Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Inorg Chem ; 63(37): 17249-17262, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39235210

RESUMO

Using the principle of "Magic Bullet", a cisplatin-derived platinum(IV) prodrug heterobimetallic Pt(IV)-Ru(II) complex, cis,cis,trans-[Pt(NH3)2Cl2{Ru(tpy-BODIPY)(tpy-COO)}(biotin)]Cl2 (Pt-Ru-B, 2), having two axial ligands, namely, biotin as water-soluble B-vitamin for enhanced cellular uptake and a BODIPY-ruthenium(II) (Ru-B, 1) photosensitizer having N,N,N-donor tpy (4'-phenyl-2,2':6',2″-terpyridine) bonded to boron-dipyrromethene (BODIPY), is developed as a "Platin Bullet" for targeted photodynamic therapy (PDT). Pt-Ru-B exhibited intense absorption near 500 nm and emission near 513 nm (λex = 488 nm) in a 10% dimethyl sulfoxide-Dulbecco's phosphate-buffered saline medium (pH 7.2). The BODIPY complex on light activation generates singlet oxygen as the reactive oxygen species (ROS) giving a quantum yield (ΦΔ) of ∼0.64 from 1,3-diphenylisobenzofuran experiments. Pt-Ru-B exhibited preferential cellular uptake in cancer cells over noncancerous cells. The dichlorodihydrofluorescein diacetate assay confirmed the generation of cellular ROS. Confocal images revealed its mitochondrial internalization. Pt-Ru-B showed submicromolar photocytotoxicity in visible light (400-700 nm) in A549 and multidrug-resistant MDA-MB-231 cancer cells. It remained nontoxic in the dark and less toxic in nontumorigenic cells. Cellular apoptosis and alteration of the mitochondrial membrane potential were evidenced from the respective Annexin V-FITC/propidium iodide assay and JC-1 dye assay. A wound healing assay using A549 cells and Pt-Ru-B revealed inhibition of cancer cell migration, highlighting its potential as an antimetastatic agent.


Assuntos
Antineoplásicos , Biotina , Fotoquimioterapia , Fármacos Fotossensibilizantes , Pró-Fármacos , Rutênio , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Rutênio/química , Rutênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Biotina/química , Biotina/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química , Porfobilinogênio/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Platina/química , Platina/farmacologia , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/química
2.
Eur J Med Chem ; 264: 115985, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016298

RESUMO

The potential use of Ru(II) complexes as photosensitizers (PSs) in photodynamic therapy (PDT) has gained significant attention. In comparison with fluorophores with aggregation-caused quenching (ACQ), fluorophores with aggregation-induced emission (AIE) characteristics exhibit sustained fluorescence and dispersibility in aqueous solutions. PSs with AIE characteristics have received much attention in recent years. Herein, we reported two novel biotin-conjugated Ru(II) polypyridyl complexes (Ru1 and Ru2) with AIE characteristics. When exposed to 460 nm (10 mW cm-2) light, Ru1 and Ru2 exhibited outstanding photostability and photocatalytic activity. Ru1 and Ru2 could efficiently generate singlet oxygen and induce pUC19 DNA photolysis when exposed to 460 nm light. Interestingly, both Ru1 and Ru2 also functioned as catalysts for NADH oxidation when exposed to 460 nm light. The presence of biotin fragments in Ru1 and Ru2 enhanced the specific uptake of these complexes by tumor cells. Both complexes showed minimal toxicity to selected cells in the dark. Nevertheless, the phototoxicity of both complexes significantly increased upon 460 nm light irradiation for 15 min. Further experiments revealed that Ru2 primarily accumulated in mitochondria and might bind to mitochondrial DNA. Under 460 nm light irradiation, Ru2 induced the generation of reactive oxygen species (ROS) and NADH depletion disrupting intracellular redox homeostasis in A549 cells, activating the mitochondrial apoptosis pathway resulting in up-regulation of apoptotic marker caspase-3, effectively damaged A549 cell DNA and arrested A549 cell cycle in the S phase. In vivo anti-tumor experiments were conducted to assess the effects of Ru2 on tumor growth in A549 tumor-bearing mice. The results showed that Ru2 effectively inhibited tumor growth under 460 nm light irradiation conditions. These findings indicate that Ru2 has great potential as a targeted photosensitizer for mitochondrial targeting imaging and photodynamic therapy of tumors.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/metabolismo , Biotina/farmacologia , Biotina/metabolismo , NAD/metabolismo , Fotoquimioterapia/métodos , Mitocôndrias/metabolismo , Oxirredução , DNA/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Rutênio/farmacologia
3.
J Mater Chem B ; 11(4): 865-878, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594907

RESUMO

Drug resistance caused by facultative intracellular bacteria such as Salmonella typhimurium (S. typhimurium) is still a tough challenge. Bacteria phagocytosed by macrophages have evolved a variety of mechanisms to defend against host attack, and the poor entry of antibiotics into infected macrophages is conducive to the survival of intracellular bacteria. In this report, we prepared a quasi-opsonized chloramphenicol (Chl)-loaded micellar system (B-mLBP-M/Chl) assembled by a bacterial lipase-sensitive polymer with a conjugate of lipopolysaccharide-binding protein (LBP) analog and biotin (B) as a ligand, which could eliminate drug-resistant S. typhimurium with quasi-opsonization via 3 steps: (i) target and release antibiotics on bacteria lipase, (ii) opsonize S. typhimurium to be digested by the macrophage, and (iii) activate the macrophage for fighting. The B-mLBP-M/Chl could target bacterial LPS through mLBP by simulating the N-terminal sequence of native LBP, exhibiting a high ability to target the localized infection site in mice. It could also activate the phagocytosis of macrophages via coupled biotin, cooperating with antibiotics and effectively improving the survival of mice with little pathological damage to tissues. Moreover, compared with native opsonin, B-mLBP does not cause an excessive inflammatory response and could recover homeostasis after exerting the quasi-opsonization by regulating the levels of pro-inflammatory cytokines and anti-inflammatory cytokines. With a universal target site for Gram-negative bacteria and macrophage activation, this B-mLBP-M/Chl could be applied to other bacterial infections in the future. In particular, this analog may also serve as a useful template to design safe artificial opsonin, which could be a ligand for drug delivery systems or prodrugs.


Assuntos
Infecções Bacterianas , Proteínas Opsonizantes , Animais , Camundongos , Proteínas Opsonizantes/farmacologia , Micelas , Biotina/farmacologia , Ligantes , Macrófagos , Citocinas , Antibacterianos/farmacologia
4.
Nutrients ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432448

RESUMO

Late-onset hypogonadism, a male age-related syndrome characterized by a decline in testosterone production in the testes, is commonly treated with testosterone replacement therapy, which has adverse side effects. Therefore, an alternative treatment is highly sought. Supplementation of a high dosage of biotin, a water-soluble vitamin that functions as a coenzyme for carboxylases involved in carbohydrate, lipid, and amino acid metabolism, has been shown to influence testis functions. However, the involvement of biotin in testis steroidogenesis has not been well clarified. In this study, we examined the effect of biotin on testosterone levels in mice and testis-derived cells. In mice, intraperitoneal treatment with biotin (1.5 mg/kg body weight) enhanced testosterone levels in the serum and testes, without elevating serum levels of pituitary luteinizing hormone. To investigate the mechanism in which biotin increased the testosterone level, mice testis-derived I-10 cells were used. The cells treated with biotin increased testosterone production in a dose- and time-dependent manner. Biotin treatment elevated intracellular cyclic adenosine monophosphate levels via adenylate cyclase activation, followed by the activation of protein kinase A and testosterone production. These results suggest that biotin may have the potential to improve age-related male syndromes associated with declining testosterone production.


Assuntos
Testículo , Testosterona , Camundongos , Masculino , Animais , Biotina/farmacologia , Hormônio Luteinizante/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
5.
J Am Chem Soc ; 144(41): 18938-18947, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36197299

RESUMO

The fish oil constituent docosahexaenoic acid (DHA, 22:6 n-3) is a signaling lipid with anti-inflammatory properties. The molecular mechanisms underlying the biological effect of DHA are poorly understood. Here, we report the design, synthesis, and application of a complementary pair of bio-orthogonal, photoreactive probes based on the polyunsaturated scaffold DHA and its oxidative metabolite 17-hydroxydocosahexaenoic acid (17-HDHA). In these probes, an alkyne serves as a handle to introduce a fluorescent reporter group or a biotin-affinity tag via copper(I)-catalyzed azide-alkyne cycloaddition. This pair of chemical probes was used to map specific targets of the omega-3 signaling lipids in primary human macrophages. Prostaglandin reductase 1 (PTGR1) was identified as an interaction partner that metabolizes 17-oxo-DHA, an oxidative metabolite of 17-HDHA. 17-oxo-DHA reduced the formation of pro-inflammatory lipids 5-HETE and LTB4 in human macrophages and neutrophils. Our results demonstrate the potential of comparative photoaffinity protein profiling for the discovery of metabolic enzymes of bioactive lipids and highlight the power of chemical proteomics to uncover new biological insights.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Azidas , Cobre/farmacologia , Biotina/farmacologia , Leucotrieno B4/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Macrófagos , Óleos de Peixe/farmacologia , Anti-Inflamatórios/farmacologia , Alcinos/farmacologia , Prostaglandinas , Oxirredutases
6.
J Med Chem ; 65(12): 8401-8415, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35687871

RESUMO

The search for highly selective sensitizers with a novel mechanism for tumor targeting therapy is of considerable interest. In this work, we have developed a series of new biotin-targeted Au(I) complexes. Through systematic biological evaluation and comparison, biotinylated Au(I) complex 3a containing a triphenylphosphine ligand was screened, as it realized both prominent efficient inhibition and selective cytotoxicity to cancer cells, and the effect was better than that of popularly used auranofin. Meanwhile, complex 3a, as a potent radiosensitizer, enhances anticancer effects in vitro and in vivo and has sensitization selectivity. From the action mechanism study, we provide evidence that complex 3a could intervene in redox homeostasis through targeted binding and strong suppression of thioredoxin reductase (TrxR) and induce the ferroptosis death process, enabling it to sensitize tumor cells to radiotherapy. Thus, complex 3a has enormous potential as an efficient and specific radiosensitizing agent in cancer therapy.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias , Radiossensibilizantes , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Auranofina/farmacologia , Biotina/metabolismo , Biotina/farmacologia , Linhagem Celular Tumoral , Homeostase , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Tiorredoxina Dissulfeto Redutase/metabolismo
7.
Ann Clin Lab Sci ; 52(1): 161-163, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35181630

RESUMO

OBJECTIVE: Interleukin -6 (IL-6) is an important diagnostic test in COVID-19 patients to determine whether to initiate tocilizumab therapy or mechanical ventilation. We investigated potential interference of biotin in Roche IL-6 assay which utilizes biotinylated antibody. METHODS: We prepared three serum pools from left-over specimens which showed IL-6 values over 40 pg/mL. Then aliquots of each serum pool were further supplemented with various amounts of biotin expected in patients taking biotin supplement and then IL-6 values were measured again using Roche IL-6 assay on the Cobas e411 analyzer. RESULTS: We observed negative interference of biotin in IL-6 assay but interference was bimodal as maximum negative interference was observed with 100 ng/mL biotin but not with 1000 ng/mL. However, no interference was observed in the presence of 25 ng/mL biotin. CONCLUSIONS: Biotin showed negative interference with IL-6 assay.


Assuntos
Biotina/sangue , Imunoensaio/métodos , Interleucina-6/sangue , Artefatos , Biotina/farmacologia , COVID-19/sangue , Suplementos Nutricionais , Humanos
8.
Gut ; 71(12): 2463-2480, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35017197

RESUMO

OBJECTIVES: Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN: We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS: Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION: Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER: NCT02059538.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade Mórbida , Complexo Vitamínico B , Humanos , Camundongos , Animais , Prebióticos , Obesidade Mórbida/cirurgia , Biotina/farmacologia , Complexo Vitamínico B/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Inflamação
9.
Pharmacol Res ; 176: 106059, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998973

RESUMO

Skp1-Cul1-F-box protein (SCF) ubiquitin E3 ligases play important roles in cancer development and serve as a promising therapeutic target in cancer therapy. Brusatol (Bru), a known Nrf2 inhibitor, holds promise for treating a wide range of tumors; however, the direct targets of Bru and its anticancer mode of action remain unclear. In our study, 793 Bru-binding candidate proteins were identified by using a biotin-brusatol conjugate (Bio-Bru) followed by streptavidin-affinity pull down-based mass spectrometry. We found that Bru can directly bind to Skp1 and disrupt the interactions of Skp1 with the F-box protein Skp2, leading to the inhibition of the Skp2-SCF E3 ligase. Bru inhibited both proliferation and migration via promoting the accumulation of the substrates p27 and E-cadherin; Skp1 overexpression attenuated while Skp1 knockdown enhanced these effects of Bru in non-small cell lung cancer (NSCLC) cells. Moreover, Bru binding to Skp1 also inhibited the ß-TRCP-SCF E3 ligase. In both subcutaneous and orthotopic NSCLC xenografts, Bru significantly inhibited the growth and metastasis of NSCLC through targeting SCF complex and upregulating p27 and E-cadherin protein levels. These data demonstrate that Bru is a Skp1-targeting agent that may have therapeutic potentials in lung cancer.


Assuntos
Antineoplásicos/uso terapêutico , Biotina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quassinas/uso terapêutico , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Biotina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Quassinas/farmacologia , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo
10.
J Enzyme Inhib Med Chem ; 37(1): 411-420, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34915785

RESUMO

Chemical drug design based on the biochemical characteristics of cancer cells has become an important strategy for discovering new anti-tumour drugs to improve tumour targeting effects and reduce off-target toxicities. Colchicine is one of the most prominent and historically microtubule-targeting drugs, but its clinical applications are hindered by notorious adverse effects. In this study, we presented a novel tumour-specific conjugate 9 that consists of deacetylcolchicine (Deac), biotin, and a cleavable disulphide linker. 9 was found to exhibit potent anti-tumour activity and exerted higher selectivity between tumour and nontarget cells than Deac. The targeting moiety biotin might enhance the transport capability and selectivity of 9 to tumour cells via biotin receptor-mediated endocytosis. The tubulin polymerisation activity of 9 (with DTT) was close to the parent drug Deac. These preliminary results suggested that 9 is a high potency and reduced toxicity antitumor agent and worthy of further investigation.


Assuntos
Antineoplásicos/farmacologia , Colchicina/farmacologia , Desenho de Fármacos , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Biotina/química , Biotina/farmacologia , Biotinilação , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colchicina/síntese química , Colchicina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
11.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885922

RESUMO

To improve the tumor-targeting efficacy of photodynamic therapy, biotin was conjugated with chlorin e6 to develop a new tumor-targeting photosensitizer, Ce6-biotin. The Ce6-biotin had good water solubility and low aggregation. The singlet-oxygen generation rate of Ce6-biotin was slightly increased compared to Ce6. Flow cytometry and confocal laser scanning microscopy results confirmed Ce6-biotin had higher binding affinity toward biotin-receptor-positive HeLa human cervical carcinoma cells than its precursor, Ce6. Due to the BR-targeting ability of Ce6-biotin, it exhibited stronger cytotoxicity to HeLa cells upon laser irradiation. The IC50 against HeLa cells of Ce6-biotin and Ce6 were 1.28 µM and 2.31 µM, respectively. Furthermore, both Ce6-biotin and Ce6 showed minimal dark toxicity. The selectively enhanced therapeutic efficacy and low dark toxicity suggest that Ce6-biotin is a promising PS for BR-positive-tumor-targeting photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Biotina/farmacologia , Clorofilídeos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/química , Biotina/análogos & derivados , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos/química , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/química
12.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884925

RESUMO

Proteolytic enzymes are instrumental in various aspects of plant development, including senescence. This may be due not only to their digestive activity, which enables protein utilization, but also to fulfilling regulatory functions. Indeed, for the largest family of plant serine proteases, subtilisin-like proteases (subtilases), several members of which have been implicated in leaf and plant senescence, both non-specific proteolysis and regulatory protein processing have been documented. Here, we strived to identify the protein partners of phytaspase, a plant subtilase involved in stress-induced programmed cell death that possesses a characteristic aspartate-specific hydrolytic activity and unusual localization dynamics. A proximity-dependent biotin identification approach in Nicotiana benthamiana leaves producing phytaspase fused to a non-specific biotin ligase TurboID was employed. Although the TurboID moiety appeared to be unstable in the apoplast environment, several intracellular candidate protein interactors of phytaspase were identified. These were mainly, though not exclusively, represented by soluble residents of the endoplasmic reticulum, namely endoplasmin, BiP, and calreticulin-3. For calreticultin-3, whose gene is characterized by an enhanced expression in senescing leaves, direct interaction with phytaspase was confirmed in an in vitro binding assay using purified proteins. In addition, an apparent alteration of post-translational modification of calreticultin-3 in phytaspase-overproducing plant cells was observed.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Subtilisinas/metabolismo , Biotina/farmacologia , Biotinilação , Calreticulina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Mapas de Interação de Proteínas
13.
J Biol Inorg Chem ; 26(5): 535-549, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34173882

RESUMO

Ruthenium (Ru) and osmium (Os) complexes are of sustained interest in cancer research and may be alternative to platinum-based therapy. We detail here three new series of ruthenium and osmium complexes, supported by physico-chemical characterizations, including time-dependent density functional theory, a combined experimental and computational study on the aquation reactions and the nature of the metal-arene bond. Cytotoxic profiles were then evaluated on several cancer cell lines although with limited success. Further investigations were, however, performed on the most active series using a genetic approach based on RNA interference and highlighted a potential multi-target mechanism of action through topoisomerase II, mitotic spindle, HDAC and DNMT inhibition.


Assuntos
Antineoplásicos/farmacologia , Biotina/farmacologia , Complexos de Coordenação/farmacologia , Morfolinas/farmacologia , Osmio/farmacologia , Rutênio/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Biotina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Morfolinas/química , Osmio/química , Rutênio/química
14.
Thyroid ; 31(8): 1160-1170, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34042535

RESUMO

Background: Biotin has been reported to interfere with several commonly used laboratory assays resulting in misleading values and possible erroneous diagnosis and treatment. This report describes a prospective study of possible biotin interference in thyroid-related laboratory assays, with a comparison of different commonly used assay platforms. Materials and Methods: Thirteen adult subjects (mean age 45 ± 13 years old) were administered biotin 10 mg/day for eight days. Blood specimens were collected at three time points on day 1 and on day 8 (baseline, two, and five hours after biotin ingestion). Thyrotropin (TSH), free triiodothyronine (fT3), free thyroxine (fT4), total triiodothyronine (TT3), total thyroxine (TT4), thyroxine binding globulin (TBG), and thyroglobulin (Tg) levels were analyzed with four different platforms: Abbott Architect, Roche Cobas 6000, Siemens IMMULITE 2000, and liquid chromatography with tandem mass spectrometry (LC-MS/MS). TSH, fT3, fT4, TT3, and TT4 were measured with Abbott Architect and Roche Cobas 6000. fT3, fT4, TT3, and TT4 were also measured by LC-MS/MS. Tg was measured by Siemens IMMULITE 2000. TBG was assessed with Siemens IMMULITE 2000. Results: Significant changes in TSH, fT4, and TT3 measurements were observed after biotin exposure when the Roche Cobas 6000 platform was used. Biotin intake resulted in a falsely lower Tg level when measurements were performed with Siemens IMMULITE 2000. At the time points examined, maximal biotin interference was observed two hours after biotin exposure both on day 1 and day 8. Conclusions: A daily dose of 10 mg was shown to interfere with specific assays for TSH, fT4, TT3, and Tg. Physicians must be aware of the potential risk of erroneous test results in subjects taking biotin supplements. Altered test results for TSH and Tg can be particularly problematic in patients requiring careful titration of levothyroxine therapy such as those with thyroid cancer.


Assuntos
Biotina/análise , Biotina/farmacologia , Tireoglobulina/análise , Hormônios Tireóideos/análise , Tireotropina/análise , Adulto , Idoso , Cromatografia Líquida de Alta Pressão , Reações Falso-Negativas , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Estudos Prospectivos , Testes de Função Tireóidea
15.
Org Biomol Chem ; 19(12): 2804-2810, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33720265

RESUMO

Targeted photodynamic therapy (PDT) is one of the promising approaches for the selective killing of cancerous cells without affecting the normal cells, and hence designing new strategies for targeted PDT is extremely important. Herein we report the design and synthesis of a new class of nanosheets derived from the self-assembly of the iodo-BODIPY-biotin conjugate as a photosensitizer for targeted PDT applications. The nanosheet exhibits a high extinction coefficient in the NIR region, high singlet oxygen efficiency, no toxicity in the dark and cell targeting ligands (biotin) on the surface, which are necessary features required for an ideal photosensitizer. Overexpression of sodium-dependent multivitamin transporters (SMVTs) in HeLa and A549 (biotin receptor positive cell lines) is explored for the selective uptake of the nanophotosensitizer through receptor mediated endocytosis (interaction between biotin and SMVT). Control experiments using a biotin receptor negative cell line (WI-38) are also carried out to confirm that the specific interaction between the SMVTs and biotin is mainly responsible for the selective uptake of the photosensitizer. Efficient killing of cancerous cells is demonstrated upon light irradiation through the generation of singlet oxygen and other reactive oxygen species around the cellular environment.


Assuntos
Antineoplásicos/farmacologia , Biotina/farmacologia , Compostos de Boro/farmacologia , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Biotina/química , Compostos de Boro/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Ligantes , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
16.
J Photochem Photobiol B ; 215: 112102, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388605

RESUMO

Herein, we report on the design and development of functionalized acrylic polymeric nanoparticles with Spiropyrans (SPs) and imidazole moieties via superficial polymerizations. Then, Au3+ ions were immobilized and reduced on their surface to obtain photoresponsive gold-decorated polymer nanoparticles(Au-NPs). The synthesized Au-NPs were surface adapted with biotin as specific targeting tumor penetration cells and enhance the intercellular uptake through the endocytosis. FT-IR (Fourier-transform Infrared Spectroscopy), UV-Vis (Ultra Violet-Visible Spectrophotometer), EDS (Energy Dispersive X-Ray Spectroscopy), SEM (Scanning Electron Microscope) and HR-TEM (High-resolution transmission electron microscopy) descriptions were engaged to illustrate their spectral analysis and morphological examinations of Bt@Au-NPs. Fluorescence microscopy images of cellular uptake descriptions and ICP-MS (Inductively coupled plasma mass spectrometry) investigation established the cell lines labeling ability and enhanced targetting efficacy of biotin-conjugated Au-NPs (Bt@Au-NPs) toward C6 glioma cells (brain cancer cells) with 72.5% cellular uptake relative to 30.2% for non-conjugated lone. These were further established through intracellular ROS examinations and in vitro cytotoxicity investigation on the C6 glioma cell line. The solid surface plasmon absorptions of the Au-NPs and Bt@Au-NPs providing raised photothermal therapy under UV irradiation. The synthesized multifunctional Bt@Au-NPs with an inclusive combination of potential resources presented encouraging nanoprobe with targeting capability, improved photodynamic and photothermal cancer therapy.


Assuntos
Biotina/química , Biotina/farmacologia , Neoplasias Encefálicas/patologia , Ouro/química , Nanopartículas Metálicas/química , Terapia Fototérmica/métodos , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Ratos
17.
Bioorg Med Chem Lett ; 31: 127685, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197549

RESUMO

In continuation with the previous work, a series of 5-hydroxy-2-amidomethoxy-1,4-naphthoquinones were prepared to establish the structure-activity relationship studies toward anticancer activity (IC50 in µM) against three cell lines; colo205 (colon adenocarcinoma), T47D (breast ductal carcinoma) and K562 (chronic myelogenous leukemia). Among the synthesized compounds, naphthoquinone amines, 5 (0.8; 0.6; 0.8), 14 (0.8; 0.6; 0.5) and the amine precursor, 4 (1.3; 0.3; 1.0) displayed potent anticancer activities. A tumor targeting drug delivery system was achieved by synthesizing the conjugate 6 (1.4; 0.5; 1.1) of naphthoquinone-amine 5 and Biotin which also proved its potency. Finally, to introduce polyamine conjugate, spermidine was attached with 2-amidomethoxy-1,4-naphthoquinone. The naphthoquinone-spermidine conjugate 27 (1.2; 1.7; 1.7) also retained the activity. Thus, potent naphthoquinone amines were explored and Biotin/polyamine conjugate was developed as tumor targeting drug delivery system.


Assuntos
Antineoplásicos/farmacologia , Biotina/farmacologia , Desenho de Fármacos , Naftoquinonas/farmacologia , Poliaminas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Biotina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Poliaminas/química , Relação Estrutura-Atividade
18.
ACS Appl Mater Interfaces ; 12(51): 56862-56873, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33305958

RESUMO

Functional fullerene derivatives exhibit fantastic inhibitory capabilities against cancer survival and metastasis, but the absence of clarified biological molecular targets and ambiguous regulation mechanisms set barriers for their clinical transformation. Cancer metastasis is the primary cause of mortality and initiated with increased cell migration, making cell motility regulation a high-value therapeutic target in precision medicine. Herein, a critical molecular target of the aminated fullerene derivative (C70-EDA), myosin heavy chain 9 (MYH9), was initially identified by a pull-down assay and MS screening. MYH9 is a cytoplasm-located protein and is responsible for cell motility and epithelial-mesenchymal transition regulation. Omics data from large-scale clinical samples reveals that MYH9 gets overexpressed in various cancers and correlates with unfavorable prognosis, indicating that it is a potential antineoplastic target. It is unveiled that C70-EDA binds to the C-terminal of MYH9, triggering the transport of MYH9 from the cytoplasm to the cell edge, blocking the MYH9-involved cell mobility, and inhibiting the metastasis-associated EMT process. This work provides a precise biological target and new strategies for fullerene applications in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Fulerenos/farmacologia , Cadeias Pesadas de Miosina/metabolismo , Células A549 , Antineoplásicos/química , Antineoplásicos/metabolismo , Biotina/análogos & derivados , Biotina/metabolismo , Biotina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacologia , Fulerenos/química , Fulerenos/metabolismo , Humanos , Ligação Proteica
19.
PLoS One ; 15(5): e0233859, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470040

RESUMO

Mechanisms implicated in disease progression in multiple sclerosis include continued oligodendrocyte (OL)/myelin injury and failure of myelin repair. Underlying causes include metabolic stress with resultant energy deficiency. Biotin is a cofactor for carboxylases involved in ATP production that impact myelin production by promoting fatty acid synthesis. Here, we investigate the effects of high dose Biotin (MD1003) on the functional properties of post-natal rat derived oligodendrocyte progenitor cells (OPCs). A2B5 positive OPCs were assessed using an in vitro injury assay, culturing cells in either DFM (DMEM/F12+N1) or "stress media" (no glucose (NG)-DMEM), with Biotin added over a range from 2.5 to 250 µg/ml, and cell viability determined after 24 hrs. Biotin reduced the increase in OPC cell death in the NG condition. In nanofiber myelination assays, biotin increased the percentage of ensheathing cells, the number of ensheathed segments per cell, and length of ensheathed segments. In dispersed cell culture, Biotin also significantly increased ATP production, assessed using a Seahorse bio-analyzer. For most assays, the positive effects of Biotin were observed at the higher end of the dose-response analysis. We conclude that Biotin, in vitro, protects OL lineage cells from metabolic injury, enhances myelin-like ensheathment, and is associated with increased ATP production.


Assuntos
Trifosfato de Adenosina/biossíntese , Biotina/farmacologia , Linhagem da Célula/efeitos dos fármacos , Oligodendroglia/citologia , Adulto , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA