Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Plant Physiol Biochem ; 208: 108501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452450

RESUMO

The vacuolar iron transporter (VIT) family is responsible for absorbing and storing iron ions in vacuoles. Here, the BnVIT-L2 gene from Brassica napus has been cloned for the first time and was found to be expressed in multiple tissues and organs, induced by iron stress. The BnVIT-L2 protein is located in vacuolar membranes and has the ability to bind both iron and other bivalent metal ions. Over-expression of the BnVIT-L2 gene increased lateral root number and main root length, as well as chlorophyll and iron content in transgenic Arabidopsis plants (BnVIT-L2/At) exposed to iron stress, compared to wild type Col-0. Furthermore, over-expression of this gene improved the adaptability of transgenic B. napus plants (BnVIT-L2-OE) under iron stress. The regulation of plant tolerance under iron stress by BnVIT-L2 gene may involve in the signal of reactive oxygen species (ROS), as suggested by Ribosome profiling sequencing (Ribo-seq). This study provides a reference for investigating plant growth and biofortification under iron stress through the BnVIT-L2 gene.


Assuntos
Arabidopsis , Ferro , Ferro/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biofortificação , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/metabolismo , Íons/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
Sci Total Environ ; 926: 171772, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38499106

RESUMO

The application of soil amendment (SA) and the cultivation of low Cd-accumulating varieties have been a widely favored strategy to enable the safe utilization of Cd-contaminated arable land. However, little has been reported on the reciprocal effects of SA on the Cd mitigation and nutritional quality of different wheat varieties. In this study, we evaluated the impact of an SA on agronomic traits, Cd accumulation, translocation and mineral nutrition of 12 wheat varieties in an acidic field with a Cd concentration of 0.46 mg/kg. The results showed that the SA significantly reduced soil DTPA Cd (42.3 %) and resulted in a slight decrease in wheat grain yield (4.24-9.72 %, average 7.62 %). Similarly, the SA significantly reduced grain Cd concentrations (average 61.65 %) while increased the concentrations of beneficial elements such as Mo and Se in all wheat varieties. However, this intervention also led to a reduction in the concentration of essential mineral elements (such as Ca, Fe, and Mn) in whole wheat grain and starchy endosperm, as well as a reduction in their proportion in the bran. Based on genotypic differences, Huaimai 33, Zhenmai 168, Sumai 188 and Yangmai 28 were considered to be the relatively most promising wheat varieties for achieving a balance among food safety, nutritional quality, and economic yield in this region. Taken together, this study highlights the varietal differences in Cd mitigation and mineral accumulation in different wheat varieties in response to the SA, offering new perspectives for phytoremediation and biofortification strategies for Cd-contaminated farmland.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo , Triticum , Biofortificação , Poluentes do Solo/análise , Minerais , Grão Comestível/química
3.
Ecotoxicol Environ Saf ; 272: 116081, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335579

RESUMO

Selenium (Se) is a trace element that is essential for human health. Daily dietary Se intake is governed by the food chain through soil-plant systems. However, the cadmium (Cd) content tends to be excessive in seleniferous soil, in which Se and Cd have complex interactions. Therefore, it is a great challenge to grow crops containing appreciable amounts of Se but low amounts of Cd. We compared the effects of five Se-transforming bacteria on Se and Cd uptake by Brassica rapa L. in a native seleniferous Cd-polluted soil. The results showed that three Se-oxidizing bacteria (LX-1, LX-100, and T3F4) increased the Se content of the aboveground part of the plant by 330.8%, 309.5%, and 724.3%, respectively, compared to the control (p < 0.05). The three bacteria also reduced the aboveground Cd content by 15.1%, 40.4%, and 16.4%, respectively (p < 0.05). In contrast, the Se(IV)-reducing bacterium ES2-45 and weakly Se-transforming bacterium LX-4 had no effect on plant Se uptake, although they did decrease the aboveground Cd content. In addition, the three Se-oxidizing bacteria increased the Se available in the soil by 38.4%, 20.4%, and 24.0%, respectively, compared to the control (p < 0.05). The study results confirm the feasibility of using Se-oxidizing bacteria to simultaneously enhance plant Se content and reduce plant Cd content in seleniferous Cd-polluted soil.


Assuntos
Selênio , Poluentes do Solo , Humanos , Cádmio/análise , Areia , Biodegradação Ambiental , Biofortificação , Solo , Produtos Agrícolas , Oxirredução , Poluentes do Solo/análise
4.
J Integr Plant Biol ; 66(4): 635-637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351742

RESUMO

This commentary describes recent research discovering that the NAC transcription factor gene ZmNAC78 controls iron intake in maize and its implications for biofortification of this important crop. Using ZmNAC78, iron levels in maize can be more than doubled compared with current varieties.


Assuntos
Deficiências de Ferro , Ferro , Biofortificação , Zea mays/genética , Alimentos Fortificados
6.
J Sci Food Agric ; 104(3): 1234-1243, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782303

RESUMO

The ability of brassicas to accumulate selenium is crucial for their positive effects on health. Selenium improves the immune system and the antioxidant defenses. Selenium biofortification of brassicas has therefore been explored to increase dietary selenium intake in humans. However, the effects of selenium biofortification on bioactive compounds, mainly phenolic compounds, are not clear. So, this systematic review and meta-analysis aimed to answer the question 'What are effects of the biofortification of brassicas with selenium on total phenolic compounds?' Ten studies, which assessed the effect of selenium biofortification on total phenolic compounds, were selected for qualitative synthesis and four studies were included in the meta-analysis after a thorough literature review of the PubMed, Science Direct, and Web of Knowledge databases. The quality of the evidence ranged from high to moderate. The meta-analysis results indicated that the total phenolic compound content was significantly higher (P = 0.002) in the supplemented group but the results showed considerable heterogeneity (P < 0.00001, I2 = 97%) between studies. This systematic review and meta-analysis summarizes the effect of Se biofortification on the increase in the content of total phenolic compounds and it suggests that several factors can affect this relationship. © 2023 Society of Chemical Industry.


Assuntos
Brassica , Selênio , Humanos , Antioxidantes , Biofortificação/métodos , Brassica/química , Fenóis/análise , Selênio/análise
7.
Plant Physiol Biochem ; 206: 108283, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142664

RESUMO

Kale (Brassica oleracea L. var. sabellica L.), kohlrabi (Brassica oleracea L. var. gongylodes L.) and wheat (Triticum aestivum L. cv. Bancal) microgreens were cultivated in presence of selenium 20 µmol L-1 as sodium selenite and sodium selenate mixture. The influence of this biofortification process was evaluated in terms of biomass production, total Se, macro- and micronutrients concentration, polyphenols, antioxidant activity, chlorophylls and carotenoids levels and total soluble proteins content. The results obtained have shown a significant concentration of total Se in the biofortified microgreens of kale (133 µg Se·g-1 DW) and kohlrabi (127 µg Se·g-1 DW) higher than that obtained for wheat (28 µg Se·g-1 DW). The Se uptake in all the species did not produce oxidative damage to the plants reflected in the bioactive compounds, antioxidant capacity or pigments concentration. These Se-enriched microgreens may contribute to the recommended intake of this nutrient in human diet as to overcome Se-deficiency.


Assuntos
Brassica , Selênio , Humanos , Selênio/farmacologia , Selênio/metabolismo , Biofortificação/métodos , Antioxidantes/metabolismo , Brassica/metabolismo , Compostos Fitoquímicos/metabolismo , Nutrientes
8.
Science ; 382(6675): 1159-1165, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060668

RESUMO

Iron (Fe) deficiency remains widespread among people in developing countries. To help solve this problem, breeders have been attempting to develop maize cultivars with high yields and high Fe concentrations in the kernels. We conducted a genome-wide association study and identified a gene, ZmNAC78 (NAM/ATAF/CUC DOMAIN TRANSCRIPTION FACTOR 78), that regulates Fe concentrations in maize kernels. We cultivated maize varieties with both high yield and high Fe concentrations in their kernels by using a molecular marker developed from a 42-base pair insertion or deletion (indel) in the promoter of ZmNAC78. ZmNAC78 expression is enriched in the basal endosperm transfer layer of kernels, and the ZmNAC78 protein directly regulates messenger RNA abundance of Fe transporters. Our results thus provide an approach to develop maize varieties with Fe-enriched kernels.


Assuntos
Biofortificação , Produtos Agrícolas , Ferro , Proteínas de Plantas , Zea mays , Estudo de Associação Genômica Ampla , Ferro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo
9.
Nat Food ; 4(11): 978-985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945785

RESUMO

Post-harvest handling can affect micronutrient retention in biofortified crops through to the point of consumption. Here we conduct a systematic review identifying 67 articles examining the retention of micronutrients in conventionally bred biofortified maize, orange sweet potato, cassava, pearl millet, rice, beans and wheat. Provitamin A crops maintain high amounts compared with non-biofortified counterparts. Iron and zinc crops have more variability in micronutrient retention dependent on processing method; for maximum iron and zinc content, whole grain product consumption such as whole wheat flour or only slightly milled brown rice is beneficial. We offer preliminary suggestions for households, regulatory bodies and programme implementers to increase consumer awareness on best practices for preparing crops to maximize micronutrient content, while highlighting gaps in the literature. Our online, interactive Micronutrient Retention Dashboard ( https://www.cpnh.cornell.edu/mn-retention-db ) offers an at-a-glance view of the compiled minimum and maximum retention found, organized by processing method.


Assuntos
Ferro , Oligoelementos , Biofortificação , Zinco , Provitaminas , Alimentos Fortificados , Farinha , Triticum , Melhoramento Vegetal , Micronutrientes , Produtos Agrícolas , Compostos Orgânicos
10.
Plant Physiol Biochem ; 205: 108195, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995580

RESUMO

Iron and zinc deficiencies are the most prevalent cause of global hidden hunger. Rice, being one of the most consumed crops worldwide, is suitable to target for Fe and Zn biofortification. In present study, we generated rice transgenic lines to meet the recommended dietary requirement of iron and zinc through endosperm specific expression of dicot (kidney bean) and monocot (pearl millet) Ferritins along with constitutive expression of rice nicotianamine synthase 2 (OsNAS2) gene. Visualization through perls' prussian staining and quantification by ICP-MS showed significant improvement in grain iron content in all the transgenic lines. The transgenic lines expressing any of the three selected gene combinations (PvFerrtin-OsNAS2, feedPgFerrtin-OsNAS2 and foodPgFerritin-OsNAS2), showed the potential to surpass the 30% of the estimated average requirement (13 µg/g Fe and 28 µg/g Zn) proposed for rice in HarvestPlus breeding program. Though the expression of PvFerritin along with OsNAS2 gene in IET10364 (indica) variety showed the best result, providing up to 4.2- and 3.5-fold increase in iron (30.56 µg/g) and zinc (60.1 µg/g) content, respectively; in polished grains compared to non-transgenic control. Thus, the lines developed in our study can be used for further breeding purpose to enhance the iron and zinc content in commercial rice varieties.


Assuntos
Oryza , Pennisetum , Phaseolus , Ferro/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Zinco/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Oryza/genética , Oryza/metabolismo , Biofortificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Melhoramento Vegetal
11.
Food Res Int ; 173(Pt 2): 113448, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803774

RESUMO

In the last few years, there has been a growing interest in the more efficient utilization of agricultural and food by-products. Apples are among the most processed fruits in the world that generate huge quantities of processing waste biomasses. Therefore, the objective of this study was to improve the nutritional value of apple pomaces with γ-linolenic acid (GLA) and carotenoid pigments by solid-state fermentation (SSF) using two Zygomycetes fungi (Actinomucor elegans and Umbelopsis isabellina). The impact of fermentation periods on the polyphenol content and antioxidant capacity of the bioprocessed apple pomace was also investigated. The accumulated lipids were composed primarily of neutral fractions (mostly triacylglycerols). SSF with U. isabellina yielded a 12.72% higher GLA content than with A. elegans (3.85 g GLA/kg DW of pomace). Contrary to the lipogenic capacity, A. elegans showed higher carotenoids and phenolic antioxidants productivity than U. isabellina. The maximum concentrations for ß-carotene (433.11 µg/g DW of pomace-SSF with A. elegans and 237.68 µg/g DW of pomace-SSF with U. isabellina), lutein (374.48 µg/g DW- A. elegans and 179.04 µg/g DW- U. isabellina) and zeaxanthin (247.35 µg/g DW- A. elegans and 120.41 µg/g DW- U. isabellina) were registered on the 12th day of SSFs. In the case of SSF with A. elegans, the amount of total phenolics increased significantly (27%) by day 4 from the initial value (2670.38 µg of gallic acid equivalents/g DW) before slowly decreasing for the remaining period of the fungal growth. The experimental findings showed that a prolonged fermentation (between 8 and 12 days) should be applied to obtain value-added apple pomaces (rich in GLA and carotenoids) with potential pharmaceutical and functional food applications. Moreover, the SSF processes of simultaneous bioaccumulation of valuable fatty acids, carotenoids and phenolic antioxidants proposed in the present study may open up new challenges for biotechnological production of industrially important biomolecules using abundant and unexploited apple pomaces.


Assuntos
Antioxidantes , Malus , Antioxidantes/metabolismo , Malus/metabolismo , Ácido gama-Linolênico , Fermentação , Biofortificação , Carotenoides , Fenóis
12.
J Agric Food Chem ; 71(36): 13554-13565, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638888

RESUMO

In the present work, the effects of enriching tomatoes with selenium were studied in terms of physiological, metabolic, and molecular processes in the last stages of fruit development, particularly during ripening. A selenium concentration of 10 mg L-1 with sodium selenate and selenium nanoparticles was used in the spray treatments on the whole plants. No significant effects of selenium enrichment were detected in terms of ethylene production or color changes in the ripening fruit. However, selenium enrichment had an influence on both the primary and secondary metabolic processes and thus the biochemical composition of ripe tomatoes. Selenium decreased the amount of ß-carotene, increased the accumulation of naringenin and chlorogenic acid, and decreased the coumaric acid level. Selenium also affected the volatile organic compound profile, with changes in the level of specific apocarotenoid compounds, such as ß-ionone. These metabolomic changes may, to some extent, be due to the impact of selenium treatment on the transcription of genes involved in the metabolism of these compounds. RNA-seq analysis showed that the selenium application mostly impacted the expression of the genes involved in hormonal signaling, secondary metabolism, flavonoid biosynthesis, and glycosaminoglycan degradation.


Assuntos
Selênio , Solanum lycopersicum , Solanum lycopersicum/genética , Biofortificação , Frutas/genética , Metaboloma
13.
J Biol Inorg Chem ; 28(7): 655-667, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37646892

RESUMO

Isotope fractionation of metals/metalloids in biological systems is an emerging research area that demands the application of state-of-the-art analytical chemistry tools and provides data of relevance to life sciences. In this work, Se uptake and Se isotope fractionation were measured during the biofortification of baker's yeast (Saccharomyces cerevisiae)-a product widely used in dietary Se supplementation and in cancer prevention. On the other hand, metabolic labeling with 15N is a valuable tool in mass spectrometry-based comparative proteomics. For Se-yeast, such labeling would facilitate the assessment of Se impact on yeast proteome; however, the question arises whether the presence of 15N in the microorganisms affects Se uptake and its isotope fractionation. To address the above-mentioned aspects, extracellularly reduced and cell-incorporated Se fractions were analyzed by hydride generation-multi-collector inductively coupled plasma-mass spectrometry (HG MC ICP-MS). It was found that extracellularly reduced Se was enriched in light isotopes; for cell-incorporated Se, the change was even more pronounced, which provides new evidence of mass fractionation during biological selenite reduction. In the presence of 15N, a weaker preference for light isotopes was observed in both, extracellular and cell-incorporated Se. Furthermore, a significant increase in Se uptake for 15N compared to 14N biomass was found, with good agreement between hydride generation microwave plasma-atomic emission spectrometry (HG MP-AES) and quadrupole ICP-MS results. Biological effects observed for heavy nitrogen suggest 15N-driven alteration at the proteome level, which facilitated Se access to cells with decreased preference for light isotopes.


Assuntos
Saccharomyces cerevisiae , Selênio , Biofortificação , Proteoma , Transporte Biológico
14.
Trop Anim Health Prod ; 55(4): 269, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452970

RESUMO

The present study aimed to assess the effects of replacing the starchy ingredients of concentrate by increasing the levels of sunflower oil on the production, composition, fatty acid profile, and evaluate the atherogenicity and thrombogenic index of Jersey cow's milk. Eight Jersey cows were arranged in a double Latin square and distributed in treatments consisting of supplementation with increasing levels of sunflower oil replacing the corn grain and wheat bran of concentrate, including the following: T0 (control diet), without sunflower oil and with 38 g ether extract (EE)/kg dry matter (DM); T1 = 65 g EE/kg DM; T2 = 86 g EE/kg DM; and T3 = 110 g EE/kg DM. The daily milk production was measured, and the corrected milk production was calculated. Milk samples were analyzed by infrared spectroscopy to determine fat, protein, lactose, and total solids, whereas the lipid profile was assessed by gas chromatography. Milk production, energy-corrected milk production, fat content, daily fat production, lactose, and total solids were not affected by the treatments. Protein, lactose, and total solids concentrations decreased. Short-, medium-, and odd-chain fatty acids decreased with an increase in sunflower oil levels. Conversely, linear increases in long-chain, monounsaturated, and polyunsaturated fatty acid concentrations were observed. There were significant increases in stearic and elaidic acids and conjugated linoleic acid isomers, especially in vaccenic and rumenic acids. There was a positive effect on the milk atherogenicity, thrombogenicity, and nutraceutical indices. Dietary supplementation with sunflower oil changes the milk FA profile, decreases the atherogenicity and the thrombogenicity indices, and improve the nutraceutical index up to the addition of 86 g EE/kg DM de sunflower oil in the diets of Jersey cows.


Assuntos
Ácidos Graxos , Leite , Feminino , Bovinos , Animais , Leite/química , Ácidos Graxos/análise , Óleo de Girassol , Óleos de Plantas/farmacologia , Biofortificação , Lactose/metabolismo , Lactação , Suplementos Nutricionais , Dieta/veterinária
15.
Int J Nanomedicine ; 18: 2431-2446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192899

RESUMO

Purpose: Pancreatic adenocarcinoma (PAAD) presents an extremely high morbidity and mortality rate. Broccoli has excellent anti-cancer properties. However, the dosage and serious side effects still limit the application of broccoli and its derivatives for cancer therapy. Recently, extracellular vesicles (EVs) derived from plants are emerging as novel therapeutic agents. Thus, we conducted this study to determine the effectiveness of EVs isolated from Se-riched broccoli (Se-BDEVs) and conventional broccoli (cBDEVs) for the treatment of PAAD. Methods: In this study, we first isolated Se-BDEVs and cBDEVs by a differential centrifugation method, and characterized them by using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Then, miRNA-seq was combined with target genes prediction, and functional enrichment analysis to reveal the potential function of Se-BDEVs and cBDEVs. Finally, the functional verification was conducted in PANC-1 cells. Results: Se-BDEVs and cBDEVs exhibited similar characteristics in size and morphology. Subsequent miRNA-seq revealed the expression of miRNAs in Se-BDEVs and cBDEVs. Using a combination of miRNA target prediction and KEGG functional analysis, we found miRNAs in Se-BDEVs and cBDEVs may play an important role in treating pancreatic cancer. Indeed, our in vitro study showed that Se-BDEVs had greater anti-PAAD potency than cBDEVs due to increased bna-miR167a_R-2 (miR167a) expression. Transfection with miR167a mimics significantly induced apoptosis of PANC-1 cells. Mechanistically, further bioinformatics analysis showed that IRS1, which is involved in the PI3K-AKT pathway, is the key target gene of miR167a. Conclusion: This study highlights the role of miR167a transported by Se-BDEVs which could be a new tool for counteracting tumorigenesis.


Assuntos
Adenocarcinoma , Brassica , Vesículas Extracelulares , MicroRNAs , Neoplasias Pancreáticas , Selênio , Humanos , Brassica/genética , Brassica/metabolismo , Selênio/uso terapêutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Biofortificação , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Apoptose , Proteínas Substratos do Receptor de Insulina/metabolismo , Neoplasias Pancreáticas
16.
Nutrients ; 15(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242174

RESUMO

Iron deficiency is still widespread as a major health problem even in countries with adequate food supply. It mainly affects women but also vegans, vegetarians, and athletes and can lead to various clinical pictures. Biofortification of vitamin C-rich vegetables with iron may be one new approach to face this nutritional challenge. However, so far, little is known about the consumer acceptance of iron-biofortified vegetables, particularly in developed countries. To address this issue, a quantitative survey of 1000 consumers in Germany was conducted. The results showed that depending on the type of vegetable, between 54% and 79% of the respondents were interested in iron-biofortified vegetables. Regression analysis showed a relationship between product acceptance, gender, and area of residence. In addition, relationships were found between consumer preferences for enjoyment, sustainability, and naturalness. Compared to functional food and dietary supplements, 77% of respondents would prefer fresh iron-rich vegetables to improve their iron intake. For a market launch, those iron-rich vegetables appear especially promising, which can additionally be advertised with claims for being rich in vitamin C and cultivated in an environmentally friendly way. Consumers were willing to pay EUR 0.10 to EUR 0.20 more for the iron-biofortified vegetables.


Assuntos
Ferro , Verduras , Humanos , Feminino , Ferro da Dieta , Disponibilidade Biológica , Biofortificação , Comportamento do Consumidor
17.
Small ; 19(35): e2301137, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119405

RESUMO

In China, iron (Fe) availability is low in most soils but cadmium (Cd) generally exceeds regulatory soil pollution limits. Thus, biofortification of Fe along with mitigation of Cd in edible plant parts is important for human nutrition and health. Carbon dots (CDs) are considered as potential nanomaterials for agricultural applications. Here, Salvia miltiorrhiza-derived CDs are an efficient modulator of Fe, manganese (Mn), zinc (Zn), and Cd accumulation in plants. CDs irrigation (1 mg mL-1 , performed every week starting at the jointing stage for 12 weeks) increased Fe content by 18% but mitigated Cd accumulation by 20% in wheat grains. This finding was associated with the Fe3+ -mobilizing properties of CDs from the soil and root cell wall, as well as endocytosis-dependent internalization in roots. The resulting excess Fe signaling mitigated Cd uptake via inhibiting TaNRAMP5 expression. Foliar spraying of CDs enhanced Fe (44%), Mn (30%), and Zn (19%) content with an unchanged Cd accumulation in wheat grains. This result is attributed to CDs-enhanced light signaling, which triggered shoot-to-root Fe deficiency response. This study not only reveals the molecular mechanism underlying CDs modulation of Fe signaling in plants but also provides useful strategies for concurrent Fe biofortification and Cd mitigation in plant-based foods.


Assuntos
Ferro , Solo , Humanos , Ferro/metabolismo , Cádmio/análise , Cádmio/metabolismo , Biofortificação , Zinco/metabolismo , Raízes de Plantas/metabolismo
18.
Sci Rep ; 13(1): 3506, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864063

RESUMO

Mungbean [Vigna radiata L. (Wilczek)] is considered as an extremely nutritious crop possessing a high level of micronutrients, but their low bioavailability in the crop leads to micronutrient malnutrition in humans. Therefore, the present study was conducted to investigate the potential of nutrients viz. boron (B), zinc (Zn) and iron (Fe) biofortification on productivity, nutrient concentration and uptake as well as the economics of mungbean cultivation. In the experiment, the various combinations of RDF with ZnSO4.7H2O (0.5%), FeSO4.7H2O (0.5%) and borax (0.1%) were applied to mungbean variety ML 2056. The combined foliar application of Zn, Fe and B was highly efficient in increasing the yield of grain as well as straw in mungbean exhibiting maximum values i.e. 944 kg ha-1 and 6133 kg ha-1, respectively. Similar results for B, Zn and Fe concentration in grain (27.3 mg kg-1, 35.7 mg kg-1 and 187.1 mg kg-1, respectively) and straw (21.1 mg kg-1, 18.6 mg kg-1 and 376.1 mg kg-1, respectively) of mungbean were observed. Also, uptake of Zn and Fe by grain (31.3 g ha-1 and 164.4 g ha-1, respectively), as well as straw (113.7 g ha-1 and 2295.0 g ha-1, respectively), was maximum for the above treatment. Whereas, the B uptake was found to enhance significantly through the combined application of B, Zn and Fe, where the values 24.0 g ha-1 and 128.7 g ha-1 corresponded to grain and straw, respectively. Thus, combined use of ZnSO4.7H2O (0.5%) + FeSO4.7H2O (0.5%) and borax (0.1%) significantly improved the yield outcomes, the concentration of B, Zn and Fe, uptake and economic returns of mungbean cultivation to alleviate the B, Zn and Fe deficiency.


Assuntos
Vigna , Humanos , Boro , Zinco , Ferro , Biofortificação , Grão Comestível , Micronutrientes
19.
J Agric Food Chem ; 71(8): 3583-3598, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802625

RESUMO

Plant-based foods provide all the crucial nutrients for human health. Among these, iron (Fe) is one of the essential micronutrients for plants and humans. A lack of Fe is a major limiting factor affecting crop quality, production, and human health. There are people who suffer from various health problems due to the low intake of Fe in their plant-based foods. Anemia has become a serious public health issue due to Fe deficiency. Enhancing Fe content in the edible part of food crops is a major thrust area for scientists worldwide. Recent progress in nutrient transporters has provided an opportunity to resolve Fe deficiency or nutritional problems in plants and humans. Understanding the structure, function, and regulation of Fe transporters is essential to address Fe deficiency in plants and to improve Fe content in staple food crops. In this review, we summarized the role of Fe transporter family members in the uptake, cellular and intercellular movement, and long-distance transport of Fe in plants. We draw insights into the role of vacuolar membrane transporters in the crop for Fe biofortification. We also provide structural and functional insights into cereal crops' vacuolar iron transporters (VITs). This review will help highlight the importance of VITs for improving the Fe biofortification of crops and alleviating Fe deficiency in humans.


Assuntos
Anemia , Ferro , Humanos , Ferro/metabolismo , Biofortificação , Produtos Agrícolas/metabolismo , Proteínas de Membrana Transportadoras
20.
Chemosphere ; 314: 137713, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36596329

RESUMO

Biofortification is a revolutionary technique for improving plant nutrition and alleviating human micronutrient deficiency. Fertilizers can help increase crop yield and growth, but applying too much fertilizer can be a problem because it leads to the release of greenhouse gases and eutrophication. One of the major global hazards that affects more than two million people globally is the decreased availability of micronutrients in food crops, which results in micronutrient deficiencies or "hidden hunger" in people. Micronutrients, like macronutrients, perform a variety of roles in plant and human nutrition. This review has highlighted the importance of micronutrients as well as their advantages. The uneven distribution of micronutrients in geological areas is not the only factor responsible for micronutrient deficiencies, other parameters including soil moisture, temperature, texture of the soil, and soil pH significantly affects the micronutrient concentration and their availability in the soil. To overcome this, different biofortification approaches are assessed in the review in which microbes mediated, Agronomic approaches, Plant breeding, and transgenic approaches are discussed. Hidden hunger can result in risky health conditions and diseases such as cancer, cardiovascular disease, osteoporosis, neurological disorders, and many more. Microbes-mediated biofortification is a novel and promising solution for the bioavailability of nutrients to plants in order to address these problems. Biofortification is cost effective, feasible, and environmentally sustainable. Bio-fortified crops boost our immunity, which helps us to combat these deadly viruses. The studies we discussed in this review have demonstrated that they can aid in the alleviation of hidden hunger.


Assuntos
Biofortificação , Saúde Global , Humanos , Biofortificação/métodos , Melhoramento Vegetal , Micronutrientes , Solo , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA