Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
J Nanobiotechnology ; 22(1): 310, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831378

RESUMO

Radiotherapy (RT), including external beam radiation therapy (EBRT) and radionuclide therapy (RNT), realizes physical killing of local tumors and activates systemic anti-tumor immunity. However, these effects need to be further strengthened and the difference between EBRT and RNT should be discovered. Herein, bacterial outer membrane (OM) was biomineralized with manganese oxide (MnO2) to obtain OM@MnO2-PEG nanoparticles for enhanced radio-immunotherapy via amplifying EBRT/RNT-induced immunogenic cell death (ICD) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. OM@MnO2-PEG can react with H2O2 and then gradually produce O2, Mn2+ and OM fragments in the tumor microenvironment. The relieved tumor hypoxia improves the radio-sensitivity of tumor cells, resulting in enhanced ICD and DNA damage. Mn2+ together with the DNA fragments in the cytoplasm activate the cGAS-STING pathway, further exhibiting a positive role in various aspects of innate immunity and adaptive immunity. Besides, OM fragments promote tumor antigen presentation and anti-tumor macrophages polarization. More importantly, our study reveals that OM@MnO2-PEG-mediated RNT triggers much stronger cGAS-STING pathway-involved immunotherapy than that of EBRT, owing to the duration difference of RT. Therefore, this study develops a powerful sensitizer of radio-immunotherapy and uncovers some differences between EBRT and RNT in the activation of cGAS-STING pathway-related anti-tumor immunity.


Assuntos
Membrana Externa Bacteriana , Imunoterapia , Compostos de Manganês , Proteínas de Membrana , Nucleotidiltransferases , Óxidos , Nucleotidiltransferases/metabolismo , Compostos de Manganês/química , Proteínas de Membrana/metabolismo , Camundongos , Imunoterapia/métodos , Óxidos/química , Animais , Membrana Externa Bacteriana/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Transdução de Sinais , Humanos , Radioterapia/métodos , Nanopartículas/química , Biomineralização , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/terapia , Peróxido de Hidrogênio/metabolismo , Imunidade Inata
2.
Biomacromolecules ; 25(6): 3409-3419, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38713166

RESUMO

Plants undergo substantial biomineralization of silicon, which is deposited primarily in cell walls as amorphous silica. The mineral formation could be moderated by the structure and chemistry of lignin, a polyphenol polymer that is a major constituent of the secondary cell wall. However, the reactions between lignin and silica have not yet been well elucidated. Here, we investigate silica deposition onto a lignin model compound. Polyphenyl propanoid was synthesized from coniferyl alcohol by oxidative coupling with peroxidase in the presence of acidic tetramethyl orthosilicate, a silicic acid precursor. Raman, Fourier transform infrared, and X-ray photoelectron spectroscopies detected changes in lignin formation in the presence of silicic acid. Bonds between the Si-O/Si-OH residues and phenoxyl radicals and lignin functional groups formed during the first 3 h of the reaction, while silica continued to form over 3 days. Thermal gravimetric analysis indicated that lignin yields increased in the presence of silicic acid, possibly via the stabilization of phenolic radicals. This, in turn, resulted in shorter stretches of the lignin polymer. Silica deposition initiated within a lignin matrix via the formation of covalent Si-O-C bonds. The silica nucleants grew into 2-5 nm particles, as observed via scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Additional silica precipitated into an extended gel. Collectively, our results demonstrate a reciprocal relation by which lignin polymerization catalyzes the formation of silica, and at the same time silicic acid enhances lignin polymerization and yield.


Assuntos
Lignina , Dióxido de Silício , Lignina/química , Dióxido de Silício/química , Biomineralização , Ácido Silícico/química , Silício/química
3.
Bioconjug Chem ; 35(5): 682-692, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38648296

RESUMO

The delivery of proteins into the cytosol holds great promise for cell signaling manipulation and the development of precision medicine. However, this potency is challenged by achieving targeted and controlled delivery, specifically within diseased cells. In this study, we introduce a versatile and effective method for the precision delivery of therapeutic proteins to cancer cells by designing polyphenol-assisted biomineralization of zeolite imidazole framework-8 (ZIF-8). We demonstrate that by leveraging the strong noncovalent binding affinity of epigallocatechin gallate (EGCG) with both proteins and ZIF-8, our approach significantly enhances the biomineralization of ZIF-8, which in turn improves the efficiency of protein encapsulation and intracellular delivery. Moreover, the incorporation of EGCG within ZIF-8 enables controlled degradation of the nanoparticles and the selective release of the encapsulated proteins in cancer cells. This selective release is triggered by the oxidation of EGCG in response to the high levels of reactive oxygen species (ROS) found within cancer cells that destabilize the EGCG/ZIF-8 nanoparticles. We have further demonstrated the ability of EGCG/ZIF-8 to deliver a wide range of proteins into cancer cells, including bacterial virulence protein, to rewire cell signaling and prohibit tumor cell growth in a mouse xenograft model. Our strategy and findings underscore the potential of designing the EGCG/ZIF-8 interface for specific and controlled protein delivery for targeted cancer therapy.


Assuntos
Catequina , Estruturas Metalorgânicas , Nanopartículas , Polifenóis , Humanos , Estruturas Metalorgânicas/química , Polifenóis/química , Polifenóis/farmacologia , Animais , Nanopartículas/química , Catequina/análogos & derivados , Catequina/química , Catequina/administração & dosagem , Catequina/farmacologia , Camundongos , Zeolitas/química , Biomineralização , Imidazóis/química , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Espécies Reativas de Oxigênio/metabolismo
4.
J Hazard Mater ; 470: 134306, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626684

RESUMO

Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.


Assuntos
Biomineralização , Cádmio , Penicillium , Fosfatos , Penicillium/metabolismo , Cádmio/química , Cádmio/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Adsorção , Durapatita/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Biodegradação Ambiental , Precipitação Química
5.
Curr Microbiol ; 81(5): 109, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466427

RESUMO

Bacteria producing urea amidohydrolases (UA) and carbonic anhydrases (CA) are of great importance in civil engineering as these enzymes are responsible for microbially induced calcium carbonate precipitation (MICCP). In this investigation, genomic insights of Bacillus paranthracis CT5 and the expression of genes underlying in MICCP were studied. B. paranthracis produced a maximum level of UA (669.3 U/ml) and CA (125 U/ml) on 5th day of incubation and precipitated 197 mg/100 ml CaCO3 after 7 days of incubation. After 28 days of curing, compressive strength of bacterial admixed and bacterial cured (B-B) specimens was 13.7% higher compared to water-mixed and water-cured (W-W) specimens. A significant decrease in water absorption was observed in bacterial-cured specimens compared to water-cured specimens after 28 days of curing. For genome analysis, reads were assembled de novo producing 5,402,771 bp assembly with N50 of 273,050 bp. RAST annotation detected six amidohydrolase and three carbonic anhydrase genes. Among 5700 coding sequences found in genome, COG gene annotation grouped 4360 genes into COG categories with highest number of genes to transcription (435 genes), amino acid transport and metabolism (362 genes) along with cell wall/membrane/envelope biogenesis and ion transport and metabolism. KEGG functional classification predicted 223 pathways consisting of 1,960 genes and the highest number of genes belongs to two-component system (101 genes) and ABC transporter pathways (98 genes) enabling bacteria to sense and respond to environmental signals and actively transport various minerals and organic molecules, which facilitate the active transport of molecules required for MICCP.


Assuntos
Bacillus , Biomineralização , Anidrases Carbônicas , Bactérias/metabolismo , Carbonato de Cálcio/química , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Anotação de Sequência Molecular , Água/metabolismo , Urease
6.
Microsc Microanal ; 30(2): 392-400, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38502789

RESUMO

Biomineralization of brain tissues occurs both in normal and pathological conditions. Dura mater biomineralization is widespread and occurs in 1-72% of cases, depending on the patient's age and research method. The amount of biomineral deposits under the conditions of tumor growth in the meninges only increases, reaching 100% in the case of psammomatous meningiomas. Since calcifications are often found in the meninges, the problem of differential diagnosis with calcified meningiomas arises. A total of 30 samples of meningiomas with signs of biomineralization-dense structure, characteristic crunch, psammoma bodies (group I) and 30 samples of meningiomas without any signs of biomineralization were examined as controls (group II). To detect pathological biomineralization, the meningioma tissue was studied using the methods of macroscopic description, histology, histochemistry, and immunohistochemistry, scanning electron microscopy with microanalysis, and transmission electron microscopy. A significantly higher level of caspase3 and features of the expression of osteoblastic markers (a lower level of OPG expression and a higher level of the presence of RANKL in group I, the absence of fluctuations in the expression of SPARC) may indicate a dystrophic type of development of biomineral deposits in meningiomas.


Assuntos
Biomineralização , Imuno-Histoquímica , Meningioma , Meningioma/patologia , Meningioma/metabolismo , Humanos , Imuno-Histoquímica/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Idoso , Pessoa de Meia-Idade , Feminino , Masculino , Adulto , Histocitoquímica/métodos , Calcinose/patologia
7.
Adv Mater ; 36(19): e2310218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38315577

RESUMO

The common clinical chemotherapy often brings serious side effects to patients, mainly due to the off-target and leakage of toxic drugs. However, this is fatal for some specific clinical tumors, such as brain tumors and neuroma. This study performs a drug-free approach by encapsulating black phosphorus (BP) and calcium peroxide (CaO2) in liposomes with surface-modified triphenylphosphonium (BCLT) to develop mitochondria targeting calcification for cancer therapy without damaging normal cells. BCLT preferentially accumulates inside tumor mitochondria and then is activated by near-infrared (NIR) laser irradiation to produce abundant PO4 3- and Ca2+ to accelerate in situ mitochondrial mineralization, leading to mitochondrial dysfunction and cancer cell death. More importantly, both PO4 3- and Ca2+ are essential components of metabolism in the body, and random gradient diffusion or premature leakage does not cause damage to adjacent normal cells. This achievement promises to be an alternative to conventional chemotherapy in clinical practice for many specific tumor types.


Assuntos
Mitocôndrias , Fósforo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fósforo/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Biomineralização , Linhagem Celular Tumoral , Animais , Peróxidos/química , Peróxidos/metabolismo , Compostos Organofosforados/química , Compostos de Cálcio/química , Raios Infravermelhos , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
Bioelectrochemistry ; 157: 108659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38330530

RESUMO

The issue of material failure attributed to microbiologically influenced corrosion (MIC) is escalating in seriousness. Microorganisms not only facilitate corrosion but certain beneficial microorganisms also impede its occurrence. This study explored the impact of marine B. velezensis on the corrosion behavior of X65 steel in simulated offshore oilfield produced water. B. velezensis exhibited rapid growth in the initial stages, and the organic acid metabolites were found to promote corrosion. Subsequently, there was an increase in cross-linked "networked" biofilms products, a significant rise in the prismatic shape of corrosion products, and a tendency for continuous development in the middle and late stages. The organic/inorganic mineralized film layer formed on the surface remained consistently complete. Metabolic products of amino acid corrosion inhibitors were also observed to be adsorbed into the film. B. velezensis altered the kinetics of the X65 steel cathodic reaction, resulting in a deceleration of the electrochemical reaction rate. The mineralization induced by B. velezensis effectively slowed down the corrosion rate of X65 steel.


Assuntos
Bacillus , Aço , Aço/química , Água , Corrosão , Biomineralização , Campos de Petróleo e Gás , Biofilmes
9.
Nano Lett ; 24(8): 2661-2670, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345313

RESUMO

Nanomaterial-assisted chemodynamic therapy (CDT) has received considerable attention in recent years. It outperforms other modalities by its distinctive reactive oxygen species (ROS) generation through a nonexogenous stimulant. However, CDT is limited by the insufficient content of endogenous hydrogen peroxide (H2O2). Herein, a biodegradable MnS@HA-DOX nanocluster (MnS@HA-DOX NC) was constructed by in situ biomineralization from hyaluronic acid, to enlarge the ROS cascade and boost Mn2+-based CDT. The acid-responsive NCs could quickly degrade after internalization into endo/lysosomes, releasing Mn2+, H2S gas, and anticancer drug doxorubicin (DOX). The Fenton-like reaction catalyzed by Mn2+ was amplified by both H2S and DOX, producing a mass of cytotoxic ·OH radicals. Through the combined action of gas therapy (GT), CDT, and chemotherapy, oxidative stress would be synergistically enhanced, inducing irreversible DNA damage and cell cycle arrest, eventually resulting in cancer cell apoptosis.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Doxorrubicina/farmacologia , Apoptose , Biomineralização , Gases , Linhagem Celular Tumoral , Microambiente Tumoral
10.
J Proteomics ; 296: 105126, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38364902

RESUMO

The hard shells of mollusks are products of biomineralization, a distinctive feature of the Cambrian explosion. Despite our understanding of shell structure and mechanical properties, their origin remains mysterious. In addition to their shell plates, most chitons have calcium deposits on their girdles. However, the similarity of these two mineralized structures still needs to be determined, limiting our comprehension of their origins. In our study, we analyzed the matrix proteins in the spicules of chiton (Acanthopleura loochooana) and compared them with the matrix proteins in the shells of the same species. Proteomics identified 96 unique matrix proteins in spicules. Comparison of biomineralization-related matrix proteins in shell plates and spicules revealed shared proteins, including carbonic anhydrases, tyrosinase-hemocyanin, von Willebrand factor type A, cadherin, and glycine-rich unknown proteins. Based on similarities in key matrix proteins, we propose that spicules and shell plates originated from a common mineralization system in their ancestral lineage, suggesting the existence of a common core or toolkit of matrix proteins among calcifying organisms. SIGNIFICANCE: In this study, we try to understand the types and diversity of matrix proteins in the biomineralization of chiton shell plates and spicules. Through a comparative analysis, we seek insights into the core biomineralization toolkit of ancestral mollusks. To achieve this, we conducted LC-MS/MS and RT-qPCR analyses to identify the types and relative expression levels of matrix proteins in both shell plates and spicules. The analysis revealed 96 matrix proteins in the spicules. A comparison of biomineralization-related matrix proteins in shell plates and spicules from the same species revealed shared proteins including many unknown proteins unique to chitons. Blast searching reveals a universal conservation of these proteins among other chitons. Hence, we propose that spicules and shell plates originated from a common mineralization system in their ancestral lineage. Our work provides a molecular basis for studying biomineralization in polyplacophoran mollusks and understanding biomineralization evolution. In addition, it identifies potential matrix proteins that could be applied to control crystal growth.


Assuntos
Biomineralização , Poliplacóforos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas/análise
11.
J Hazard Mater ; 465: 133284, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134699

RESUMO

The phosphate-mineralizing bacteria (PMBs) has shown great potential as a sustainable solution to support pollution remediation through its induced mineralization capacity. However, few studies have been conducted on the mechanism of cadmium (Cd) tolerance in PMBs. In this study, a PMB strain, Enterobacter sp. PMB-5, screened from Cd-contaminated rhizosphere soil, has high resistance to Cd (540 - 1220 mg/L) and solubilized phosphate (232.08 mg/L). The removal experiments showed that the strain PMB-5 removed 71.69-98.24% and 34.83-76.36% of Cd with and without biomineralization, respectively. The characterization result of SEM, EDS, TEM, XPS and XRD revealed that PMB-5 induced Cd to form amorphous phosphate precipitation through biomineralization and adopted different survival strategies, including biomineralization, bioaccumulation, and biosorption to resistance Cd in the microbial induced phosphate precipitation (MIPP) system and the non-MIPP system, respectively. Moreover, the results of whole genome sequencing and qRT-PCR indicated that phosphorus metabolism genes such as pst, pit, phn, ugp, ppk, etc. and heavy metal tolerance genes (including ion transport, ion efflux, redox, antioxidant stress), such as czcD, zntA, mgtA, mgtC, katE, SOD2, dsbA, cysM, etc. were molecular for the PMB-5 mineralization and Cd tolerance of PMB-5. Together, our findings suggested Enterobacter sp. PMB-5 is a potential target for developing more effective bioinoculants for Cd contamination remediation.


Assuntos
Enterobacter , Poluentes do Solo , Enterobacter/metabolismo , Cádmio/metabolismo , Biomineralização , Fosfatos , Bioacumulação , Poluentes do Solo/metabolismo , Solo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38128379

RESUMO

Most molluscs have mineralized shells to protect themselves. Although the remarkable mechanical properties of shells have been well-studied, the origin of shells is still elusive. Chitons are unique in molluscs because they are shelly Aculifera which diverged from Conchifera (comprising all the shell-bearing classes of molluscs) in the early pre-Cambrian. We developed a method to extract shell proteins from chiton shell plates (removing embedded soft tissues) and then compared the shell proteome to that of Conchifera groups. Sixteen shell matrix proteins from Acanthopleura loochooana were identified by proteomics, in which Nacrein-like, Pif-like proteins, and protocadherin were found. Additional evidences from shell proteome in another species Chiton densiliratus and comparative sequence alignment in five chitons supported a conserved biomineralization toolkit in chitons. Our findings shed light on the evolution of mineralization in chitons and pose a hypothesis that ancestral molluscs have already evolved biomineralization toolkits, which may facilitate the formation of mineralized shells.


Assuntos
Poliplacóforos , Animais , Proteoma , Proteômica , Moluscos , Biomineralização , Exoesqueleto
13.
Proc Natl Acad Sci U S A ; 120(45): e2306627120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37917794

RESUMO

The elemental composition of coral skeletons provides important information for palaeoceanographic reconstructions and coral biomineralization. Partition of anions and their stable isotopes in coral skeleton enables the reconstruction of past seawater carbonate chemistry, paleo-CO2, and past climates. Here, we investigated the partition of B, S, As, Br, I, and Mo into the skeletons of two corals, Acropora cervicornis and Pocillopora damicornis, as a function of calcium and carbonate concentrations.* Anion-to-calcium ratio in the corals (An/CaCoral) were correlated with the equivalent ratios in the culturing seawater (An/CO32-SW). Negative intercepts of these relationships suggest a higher CO32- concentration in the coral extracellular calcifying fluid (ECF) relative to seawater, from which the skeleton precipitates. The enrichment factor of CO32- at the ECF was 2.5 for A. cervicornis and 1.9 for P. damicornis, consistent with their relative calcification rates. The CO32-ECF concentrations thus calculated are similar to those proposed by previous studies based on B/Ca coupled with δ11B, as well as by direct measurements using microsensors and fluorescent dyes. Rayleigh fractionation modeling demonstrates a uniform Ca utilization at various CaSW concentrations, providing further evidence that coral calcification occurs directly from a semiclosed seawater reservoir as reported previously. The partition coefficients reported in this study for B, S, As, Br, I, and Mo open up wide possibilities for past ocean chemistry reconstructions based on Br having long residence time (~160 Ma) in the ocean. Other elements like S, Mo, B, as well as pCO2 may also be calculated based on these elements in fossil coral.


Assuntos
Antozoários , Calcinose , Animais , Antozoários/metabolismo , Cálcio/metabolismo , Biomineralização , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Carbonatos/química , Água do Mar/química , Calcificação Fisiológica , Recifes de Corais
14.
Biomacromolecules ; 24(11): 5132-5141, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37859395

RESUMO

Biomineralization of metal-organic frameworks (MOFs) provides a powerful approach for intracellular protein delivery, enabling the study of biological function and therapeutic potential of proteins. However, the potency of this approach is largely challenged by the low efficiency of current strategies for interfacing proteins with MOFs for biomineralization and intracellular delivery. Here, we report a versatile and convenient biomineralization strategy for the rapid encapsulation and enhanced delivery of proteins using MOFs, accelerated by histidine-rich proteins. We demonstrate that the histidine-rich green fluorescent protein (H39GFP) can accelerate the biomineralization of MOFs by promoting the coordination between proteins and metal ions, leading to enhanced protein delivery efficiency up to 15-fold. Moreover, we show that the delivery of H39GFP-fused cytotoxic ribonuclease and bacterial-derived RAS protease can effectively inhibit tumor cell growth. The strategy of promoting the biomineralization of MOFs via histidine-rich proteins for enhanced intracellular delivery could be expanded to other biomacromolecules, advancing their therapeutic potential and the biomedical scope of MOFs.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Zeolitas , Humanos , Histidina , Zeolitas/farmacologia , Zeolitas/uso terapêutico , Biomineralização , Estruturas Metalorgânicas/farmacologia , Neoplasias/tratamento farmacológico , Proteínas de Fluorescência Verde
15.
J Mater Chem B ; 11(42): 10174-10188, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850271

RESUMO

The intricate process of biomineralization, e.g. in sea urchins, involves the precise interplay of highly regulated mineralization proteins and the spatiotemporal coordination achieved through compartmentalization. However, the investigation of biomineralization effector molecules, e.g. proteins, is challenging, due to their very low abundance. Therefore, we investigate the functional mimicry in the bioinspired precipitation of calcium carbonate (CaCO3) with artificial peptides selected from a peptide library by phage display based on peptide-binding to calcite and aragonite, respectively. The structure-directing effects of the identified peptides were compared to those of natural protein mixes isolated from skeletal (test) structures of two sea urchin species (Arbacia lixula and Paracentrotus lividus). The calcium carbonate samples deposited in the absence or presence of peptides were analyzed with a set of complementary techniques with regard to morphology, polymorph, and nanostructural motifs. Remarkably, some of the CaCO3-binding peptides induced morphological features in calcite that appeared similar to those obtained in the presence of the natural protein mixes. Many of the peptides identified as most effective in exerting a structure-directing effect on calcium carbonate crystallization were rich in basic amino acid residues. Hence, our in vitro mineralization study further highlights the important, but often neglected, role of positively charged soluble organic matrices associated with biological and bioinspired CaCO3 deposition.


Assuntos
Bacteriófagos , Biomineralização , Animais , Carbonato de Cálcio/química , Peptídeos/química , Ouriços-do-Mar/metabolismo , Bacteriófagos/metabolismo
16.
Sci Rep ; 13(1): 15131, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704633

RESUMO

To solve the traditional radiotherapy obstacles, and also to enhance the radiation therapy efficacy various radiosensitizers have been developed. Radiosensitizers are promising agents that under X-ray irradiation enhance injury to tumor tissue by accelerating DNA damage. In this report, silver-silver sulfide nanoparticles (Ag-Ag2S NPs) were synthesized via a facile, one-pot and environmentally friendly biomineralization method. Ag-Ag2S was coated with bovine serum albumin (BSA) in situ and applied as an X-ray sensitizer to enhance the efficiency of radiotherapy. Also, folic acid (FA) was conjugated to Ag-Ag2S@BSA to impart active targeting capability to the final formulation (Ag-Ag2S@BSA-FA). Prepared NPs were characterized by transmission electron microscopes (TEM), scanning electron microscope (SEM), dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. Results show that most of the NPs have well-defined uniform Janus structures. The biocompatibility of the NPs was then evaluated both in vitro and in vivo. A series of in vitro assays were performed on 4T1 cancer cells to evaluate the therapeutic efficacy of the designed NPs. In addition, the radio-enhancing ability of the NPs was tested on the 4T1 breast cancer murine model. MTT, live and dead cell staining, apoptosis, ROS generation, and clonogenic in vitro assays demonstrated the efficacy of NPs as radiosensitizers in radiotherapy. In vivo results as well as H&E staining tumor tissues confirmed tumor destruction in the group that received Ag-Ag2S@BSA-FA NPs and exposed to X-ray. The results showed that prepared tumor-targeted Ag-Ag2S@BSA-FA NPs could be potential candidates as radiosensitizers for enhanced radiotherapy.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Radiossensibilizantes , Animais , Camundongos , Prata/farmacologia , Biomineralização , Radiossensibilizantes/farmacologia , Projetos de Pesquisa , Ácido Fólico
17.
J Mech Behav Biomed Mater ; 146: 106082, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619285

RESUMO

Functionalization of calcium phosphates with biomimetic peptides is a promising strategy to increase cellular response for bone tissue repair. In this work, biphasic calcium phosphate pellets were functionalized with the hydroxyapatite-binding peptide pVTK by dropping a suspension of the peptide on the pellet surface. The bioactivity tests were performed in vitro by using McCoy culture medium. Cytotoxicity tests were also performed to assess cell viability. The material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy with field emission gun (FEG-SEM). The results showed that functionalization with the biomimetic peptide was most effective in inducing precipitation of bone-like apatite on the pellets surface, when compared to the control groups (two positive control groups and one negative control group). Cytotoxicity tests showed that all samples are biocompatible but the pellets with peptide showed the highest values of cell viability.


Assuntos
Biomineralização , Fosfatos de Cálcio , Apatitas , Biomimética , Peptídeos/farmacologia
18.
ACS Appl Mater Interfaces ; 15(36): 42404-42412, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642196

RESUMO

Metal-organic frameworks (MOF) are promising candidates for the construction of artificial nanozymes and have found applications in many fields. However, the preparation of nanosized MOF materials with high performance and good dispersibility is still a big challenge and is in great demand as signal labels for immunoassays. In this work, hierarchically structured and highly dispersible MOF nanoparticles were facilely prepared in a one-pot method. Self-assembled micelles from PEGylated hematin were used as structured templates to mediate the formation of zeolitic imidazole framework-8 (ZIF-8) nanoparticles in aqueous solution. The encapsulation of micelles in ZIF-8 frameworks produces well-dispersed nanoparticles and generates dual-confinement effects for catalytic hematin. Owing to the hierarchical structures, the formed MOF nanozymes show enhanced peroxidase-like activity and enable persistent chemiluminescence behaviors for the luminol system. Sandwich-type chemiluminescence immunoassays for carcinoembryonic antigen (CEA) were proposed using MOF nanozymes as signal labels, and good analytical performances were achieved. The combination of self-assembly and biomineralization may open new avenues for the development of MOF nanomaterials.


Assuntos
Biomineralização , Estruturas Metalorgânicas , Hemina , Luminescência , Micelas
19.
Environ Monit Assess ; 195(9): 1019, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548767

RESUMO

Due to anthropogenic activities, heavy metals such as cadmium (Cd) and arsenic (As) are one of the most toxic xenobiotics contaminating water, thus affecting human health and the environment. The objective of the present investigation was to study the effect of ureolytic bacteria Bacillus paramycoides-MSR1 for the bioremediation of Cd and As from contaminated water. The B. paramycoides showed high resistance to heavy metals, Cd and As, with minimum inhibitory concentration (MIC) of 12.84 µM and 48.54 µM, respectively. The urease activity and calcium carbonate (CaCO3) precipitation were evaluated in artificial wastewater with different concentrations of Cd (0, 10, 20, 30, 40, 50, and 60 µM) and As (0, 20, 40, 60, 80, and 100 µM). The maximum urease activity in Cd-contaminated artificial wastewater was observed after 96 hours, which showed a 76.1% decline in urease activity as the metal concentration increased from 0 to 60 µM. Similarly, 14.1% decline in urease activity was observed as the concentration of As was increased from 0 to 100 µM. The calcium carbonate precipitation at the minimum inhibitory concentration of Cd and As-contaminated artificial wastewater was 189 and 183 mg/100 ml, respectively. The percentage removal of metal from artificially contaminated wastewater with varied concentrations was analyzed using atomic absorption spectroscopy (AAS). After 168 hours of incubation, 93.13% removal of Cd and 94.25% removal of As were observed. Microstructural analysis proved the presence of calcium carbonate in the form of calcite, confirming removal of cadmium and arsenic by microbially induced calcium carbonate precipitation (MICCP) to be promising technique for water decontamination.


Assuntos
Arsênio , Metais Pesados , Humanos , Cádmio/química , Biomineralização , Urease , Águas Residuárias , Monitoramento Ambiental , Carbonato de Cálcio/química
20.
Sci Adv ; 9(29): eadg5858, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478187

RESUMO

Semiconductor-based biointerfaces are typically established either on the surface of the plasma membrane or within the cytoplasm. In Gram-negative bacteria, the periplasmic space, characterized by its confinement and the presence of numerous enzymes and peptidoglycans, offers additional opportunities for biomineralization, allowing for nongenetic modulation interfaces. We demonstrate semiconductor nanocluster precipitation containing single- and multiple-metal elements within the periplasm, as observed through various electron- and x-ray-based imaging techniques. The periplasmic semiconductors are metastable and display defect-dominant fluorescent properties. Unexpectedly, the defect-rich (i.e., the low-grade) semiconductor nanoclusters produced in situ can still increase adenosine triphosphate levels and malate production when coupled with photosensitization. We expand the sustainability levels of the biohybrid system to include reducing heavy metals at the primary level, building living bioreactors at the secondary level, and creating semi-artificial photosynthesis at the tertiary level. The biomineralization-enabled periplasmic biohybrids have the potential to serve as defect-tolerant platforms for diverse sustainable applications.


Assuntos
Biomineralização , Periplasma , Periplasma/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA