Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.734
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241250244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693842

RESUMO

Single biofilm biomimetic nanodrug delivery systems based on single cell membranes, such as erythrocytes and cancer cells, have immune evasion ability, good biocompatibility, prolonged blood circulation, and high tumor targeting. Because of the different characteristics and functions of each single cell membrane, more researchers are using various hybrid cell membranes according to their specific needs. This review focuses on several different types of biomimetic nanodrug-delivery systems based on composite biofilms and looks forward to the challenges and possible development directions of biomimetic nanodrug-delivery systems based on composite biofilms to provide reference and ideas for future research.


Assuntos
Antineoplásicos , Biofilmes , Biomimética , Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biomimética/métodos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Materiais Biomiméticos/química , Animais , Portadores de Fármacos/química
2.
ACS Appl Bio Mater ; 7(5): 3164-3178, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38722774

RESUMO

Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.


Assuntos
Antibacterianos , Biofilmes , Catecol Oxidase , Tamanho da Partícula , Biofilmes/efeitos dos fármacos , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Catecol Oxidase/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Simulação de Acoplamento Molecular , Escherichia coli/efeitos dos fármacos
4.
ACS Nano ; 18(20): 13196-13213, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717096

RESUMO

There is an increasingly growing demand to balance tissue repair guidance and opportunistic infection (OI) inhibition in clinical implant surgery. Herein, we developed a nanoadjuvant for all-stage tissue repair guidance and biofilm-responsive OI eradication via in situ incorporating Cobaltiprotoporphyrin (CoPP) into Prussian blue (PB) to prepare PB-CoPP nanozymes (PCZs). Released CoPP possesses a pro-efferocytosis effect for eliminating apoptotic and progressing necrotic cells in tissue trauma, thus preventing secondary inflammation. Once OIs occur, PCZs with switchable nanocatalytic capacity can achieve bidirectional pyroptosis regulation. Once reaching the acidic biofilm microenvironment, PCZs possess peroxidase (POD)-like activity that can generate reactive oxygen species (ROS) to eradicate bacterial biofilms, especially when synergized with the photothermal effect. Furthermore, generated ROS can promote macrophage pyroptosis to secrete inflammatory cytokines and antimicrobial proteins for biofilm eradication in vivo. After eradicating the biofilm, PCZs possess catalase (CAT)-like activity in a neutral environment, which can scavenge ROS and inhibit macrophage pyroptosis, thereby improving the inflammatory microenvironment. Briefly, PCZs as nanoadjuvants feature the capability of all-stage tissue repair guidance and biofilm-responsive OI inhibition that can be routinely performed in all implant surgeries, providing a wide range of application prospects and commercial translational value.


Assuntos
Biofilmes , Piroptose , Biofilmes/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ferrocianetos/química , Ferrocianetos/farmacologia , Próteses e Implantes , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização/efeitos dos fármacos , Humanos , Eferocitose
5.
Curr Microbiol ; 81(7): 176, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755426

RESUMO

Antimicrobial resistance (AMR) presents a global challenge as microorganisms evolve to withstand the effects of antibiotics. In addition, the improper use of antibiotics significantly contributes to the AMR acceleration. Essential oils have garnered attention for their antimicrobial potential. Indeed, essential oils extracted from plants contain compounds that exhibit antibacterial activity, including against resistant microorganisms. Hence, this study aimed to evaluate the antimicrobial and antibiofilm activity of the essential oil (EO) extracted from Lippia grata and its combination with ampicillin against Staphylococcus aureus strains (ATCC 25923, ATCC 700698, and JKD6008). The plant material (leaves) was gathered in Mossoro, RN, and the EO was obtained using the hydrodistillation method with the Clevenger apparatus. The antimicrobial activity of the EO was assessed through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiofilm activity was evaluated by measuring biomass using crystal violet (CV) staining, viable cell counting, and analysis of preformed biofilms. In addition, the synergistic effects of the EO in combination with ampicillin were examined by scanning electron and confocal microscopy. The EO displayed a MIC value of 2.5 mg/mL against all tested S. aureus strains and an MBC only against S. aureus JKD6008 at 2.5 mg/mL. L. grata EO caused complete biofilm inhibition at concentrations ranging from 10 to 0.312 mg/mL against S. aureus ATCC 25923 and 10 to 1.25 mg/mL against S. aureus ATCC 700698 and S. aureus JKD6008. In the viable cell quantification assay, there was a reduction in CFU ranging from 1.0 to 8.0 logs. The combination of EO with ampicillin exhibited a synergistic effect against all strains. Moreover, the combination showed a significantly inhibiting biofilm formation and eradicating preformed biofilms. Furthermore, the EO and ampicillin (individually and in combination) altered the cellular morphology of S. aureus cells. Regarding the mechanism, the results revealed that L. grata EO increased membrane permeability and caused significant membrane damage. Concerning the synergy mechanism, the results revealed that the combination of EO and ampicillin increases membrane permeability and causes considerable membrane damage, further inhibiting bacteria synergistically. The findings obtained here suggest that L. grata EO in combination with ampicillin could be a viable treatment option against S. aureus infections, including MRSA strain.


Assuntos
Ampicilina , Antibacterianos , Biofilmes , Sinergismo Farmacológico , Lippia , Testes de Sensibilidade Microbiana , Óleos Voláteis , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Ampicilina/farmacologia , Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Lippia/química , Extratos Vegetais/farmacologia , Folhas de Planta/química
6.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708178

RESUMO

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Lipossomos , Nanopartículas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Nanopartículas/química , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , Portadores de Fármacos/química , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Lipídeos/química , Lipídeos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Células A549 , Alginatos/química
7.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720301

RESUMO

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Assuntos
Antibacterianos , Bandagens , Biofilmes , Óxido Nítrico , Terapia Fototérmica , Ratos Sprague-Dawley , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Terapia Fototérmica/métodos , Masculino , Quitosana/química , Quitosana/farmacologia , Nanofibras/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Staphylococcus aureus/efeitos dos fármacos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , S-Nitrosoglutationa/farmacologia , S-Nitrosoglutationa/química
8.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702622

RESUMO

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Assuntos
Biofilmes , Peixes-Gato , Nanopartículas Metálicas , Prata , Nanopartículas Metálicas/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Prata/química , Prata/farmacologia , Animais , Humanos , Muco/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Células Vero , Proteínas de Peixes/farmacologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Chlorocebus aethiops , Linhagem Celular Tumoral , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Candida albicans/efeitos dos fármacos , Epiderme/metabolismo
9.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731983

RESUMO

Acne vulgaris is a prevalent skin disorder affecting many young individuals, marked by keratinization, inflammation, seborrhea, and colonization by Cutibacterium acnes (C. acnes). Ellagitannins, known for their antibacterial and anti-inflammatory properties, have not been widely studied for their anti-acne effects. Chestnut (Castanea sativa Mill., C. sativa), a rich ellagitannin source, including castalagin whose acne-related bioactivity was previously unexplored, was investigated in this study. The research assessed the effect of C. sativa leaf extract and castalagin on human keratinocytes (HaCaT) infected with C. acnes, finding that both inhibited IL-8 and IL-6 release at concentrations below 25 µg/mL. The action mechanism was linked to NF-κB inhibition, without AP-1 involvement. Furthermore, the extract displayed anti-biofilm properties and reduced CK-10 expression, indicating a potential role in mitigating inflammation, bacterial colonization, and keratosis. Castalagin's bioactivity mirrored the extract's effects, notably in IL-8 inhibition, NF-κB inhibition, and biofilm formation at low µM levels. Other polyphenols, such as flavonol glycosides identified via LC-MS, might also contribute to the extract's biological activities. This study is the first to explore ellagitannins' potential in treating acne, offering insights for developing chestnut-based anti-acne treatments pending future in vivo studies.


Assuntos
Acne Vulgar , Fagaceae , Taninos Hidrolisáveis , Extratos Vegetais , Folhas de Planta , Humanos , Taninos Hidrolisáveis/farmacologia , Fagaceae/química , Acne Vulgar/microbiologia , Acne Vulgar/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Células HaCaT , Propionibacterium acnes/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Interleucina-8/metabolismo
10.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731582

RESUMO

Clinicians often have to face infections caused by microorganisms that are difficult to eradicate due to their resistance and/or tolerance to antimicrobials. Among these pathogens, Pseudomonas aeruginosa causes chronic infections due to its ability to form biofilms on medical devices, skin wounds, ulcers and the lungs of patients with Cystic Fibrosis. In this scenario, the plant world represents an important reservoir of natural compounds with antimicrobial and/or antibiofilm properties. In this study, an extract from the leaves of Combretum micranthum G. Don, named Cm4-p, which was previously investigated for its antimicrobial activities, was assayed for its capacity to inhibit biofilm formation and/or to eradicate formed biofilms. The model strain P. aeruginosa PAO1 and its isogenic biofilm hyperproducer derivative B13 were treated with Cm4-p. Preliminary IR, UV-vis, NMR, and mass spectrometry analyses showed that the extract was mainly composed of catechins bearing different sugar moieties. The phytocomplex (3 g/L) inhibited the biofilm formation of both the PAO1 and B13 strains in a significant manner. In light of the obtained results, Cm4-p deserves deeper investigations of its potential in the antimicrobial field.


Assuntos
Antibacterianos , Biofilmes , Catequina , Combretum , Testes de Sensibilidade Microbiana , Extratos Vegetais , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Catequina/farmacologia , Catequina/química , Combretum/química , Folhas de Planta/química , Açúcares , Humanos
11.
Respir Med ; 227: 107661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729529

RESUMO

Antibiotic-resistant bacteria associated with LRTIs are frequently associated with inefficient treatment outcomes. Antibiotic-resistant Streptococcus pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, and Staphylococcus aureus, infections are strongly associated with pulmonary exacerbations and require frequent hospital admissions, usually following failed management in the community. These bacteria are difficult to treat as they demonstrate multiple adaptational mechanisms including biofilm formation to resist antibiotic threats. Currently, many patients with the genetic disease cystic fibrosis (CF), non-CF bronchiectasis (NCFB) and chronic obstructive pulmonary disease (COPD) experience exacerbations of their lung disease and require high doses of systemically administered antibiotics to achieve meaningful clinical effects, but even with high systemic doses penetration of antibiotic into the site of infection within the lung is suboptimal. Pulmonary drug delivery technology that reliably deliver antibacterials directly into the infected cells of the lungs and penetrate bacterial biofilms to provide therapeutic doses with a greatly reduced risk of systemic adverse effects. Inhaled liposomal-packaged antibiotic with biofilm-dissolving drugs offer the opportunity for targeted, and highly effective antibacterial therapeutics in the lungs. Although the challenges with development of some inhaled antibiotics and their clinicals trials have been studied; however, only few inhaled products are available on market. This review addresses the current treatment challenges of antibiotic-resistant bacteria in the lung with some clinical outcomes and provides future directions with innovative ideas on new inhaled formulations and delivery technology that promise enhanced killing of antibiotic-resistant biofilm-dwelling bacteria.


Assuntos
Antibacterianos , Biofilmes , Sistemas de Liberação de Medicamentos , Infecções Respiratórias , Humanos , Biofilmes/efeitos dos fármacos , Administração por Inalação , Antibacterianos/administração & dosagem , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Farmacorresistência Bacteriana , Streptococcus pneumoniae/efeitos dos fármacos , Lipossomos , Bronquiectasia/tratamento farmacológico , Bronquiectasia/microbiologia , Haemophilus influenzae/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Fibrose Cística/microbiologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/complicações
12.
ACS Appl Mater Interfaces ; 16(20): 25757-25772, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738757

RESUMO

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.


Assuntos
Antibacterianos , Biofilmes , Indóis , NF-kappa B , Nanopartículas , Percepção de Quorum , Cicatrização , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Camundongos , NF-kappa B/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Percepção de Quorum/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Flavanonas/química , Flavanonas/farmacologia , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Polímeros/química , Polímeros/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Humanos
13.
J Orthop Surg Res ; 19(1): 304, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769535

RESUMO

BACKGROUND: Periprosthetic joint infection is a serious complication following joint replacement. The development of bacterial biofilms bestows antibiotic resistance and restricts treatment via implant retention surgery. Electromagnetic induction heating is a novel technique for antibacterial treatment of metallic surfaces that has demonstrated in-vitro efficacy. Previous studies have always employed stationary, non-portable devices. This study aims to assess the in-vitro efficacy of induction-heating disinfection of metallic surfaces using a new Portable Disinfection System based on Induction Heating. METHODS: Mature biofilms of three bacterial species: S. epidermidis ATCC 35,984, S. aureus ATCC 25,923, E. coli ATCC 25,922, were grown on 18 × 2 mm cylindrical coupons of Titanium-Aluminium-Vanadium (Ti6Al4V) or Cobalt-chromium-molybdenum (CoCrMo) alloys. Study intervention was induction-heating of the coupon surface up to 70ºC for 210s, performed using the Portable Disinfection System (PDSIH). Temperature was monitored using thermographic imaging. For each bacterial strain and each metallic alloy, experiments and controls were conducted in triplicate. Bacterial load was quantified through scraping and drop plate techniques. Data were evaluated using non-parametric Mann-Whitney U test for 2 group comparison. Statistical significance was fixed at p ≤ 0.05. RESULTS: All bacterial strains showed a statistically significant reduction of CFU per surface area in both materials. Bacterial load reduction amounted to 0.507 and 0.602 Log10 CFU/mL for S. aureus on Ti6Al4V and CoCrMo respectively, 5.937 and 3.500 Log10 CFU/mL for E. coli, and 1.222 and 0.372 Log10 CFU/mL for S. epidermidis. CONCLUSIONS: Electromagnetic induction heating using PDSIH is efficacious to reduce mature biofilms of S aureus, E coli and S epidermidis growing on metallic surfaces of Ti6Al4V and CoCrMo alloys.


Assuntos
Ligas , Biofilmes , Desinfecção , Escherichia coli , Infecções Relacionadas à Prótese , Staphylococcus aureus , Titânio , Biofilmes/efeitos dos fármacos , Desinfecção/métodos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Relacionadas à Prótese/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Prótese Articular/microbiologia , Artroplastia de Substituição/instrumentação , Artroplastia de Substituição/métodos , Calefação/instrumentação , Calefação/métodos , Humanos , Fenômenos Eletromagnéticos , Vitálio
14.
Nat Commun ; 15(1): 4036, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740750

RESUMO

Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.


Assuntos
Proteínas de Bactérias , Níquel , Níquel/metabolismo , Níquel/química , Animais , Virulência/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Zinco/metabolismo , Zinco/química , Mariposas/microbiologia , Urease/metabolismo , Urease/antagonistas & inibidores , Transporte Biológico
15.
Sci Rep ; 14(1): 10882, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740792

RESUMO

The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.


Assuntos
Biofilmes , Gases em Plasma , Saliva , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Gases em Plasma/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Saliva/microbiologia , Fibroblastos/microbiologia , Fibroblastos/efeitos dos fármacos , Periodontite/microbiologia , Periodontite/terapia , Linhagem Celular , Boca/microbiologia
16.
J Nanobiotechnology ; 22(1): 254, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755625

RESUMO

AIM: The antifungal activity was studied on sessile and persister cells (PCs) of Candida tropicalis biofilms of gold nanoparticles (AuNPs) stabilized with cetyltrimethylammonium bromide (CTAB-AuNPs) and those conjugated with cysteine, in combination with Amphotericin B (AmB). MATERIALS/METHODS: The PC model was used and synergistic activity was tested by the checkerboard assay. Biofilms were studied by crystal violet and scanning electron microscopy. RESULTS/CONCLUSIONS: After the combination of both AuNPs and AmB the biofilm biomass was reduced, with significant differences in architecture being observed with a reduced biofilm matrix. In addition, the CTAB-AuNPs-AmB combination significantly reduced PCs. Understanding how these AuNPs aid in the fight against biofilms and the development of new approaches to eradicate PCs has relevance for chronic infection treatment.


Assuntos
Anfotericina B , Antifúngicos , Biofilmes , Candida tropicalis , Sinergismo Farmacológico , Ouro , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Candida tropicalis/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Biofilmes/efeitos dos fármacos , Anfotericina B/farmacologia , Anfotericina B/química , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Antifúngicos/química , Cetrimônio/química , Compostos de Cetrimônio/farmacologia , Compostos de Cetrimônio/química
17.
Sci Rep ; 14(1): 11161, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750054

RESUMO

Biodegradable plastics are those subjected easily to a degradation process, in which they can be decomposed after disposal in the environment through microbial activity. 30 bioplastic film formulations based only on chitosan film were used in the current investigation as a positive control together with chitosan film recovered from chitin-waste of locally obtained Aristeus antennatus. Additionally, castor oil was used as a plasticizer. While the yield of chitosan was 18% with 7.65% moisture content and 32.27% ash in the shells, the isolated chitin had a degree of deacetylation (DD) of 86%. The synthesized bioplastic films were characterized via numerous criteria. Firstly, the swelling capacity of these biofilms recorded relatively high percentages compared to polypropylene as synthetic plastic. Noticeably, the FTIR profiles, besides DSC, TGA, and XRD, confirmed the acceptable characteristics of these biofilms. In addition, their SEM illustrated the homogeneity and continuity with a few straps of the chitosan film and showed the homogeneous mixes of chitosan and castor oil with 5 and 20%. Moreover, data detected the antibacterial activity of different bioplastic formulas against some common bacterial pathogens (Enterococcus feacalis, Kelbsiella pnumina, Bacillus subtilis, and Pseudomonas aeruginosa). Amazingly, our bioplastic films have conducted potent antimicrobial activities. So, they may be promising in such a direction. Further, the biodegradability efficacy of bioplastic films formed was proved in numerous environments for several weeks of incubation. However, all bioplastic films decreased in their weights and changed in their colors, while polypropylene, was very constant all the time. The current findings suggest that our biofilms may be promising for many applications, especially in the field of food package protecting the food, and preventing microbial contamination, consequently, it may help in extending the shelf life of products.


Assuntos
Plásticos Biodegradáveis , Óleo de Rícino , Quitosana , Plastificantes , Amido , Quitosana/química , Quitosana/farmacologia , Óleo de Rícino/química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Plastificantes/química , Amido/química , Animais , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Mariposas/efeitos dos fármacos , Testes de Sensibilidade Microbiana
18.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732269

RESUMO

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Assuntos
Aldeídos , Antibacterianos , Biofilmes , Monoterpenos Ciclopentânicos , Azeite de Oliva , Fenóis , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Azeite de Oliva/química , Azeite de Oliva/farmacologia , Fenóis/farmacologia , Fenóis/química , Aldeídos/farmacologia , Aldeídos/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Aderência Bacteriana/efeitos dos fármacos
19.
ACS Appl Mater Interfaces ; 16(19): 24248-24260, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693878

RESUMO

Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.


Assuntos
Acetilcisteína , Antibacterianos , Biofilmes , Escherichia coli , Óxido Nítrico , Staphylococcus aureus , Acetilcisteína/química , Acetilcisteína/farmacologia , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Cloreto de Polivinila/química , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia
20.
J Contemp Dent Pract ; 25(3): 260-266, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690700

RESUMO

AIM AND BACKGROUND: This study aimed to explore the potential synergistic interaction of virgin coconut oil (VCO) and virgin olive oil (VOO) mixture against Streptococcus sanguinis, Streptococcus mutans, and Lactobacillus casei in a single and mixture species through the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antiadherence, and antibiofilm activities. MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect. RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species. CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO. CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.


Assuntos
Biofilmes , Óleo de Coco , Lacticaseibacillus casei , Testes de Sensibilidade Microbiana , Azeite de Oliva , Streptococcus mutans , Streptococcus sanguis , Azeite de Oliva/farmacologia , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Óleo de Coco/farmacologia , Técnicas In Vitro , Streptococcus sanguis/efeitos dos fármacos , Lacticaseibacillus casei/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA