Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
ACS Nano ; 18(11): 7972-7988, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445578

RESUMO

RNA nanotechnology, including rolling circle transcription (RCT), has gained increasing interest as a fascinating siRNA delivery nanoplatform for biostable and tumor-targetable RNA-based therapies. However, due to the lack of fine-tuning technologies for RNA nanostructures, the relationship between physicochemical properties and siRNA efficacy of polymeric siRNA nanoparticles (PRNs) with different sizes has not yet been fully elucidated. Herein, we scrutinized the effects of size/surface chemistry-tuned PRNs on the biological and physiological interactions with tumors. PRNs with adjusted size and surface properties were prepared using sequential engineering processes: RCT, condensation, and nanolayer deposition of functional biopolymers. Through the RCT process, nanoparticles of three sizes with a diameter of 50-200 nm were fabricated and terminated with three types of biopolymers: poly-l-lysine (PLL), poly-l-glutamate (PLG), and hyaluronic acid (HA) for different surface properties. Among the PRNs, HA-layered nanoparticles with a diameter of ∼200 nm exhibited the most effective systemic delivery, resulting in superior anticancer effects in an orthotopic breast tumor model due to the CD44 receptor targeting and optimized nanosized structure. Depending on the type of PRNs, the in vivo siRNA delivery with protein expression inhibition differed by up to approximately 20-fold. These findings indicate that the types of layered biopolymers and the PRNs size mediate efficient polymeric siRNA delivery to the targeted tumors, resulting in high RNAi-induced therapeutic efficacy. This RNA-nanotechnology-based size/surface editing can overcome the limitations of siRNA therapeutics and represents a potent built-in module method to design RNA therapeutics tailored for targeted cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Distribuição Tecidual , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , Nanopartículas/química , Polímeros/metabolismo , Biopolímeros/metabolismo , Neoplasias/tratamento farmacológico
2.
Arch Microbiol ; 205(9): 306, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580645

RESUMO

Melanin is an amorphous polymer made of heterogeneous functional groups synthesized by diverse organisms including fungi, bacteria, animals, and plants. It was widely acknowledged for its biological processes and its key role in the protection of organisms from environmental stress. Recently, melanin clutches attention in the field of nanobiotechnology, drug delivery, organic semiconductors and bioelectronics, environmental bioremediation, photoprotection, etc., Furthermore, melanin from natural sources like microbial community shows antimicrobial, fighting cancer, radical scavenging, cosmeceuticals, and many therapeutic areas as well. Though the multipotentiality nature of melanin has been put forth, real-world applications still flag fall behind, which might be anticipated to the inadequate and high price essence of natural melanin. However, current bioprocess technologies have paved for the large-scale or industrial production of microbial melanin, which could help in the replacement of synthetic melanin. Thus, this review emphasizes the various sources for melanin, i.e., types-based on its pathways and its chemical structures, functional efficiency, physical properties, and conventional and modern methods of both extraction and characterization. Moreover, an outlook on how it works in the field of medicine, bioremediation, and other related areas provides perspectives on the complete exploitation of melanin in practical applications of medicine and the environment.


Assuntos
Anti-Infecciosos , Melaninas , Animais , Melaninas/química , Biopolímeros/metabolismo , Anti-Infecciosos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo
3.
In Vitro Cell Dev Biol Anim ; 59(7): 505-513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37507645

RESUMO

Human vascular smooth muscle cells (SMCs) are adherent cells, and they cannot survive without scaffolds in suspension culture. Here, we aimed to establish a suspension culture of SMCs using the functional biopolymer FP003 and to investigate the proliferation status of the cells. When SMCs were suspension cultured with FP003, their proliferation was inhibited with a viability of 75% until day 15. When SMCs were re-plated on plastic plates after suspension culture with FP003 for 48 h, the SMCs proliferated as in a normal plate culture. The SMCs cultured in suspension with FP003 showed a relatively low phosphorylation of retinoblastoma protein, low expression of cyclin D1, high proportion of G0/G1 phase cells, low proportion of S phase cells, and no obvious signs of apoptosis, indicating that this culture system inhibited progression from the G1 to S phase. This growth arrest was a reversible property that showed no significant changes in the expressions of the marker proteins α-smooth muscle actin and smooth muscle myosin heavy chain. These results suggest that human SMCs can be stably cultured in suspension with FP003 without losing their characteristics when they are cultured on plastic plates again.


Assuntos
Músculo Liso Vascular , Proteínas , Humanos , Animais , Células Cultivadas , Proteínas/metabolismo , Biopolímeros/metabolismo , Miócitos de Músculo Liso/metabolismo
4.
Bioresour Technol ; 377: 128959, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965583

RESUMO

The aim of this work was to study the effect of thermal alkaline pretreatment and zinc acetate-catalyzed methanolysis (MtOH-ZnOAc) in biogas production from bioplastic in anaerobic digestion. The pretreated bioplastic with MtOH-ZnOAc performs efficient solubilization and produced 205.7 ± 6.9 mL/g CODadded, which is higher than thermal alkaline degradation. The mesophilic condition produces more than 79% higher biogas compared with the thermophilic condition with the diluted pretreated bioplastic by 30 times. The kinetic study was well fit the experimental data and showed the correlation between cumulative biogas, production rate, and lag phase with mono- and two-stage system in batch fermentation. The two-stage system produced 315.6 ± 7.7 mL/g CODadded which was higher 67.2 ± 2.02 than the mono-stage system. Methanosaetaceae predominates among the Archaea, which are primarily responsible for methanogenesis, showing a contribution to a higher biogas production rate.


Assuntos
Biocombustíveis , Acetato de Zinco , Anaerobiose , Reatores Biológicos , Biopolímeros/metabolismo , Catálise , Metano/metabolismo
5.
Int J Food Microbiol ; 377: 109785, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35752069

RESUMO

Many petroleum-derived plastics, including food packaging materials are non-biodegradable and designed for single-use applications. Annually, around 175 Mt. of plastic enters the land and ocean ecosystems due to mismanagement and lack of techno economically feasible plastic waste recycling technologies. Renewable sourced, biodegradable polymer-based food packaging materials can reduce this environmental pollution. Sugar production from sugarcane or sugar beet generates organic waste streams that contain fermentable substrates, including sugars, acids, and aromatics. Microbial metabolism can be leveraged to funnel those molecules to platform chemicals or biopolymers to generate biodegradable food packaging materials that have active or sensing molecules embedded in biopolymer matrices. The smart package can real-time monitor food quality, assure health safety, and provide economic and environmental benefits. Active packaging materials display functional properties such as antimicrobial, antioxidant, and light or gas barrier. This article provides an overview of potential biodegradable smart/active polymer packages for food applications by valorizing sugar industry-generated organic waste. We highlight the potential microbial pathways and metabolic engineering strategies to biofunnel the waste carbon efficiently into the targeted platform chemicals such as lactic, succinate, muconate, and biopolymers, including polyhydroxyalkanoates, and bacterial cellulose. The obtained platform chemicals can be used to produce biodegradable polymers such as poly (butylene adipate-co-terephthalate) (PBAT) that could replace incumbent polyethylene and polypropylene food packaging materials. When nanomaterials are added, these polymers can be active/smart. The process can remarkably lower the greenhouse gas emission and energy used to produce food-packaging material via sugar industrial waste carbon relative to the petroleum-based production. The proposed green routes enable the valorization of sugar processing organic waste into biodegradable materials and enable the circular economy.


Assuntos
Petróleo , Poli-Hidroxialcanoatos , Materiais Inteligentes , Biopolímeros/química , Biopolímeros/metabolismo , Carbono , Ecossistema , Embalagem de Alimentos , Resíduos Industriais , Plásticos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/metabolismo , Açúcares
6.
J Med Chem ; 64(23): 17455-17467, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34846143

RESUMO

Two dual stimuli-activated photosensitizers were developed, in which two or three glutathione (GSH)-responsive 2,4-dinitrobenzenesulfonate (DNBS)-substituted zinc(II) phthalocyanine units were connected via one or two cathepsin B-cleavable Gly-Phe-Leu-Gly peptide linker(s). These dimeric and trimeric phthalocyanines were fully quenched in the native form due to the photoinduced electron transfer to the DNBS substituents and the self-quenching of the phthalocyanine units. In the presence of GSH and cathepsin B, or upon internalization into A549 and HepG2 cancer cells, these probes were activated through the release of free phthalocyanine units. The intracellular fluorescence intensity was increased upon post-incubation with GSH ester or reduced upon pre-treatment with a cathepsin B inhibitor. Upon light irradiation, these photosensitizers became highly cytotoxic with IC50 values of 0.21-0.39 µM. The photocytotoxicity was also dependent on the intracellular GSH and cathepsin B levels. The results showed that these conjugates could serve as smart photosensitizers for targeted photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Biopolímeros/metabolismo , Catepsina B/metabolismo , Glutationa/metabolismo , Isoindóis/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Fluorescência , Humanos
7.
Biomolecules ; 11(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680115

RESUMO

Vascular calcification, once considered a degenerative, end-stage, and inevitable condition, is now recognized as a complex process regulated in a manner similar to skeletal bone at the molecular and cellular levels. Since the initial discovery of bone morphogenetic protein in calcified human atherosclerotic lesions, decades of research have now led to the recognition that the regulatory mechanisms and the biomolecules that control cardiovascular calcification overlap with those controlling skeletal mineralization. In this review, we focus on key biomolecules driving the ectopic calcification in the circulation and their regulation by metabolic, hormonal, and inflammatory stimuli. Although calcium deposits in the vessel wall introduce rupture stress at their edges facing applied tensile stress, they simultaneously reduce rupture stress at the orthogonal edges, leaving the net risk of plaque rupture and consequent cardiac events depending on local material strength. A clinically important consequence of the shared mechanisms between the vascular and bone tissues is that therapeutic agents designed to inhibit vascular calcification may adversely affect skeletal mineralization and vice versa. Thus, it is essential to consider both systems when developing therapeutic strategies.


Assuntos
Biopolímeros/metabolismo , Calcinose/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , Cálcio/metabolismo , Humanos , Modelos Biológicos , Terapia de Alvo Molecular
8.
Biol Chem ; 402(11): 1309-1324, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34392640

RESUMO

Controlled wound healing requires a temporal and spatial coordination of cellular activities within the surrounding extracellular matrix (ECM). Disruption of cell-cell and cell-matrix communication results in defective repair, like chronic or fibrotic wounds. Activities of macrophages and fibroblasts crucially contribute to the fate of closing wounds. To investigate the influence of the ECM as an active part controlling cellular behavior, coculture models based on fibrillar 3D biopolymers such as collagen have already been successfully used. With well-defined biochemical and biophysical properties such 3D scaffolds enable in vitro studies on cellular processes including infiltration and differentiation in an in vivo like microenvironment. Further, paracrine and autocrine signaling as well as modulation of soluble mediator transport inside the ECM can be modeled using fibrillar 3D scaffolds. Herein, we review the usage of these scaffolds in in vitro coculture models allowing in-depth studies on the crosstalk between macrophages and fibroblasts during different stages of cutaneous wound healing. A more accurate mimicry of the various processes of cellular crosstalk at the different stages of wound healing will contribute to a better understanding of the impact of biochemical and biophysical environmental parameters and help to develop further strategies against diseases such as fibrosis.


Assuntos
Biopolímeros/metabolismo , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Macrófagos/metabolismo , Biopolímeros/química , Matriz Extracelular/química , Colágenos Fibrilares/química , Humanos , Macrófagos/química , Cicatrização
9.
ACS Appl Bio Mater ; 4(1): 229-251, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34250454

RESUMO

Polymeric biomaterials have been used in a variety of applications, like cargo delivery and tissue scaffolding, because they are easily synthesized and can be adapted to many systems. However, there is still a need to further enhance and improve their functions to progress their use in the biomedical field. A promising solution is to modify the polymer surfaces with peptides that can increase biocompatibility, cellular interactions, and receptor targeting. In recent years, peptide modifications have been used to overcome many challenges to polymer biomaterial development. This review discusses recent progress in developing peptide-modified polymers for therapeutic applications including cell-specific targeting and tissue engineering. Furthermore, we will explore some of the most frequently studied base components of these biomaterials.


Assuntos
Biopolímeros/química , Peptídeos/química , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/metabolismo , Biopolímeros/metabolismo , Biopolímeros/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química
10.
Biochim Biophys Acta Biomembr ; 1863(11): 183691, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224702

RESUMO

Human islet amyloid polypeptides (hIAPP) aggregate into amyloid deposits in the pancreatic islets of Langerhans, contributing to the loss of ß-cells of patients with type 2 diabetes. Despite extensive studies of membrane disruption associated with hIAPP aggregates, the molecular details regarding the complex interplay between hIAPP aggregates and raft-containing membranes are still very limited. Using all-atom molecular dynamics simulations, we investigate the impact of hIAPP aggregate insertion on lipid segregation. We have found that the domain separation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is enhanced upon hIAPP membrane permeabilization in the absence of cholesterol, while within our simulation timescale, we cannot provide definitive evidence regarding the impact of hIAPP insertion on domain segregation in the ternary mixture (DOPC/DPPC/cholesterol). When the lipid domains are perturbed, their restoration occurs rapidly and spontaneously in the presence of hIAPP aggregates. hIAPP insertion affects membrane thickness in its immediate surroundings. On average, hIAPP causes the fluidity of lipids to increase and even cholesterol shows enhanced diffusivity. The acyl chain packing of the lipids near hIAPP is disrupted as compared to that further away from it. Cholesterol not only modulates membrane mobility and ordering but also hIAPP aggregates' structure and relative orientation to the membrane. Our investigations on the interaction between hIAPP aggregates and raft-containing membranes could lead to a better understanding of the mechanisms of amyloid cytotoxicity.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Microdomínios da Membrana/metabolismo , Biopolímeros/metabolismo , Colesterol/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Fluidez de Membrana , Lipídeos de Membrana/metabolismo , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta
11.
J Mater Chem B ; 9(25): 5047-5054, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34155493

RESUMO

With the rapid development of biology and nanotechnology, designing nanomaterials with intrinsic enzyme-like activities has attracted huge attention in recent years. Herein, for the first time, we use zein as a new protein precursor to prepare N-rich carbonized zein nanosheets (C-Zein) via facile pyrolysis. Zein is an inert, biodegradable and sustainable natural biopolymer. After high-temperature carbonization, zein can be converted into highly catalytically active C-Zein, which can possess excellent peroxidase- and oxidase-like catalytic activities. Such intrinsic enzyme-like activities of C-Zein are closely related to its graphitization degree, the ratio of graphitic nitrogen and the formation of disordered graphene. Intriguingly, C-Zein also exhibits high photothermal conversion efficiency in the near-infrared (NIR) region. Coupling their unique photothermal and catalytic properties, the as-prepared C-Zein can act as a robust agent for synergistic photothermal-catalytic cancer treatment under the irradiation of NIR light. We expect that this work paves the way to use zein for designing efficient artificial enzymes and accelerate further growth in exploring its new biomedical and pharmaceutical applications.


Assuntos
Biopolímeros/metabolismo , Nanoestruturas/química , Fotoquimioterapia , Zeína/metabolismo , Biocatálise , Biopolímeros/química , Proliferação de Células , Sobrevivência Celular , Células HeLa , Humanos , Raios Infravermelhos , Tamanho da Partícula , Zeína/química
12.
Biosci Biotechnol Biochem ; 85(8): 1861-1868, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34077500

RESUMO

Amyloid beta (Aß) 42 peptide accumulated in Alzheimer disease (AD) patients' brain, often colocalized with serine protease inhibitor family A member 3 (SERPINA3). Being a chaperon, SERPINA3 accelerated Aß42 fibrillization. While analyzing chaperon activity of human SERPINA3 polymorphisms, we found SERPINA3-R124C played a role in protecting cells from Aß42 cytotoxicity. SH-SY5Y cells exposed to Aß42 preincubated with wild-type SERPINA3 (SERPINA3-WT) resulted in extended toxicity leading cell death whereas Aß42 with SERPINA3-R124C resulted in less cytotoxicity. Transmission electron microscope and thioflavin T assay revealed that SERPINA3-R124C shortened lifetime of small soluble oligomer and maintained ß-sheet rich protofibril-like aggregates for longer time compared to that of with SERPINA3-WT. Western blot assay confirmed that SERPINA3-R124C converted Aß42 mostly into high molecular aggregates. Here, we demonstrate first time that polymorphic SERPINA3 acts as a benign chaperon by modulating the transition states of Aß42, which may contribute to the reduction of AD risk.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Biopolímeros/metabolismo , Fragmentos de Peptídeos/metabolismo , Serpinas/metabolismo , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/química , Benzotiazóis/metabolismo , Western Blotting , Catálise , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serpinas/química
13.
Sci Rep ; 11(1): 10523, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006972

RESUMO

Proteasome inhibitors (PIs) represent the gold standard in the treatment of multiple myeloma. Among PIs, Bortezomib (BTZ) is frequently used as first line therapy, but peripheral neuropathy (PN), occurring approximately in 50% of patients, impairs their life, representing a dose-limiting toxicity. Carfilzomib (CFZ), a second-generation PI, induces a significantly less severe PN. We investigated possible BTZ and CFZ off-targets able to explain their different neurotoxicity profiles. In order to identify the possible PIs off-targets we used the SPILLO-PBSS software that performs a structure-based in silico screening on a proteome-wide scale. Among the top-ranked off-targets of BTZ identified by SPILLO-PBSS we focused on tubulin which, by contrast, did not turn out to be an off-target of CFZ. We tested the hypothesis that the direct interaction between BTZ and microtubules would inhibit the tubulin alfa GTPase activity, thus reducing the microtubule catastrophe and consequently furthering the microtubules polymerization. This hypothesis was validated in a cell-free model, since BTZ (but not CFZ) reduces the concentration of the free phosphate released during GTP hydrolysis. Moreover, NMR binding studies clearly demonstrated that BTZ, unlike CFZ, is able to interact with both tubulin dimers and polymerized form. Our data suggest that different BTZ and CFZ neurotoxicity profiles are independent from their proteasome inhibition, as demonstrated in adult mice dorsal root ganglia primary sensory neurons, and, first, we demonstrate, in a cell free model, that BTZ is able to directly bind and perturb microtubules.


Assuntos
Antineoplásicos/toxicidade , Bortezomib/toxicidade , Oligopeptídeos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Inibidores de Proteassoma/toxicidade , Tubulina (Proteína)/metabolismo , Animais , Biopolímeros/metabolismo , Linhagem Celular , Simulação por Computador , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Ligação Proteica
14.
Ecotoxicol Environ Saf ; 208: 111666, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396176

RESUMO

The chemical ecology of rotifers has been little studied. A yet unknown property is presented within some monogonant rotifers, namely the ability to produce an exogenic filamentous biopolymer, named 'Rotimer'. This rotifer-specific viscoelastic fiber was observed in six different freshwater monogonants (Euchlanis dilatata, Lecane bulla, Lepadella patella, Itura aurita, Colurella adriatica and Trichocerca iernis) in exception of four species. Induction of Rotimer secretion can only be achieved by mechanically irritating rotifer ciliate with administering different types (yeast cell skeleton, denatured BSA, epoxy, Carmine or urea crystals and micro-cellulose) and sizes (approx. from 2.5 to 50 µm diameter) of inert particles, as inductors or visualization by adhering particles. The thickness of this Rotimer is 33 ± 3 nm, detected by scanning electron microscope. This material has two structural formations (fiber or gluelike) in nano dimension. The existence of the novel adherent natural product becomes visible by forming a 'Rotimer-Inductor Conglomerate' (RIC) web structure within a few minutes. The RIC-producing capacity of animals, depends on viability, is significantly modified according to physiological- (depletion), drug- (toxin or stimulator) and environmental (temperature, salt content and pH) effects. The E. dilatata-produced RIC is affected by protein disruptors but is resistant to several chemical influences and its Rotimer component has an overwhelming cell (algae, yeast and human neuroblastoma) motility inhibitory effect, associated with low toxicity. This biopolymer-secretion-capacity is protective of rotifers against human-type beta-amyloid aggregates.


Assuntos
Biopolímeros/metabolismo , Rotíferos/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Biopolímeros/química , Biopolímeros/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Água Doce/microbiologia , Humanos , Rotíferos/classificação , Rotíferos/efeitos dos fármacos , Temperatura
15.
Food Chem ; 350: 128659, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33342609

RESUMO

Salicornia neei halophyte extends in Argentina seashores. To envisage potential applications, cell wall sequential extraction performed on dry plant yielded 1.1, 2.4, 0.3 and 0.9% of pectin fractions respectively extracted by room temperature water, 90 °C-water, CDTA and Na2CO3. They contained 21-33% uronic acids (UA) with low degree of methylation and 0.5-1.2 M ratios of neutral sugars to UA. High arabinose level suggests that long arabinan side-chains maintain cell wall flexibility in water deficit. Fractions also contained 10-36% of proteins. The KOH-soluble fractions (4.3%) were mainly arabinoxylans. At 2.0% w/v, pectin fractions developed "weak gel"-type networks with Ca2+, while arabinoxylans generated "dilute solutions". Cellulose (28%) and lignin (45.1%) were the main biopolymers in the final residue, which showed low water swelling capacity (3.6 mL/g) due to lignin, increasing when arabinoxylans were also present. Phenolics (9.8%) were mainly water-extractable. Salicornia is a source of biopolymers and antioxidants potentially useful for food applications.


Assuntos
Biopolímeros/metabolismo , Parede Celular/química , Chenopodiaceae/química , Plantas Tolerantes a Sal/química , Antioxidantes/análise , Celulose/análise , Chenopodiaceae/metabolismo , Lignina/análise , Pectinas/análise , Proteínas de Plantas/análise
16.
J Gene Med ; 23(2): e3295, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33171540

RESUMO

BACKGROUND: Previously, we determined that four-branched histidine-lysine (HK) peptides were effective carriers of plasmids and small interfering RNA. In the present study, we compared several branched HK carriers and, in particular, two closely-related H3K4b and H3K(+H)4b peptides for their ability as carriers of mRNA. The H3K(+H)4b peptide differed from its parent analogue, H3K4b, by only a single histidine in each branch. METHODS: A series of four-branched HK peptides with varied sequences was synthesized on a solid-phase peptide synthesizer. The ability of these peptides to carry mRNA expressing luciferase to MDA-MB-231 cells was investigated. With gel retardation and heparin displacement assays, the stability of HK polyplexes was examined. We determined the intracellular uptake of HK polyplexes by flow cytometry and fluorescence microscopy. The size and polydispersity index of the polyplexes in several media were measured by dynamic light scattering. RESULTS: MDA-MB-231 cells transfected by H3K(+H)4b-mRNA polyplexes expressed 10-fold greater levels of luciferase than H3K4b polyplexes. With gel retardation and heparin displacement assays, the H3K(+H)4b polyplexes showed greater stability than H3K4b. Intracellular uptake and co-localization of H3K(+H)4b polyplexes within acidic endosomes were also significantly increased compared to H3K4b. Similar to H3K(+H)4b, several HK analogues with an additional histidine in the second domain of their branches were effective carriers of mRNA. When combined with DOTAP liposomes, H3K(+H)4b was synergistic in delivery of mRNA. CONCLUSIONS: H3K(+H)4b was a more effective carrier of mRNA than H3K4b. Mechanistic studies suggest that H3K(+H)4b polyplexes were more stable than H3K4b polyplexes. Lipopolyplexes formed with H3K(+H)4b markedly increased mRNA transfection.


Assuntos
Histidina/metabolismo , Lisina/metabolismo , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Biopolímeros/química , Biopolímeros/metabolismo , Linhagem Celular Tumoral , Histidina/química , Humanos , Lisina/química , Peptídeos/química , RNA Mensageiro/química
17.
J Basic Microbiol ; 60(11-12): 938-949, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33022819

RESUMO

The production of extracellular polysaccharides (EPS) by haloarchaeal members, with novel and unusual physicochemical properties, is of special importance and has the potential for extensive biotechnological exploitation. An extremely halophilic archaeon, Haloferax sp. BKW301 (GenBank Accession No. KT240044) isolated from a solar saltern of Baksal, West Bengal, India has been optimized for the production of EPS under batch culture. It produced a considerable amount (5.95 g/L) of EPS in the medium for halophiles with 15% NaCl, 3% glucose, 0.5% yeast extract, and 6% inoculum under shake flask culture at 120 rpm. The purified EPS, a homopolymer of galactose as revealed by chromatographic methods and Fourier-transform infrared spectroscopy, is noncrystalline (CIxrd , 0.82), amorphous, and could emulsify hydrocarbons like kerosene, petrol, xylene, and so forth. Moreover, the polymer is highly thermostable (up to 420°C) and displayed pseudoplastic rheology. Biologically, the EPS was able to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) radical efficiently and inhibit the proliferation of the Huh-7 cell line at an IC50 value of 6.25 µg/ml with a Hill coefficient of 0.844. Large-scale production of this thermostable, pseudoplastic homopolysaccharide, therefore, could find suitable applications in industry and biotechnology.


Assuntos
Haloferax/metabolismo , Polissacarídeos Bacterianos/metabolismo , Técnicas de Cultura Celular por Lotes , Biopolímeros/química , Biopolímeros/isolamento & purificação , Biopolímeros/metabolismo , Biopolímeros/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Emulsificantes , Sequestradores de Radicais Livres , Galactose , Haloferax/classificação , Haloferax/genética , Temperatura Alta , Humanos , Índia , Filogenia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/farmacologia , Reologia
18.
Cell ; 183(3): 717-729.e16, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031746

RESUMO

The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.


Assuntos
Biopolímeros/metabolismo , Mucinas/metabolismo , Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Dissulfetos/metabolismo , Feminino , Glicosilação , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mucinas/química , Mucinas/ultraestrutura , Peptídeos/química , Domínios Proteicos , Multimerização Proteica , Fator de von Willebrand/química , Fator de von Willebrand/ultraestrutura
19.
Biosystems ; 198: 104260, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32987142

RESUMO

Many theories of the origin of life focus on only one primitive polymer as an archetype of a world paradigm. However, life would have emerged within more complex scenarios where a variety of molecules and diverse polymers interconnected by a few similar chemical reactions. Previous work suggested that the ancestors of all major biopolymers would have arisen from abiotic template independent replication processes. They would have been organized in two closed sets of polymerization cycles: polysaccharides, polyribonucleotides and polyphosphates on one site; and peptides, fatty acids and polyhydroxyalkanoates on the other site. Then, these polymerization reaction cycles integrated into a minimal organization closure. Here, the purpose was to explore which kind of reactions could have supported the chemical networks that led to the early (bio)polymers. As a result, the proposed overview suggests that phosphorylation and acylation transfer reactions would have arisen independently and forged two distinct chemical systems that provided the phosphorylated and carboxylated intermediates used for the synthesis of the corresponding polymers. In this sense, modern metabolism may still reflect its dual nature, probably relying on these two reaction networks from the beginnings.


Assuntos
Biopolímeros/química , Carbono/química , Evolução Química , Modelos Químicos , Origem da Vida , Água/química , Acilação , Biopolímeros/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Fosforilação , Polimerização , Água/metabolismo
20.
J Med Chem ; 63(19): 11054-11084, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32878437

RESUMO

Accumulation of cytotoxic lipofuscin bisretinoids may contribute to atrophic age-related macular degeneration (AMD) pathogenesis. Retinal bisretinoid synthesis depends on the influx of serum all-trans-retinol (1) delivered via a tertiary retinol binding protein 4 (RBP4)-transthyretin (TTR)-retinol complex. We previously identified selective RBP4 antagonists that dissociate circulating RBP4-TTR-retinol complexes, reduce serum RBP4 levels, and inhibit bisretinoid synthesis in models of enhanced retinal lipofuscinogenesis. However, the release of TTR by selective RBP4 antagonists may be associated with TTR tetramer destabilization and, potentially, TTR amyloid formation. We describe herein the identification of bispecific RBP4 antagonist-TTR tetramer kinetic stabilizers. Standout analogue (±)-44 possesses suitable potency for both targets, significantly lowers mouse plasma RBP4 levels, and prevents TTR aggregation in a gel-based assay. This new class of bispecific compounds may be especially important as a therapy for dry AMD patients who have another common age-related comorbidity, senile systemic amyloidosis, a nongenetic disease associated with wild-type TTR misfolding.


Assuntos
Biopolímeros/metabolismo , Desenho de Fármacos , Atrofia Geográfica/tratamento farmacológico , Degeneração Macular/tratamento farmacológico , Pré-Albumina/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/antagonistas & inibidores , Animais , Biopolímeros/química , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Atrofia Geográfica/metabolismo , Humanos , Degeneração Macular/metabolismo , Camundongos , Estrutura Molecular , Pré-Albumina/química , Proteínas Plasmáticas de Ligação ao Retinol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA