjugated bilirubin, biliverdin, bilirubin ditaurate and biliverdin diglucosamine did not decompose when incubated in Caco-2 cell homogenates, whereas biliverdin dioctylamine decomposed over time. Only unconjugated bilirubin showed toxicity towards red blood cells (> or = 1000 microM), an effect that was abolished by the addition of 40 g/L serum albumin. The data presented here suggest that bile pigments are absorbed across the Caco-2 cell monolayer and that conjugation of biliverdin to hydrophilic or lipophilic moieties decreases their absorption and can reduce their metabolic stability. In summary, exogenous bilirubin and biliverdin supplements could be absorbed across the intestinal epithelium in vivo and potentially increase circulating concentrations of these antioxidant compounds.


Assuntos
Biliverdina/química , Biliverdina/metabolismo , Permeabilidade da Membrana Celular , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Biliverdina/síntese química , Biliverdina/toxicidade , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Humanos , Estrutura Molecular
17.
Mutat Res ; 658(1-2): 28-41, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17602853

RESUMO

Bile pigments, including bilirubin and biliverdin, are endogenous compounds belonging to the porphyrin family of molecules. In the past, bile pigments and bilirubin in particular were thought of as useless by-products of heme catabolism that can be toxic if they accumulate. However, in the past 20 years, research probing the physiological relevance of bile pigments has been mounting, with evidence to suggest bile pigments possess significant antioxidant and anti-mutagenic properties. More specifically, bile pigments are potent peroxyl radical scavengers and inhibit the mutagenic effects of a number of classes of mutagens (polycyclic aromatic hydrocarbons, heterocyclic amines, oxidants). Coincidentally, persons with elevated circulating bilirubin concentrations have a reduced prevalence of cancer and cardio-vascular disease. Despite the encouraging in vitro anti-mutagenic effects of bile pigments, relatively little research has been conducted on their inhibitory capacity in bacterial and cultured cell assays of mutation, which might link the existing in vitro and in vivo observations. This is the first review to summarise the published data and it is our hope it will stimulate further research on these potentially preventative compounds.


Assuntos
Antimutagênicos/metabolismo , Pigmentos Biliares/metabolismo , Sequestradores de Radicais Livres/metabolismo , Animais , Antimutagênicos/química , Antimutagênicos/farmacologia , Pigmentos Biliares/química , Pigmentos Biliares/farmacologia , Biliverdina/química , Biliverdina/metabolismo , Biliverdina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Estrutura Molecular , Oxidantes/antagonistas & inibidores , Oxidantes/metabolismo
18.
J Am Chem Soc ; 129(38): 11730-42, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17764179

RESUMO

Relaxation compensated Carr-Purcell-Meiboom-Gill (rc-CPMG) NMR experiments have been used to investigate micros-ms motions in heme oxygenase from Pseudomonas aeruginosa (pa-HO) in its ferric state, inhibited by CN- (pa-HO-CN) and N3- (pa-HO-N3), and in its ferrous state, inhibited by CO (pa-HO-CO). Comparative analysis of the data from the three forms indicates that the nature of the coordinated distal ligand affects the micros-ms conformational freedom of the polypeptide in regions of the enzyme far removed from the heme iron and distal ligand. Interpretation of the dynamical information in the context of the crystal structure of resting state pa-HO shows that residues involved in the network of structural hydrogen-bonded waters characteristic of HOs undergo micros-ms motions in pa-HO-CN, which was studied as a model of the highly paramagnetic S = 5/2 resting state form. In comparison, similar motions are suppressed in the pa-HO-CO and pa-HO-N3 complexes, which were studied as mimics of the obligatory oxyferrous and ferric hydroperoxide intermediates, respectively, in the catalytic cycle of heme degradation. These findings suggest that in addition to proton delivery to the nascent Fe(III)-OO(-) intermediate during catalysis, the hydrogen-bonding network serves two additional roles: (i) propagate the electronic state (reactive state) in each of the distinct steps of the catalytic cycle to key but remote sections of the polypeptide via small rearrangements in the network of hydrogen bonds and (ii) modulate the conformational freedom of the enzyme, thus allowing it to adapt to the demanding changes in axial coordination state and substrate transformations that take place during the catalytic cycle. This idea was probed by disrupting the hydrogen-bonding network in pa-HO by replacing R80 with L. NMR spectroscopic studies conducted with R80L-pa-HO-N3 and R80L-pa-HO-CO revealed that the mutant exhibits nearly global conformational disorder, which is absent in the equivalent complexes of the wild type enzyme. The "chaotic" disorder in the R80L mutant is likely related to its significantly lower efficiency to hydroxylate heme in the presence of H2O2, relative to the wild type enzyme.


Assuntos
Heme Oxigenase (Desciclizante)/química , Heme/análogos & derivados , Pseudomonas aeruginosa/enzimologia , Sequência de Bases , Biliverdina/química , Biliverdina/metabolismo , Catálise , Cristalografia por Raios X , Heme/química , Heme/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Ligação de Hidrogênio , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Hidroxilação , Ligantes , Espectroscopia de Ressonância Magnética , Oxirredução , Ligação Proteica , Conformação Proteica , Análise Espectral
19.
J Biol Chem ; 282(16): 12298-309, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17322301

RESUMO

Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IXalpha. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45A resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3(2) carbon of biliverdin to Cys(24), the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.


Assuntos
Deinococcus/metabolismo , Fitocromo/metabolismo , Biliverdina/química , Sítios de Ligação , Carbono/química , Cristalização , Cristalografia por Raios X , Dimerização , Evolução Molecular , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Fotossíntese , Conformação Proteica , Engenharia de Proteínas
20.
Biochemistry ; 46(7): 1860-7, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17253780

RESUMO

Heme oxygenase (HO) catalyzes the regiospecific cleavage of the porphyrin ring of heme using reducing equivalents and O2 to produce biliverdin, iron, and CO. Because CO has a cytoprotective effect through the p38-MAPK pathway, HO is a potential therapeutic target in cancer. In fact, inhibition of the HO isoform HO-1 reduces Kaposi sarcoma tumor growth. Imidazole-dioxolane compounds have recently attracted attention because they have been reported to specifically inhibit HO-1, but not HO-2, unlike Cr-containing protoporphyrin IX, a classical inhibitor of HO, that inhibits not only both HO isoforms but also other hemoproteins. The inhibitory mechanism of imidazole-dioxolane compounds, however, has not yet been characterized. Here, we determine the crystal structure of the ternary complex of rat HO-1, heme, and an imidazole-dioxolane compound, 2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-1,3-dioxolane. This compound bound on the distal side of the heme iron, where the imidazole and 4-chlorophenyl groups were bound to the heme iron and the hydrophobic cavity in HO, respectively. Binding of the bulky inhibitor in the narrow distal pocket shifted the distal helix to open the distal site and moved both the heme and the proximal helix. Furthermore, the biochemical characterization revealed that the catalytic reactions of both HO-1 and HO-2 were completely stopped after the formation of verdoheme in the presence of the imidazole-dioxolane compound. This result should be mainly due to the lower reactivity of the inhibitor-bound verdoheme with O2 compared to the reactivity of the inhibitor-bound heme with O2.


Assuntos
Dioxolanos/química , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/química , Imidazóis/química , Animais , Biliverdina/química , Sítios de Ligação , Cristalografia por Raios X , Heme/análogos & derivados , Heme/química , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/química , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Modelos Moleculares , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA