Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Am J Physiol Renal Physiol ; 327(1): F37-F48, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779752

RESUMO

Interleukin (IL)-17A contributes to hypertension in preclinical models. T helper 17 and dendritic cells are activated by NaCl, which could involve the epithelial Na+ channel (ENaC). We hypothesized that the ENaC blocker amiloride reduces plasma IL-17A and related cytokines in patients with hypertension. Concentrations of IL-17A, IFN-γ, TNF, IL-6, IL-1ß, and IL-10 were determined by immunoassays in plasma from two patient cohorts before and after amiloride treatment: 1) patients with type 2 diabetes mellitus (T2DM) and treatment-resistant hypertension (n = 69, amiloride 5-10 mg/day for 8 wk) and 2) patients with hypertension and type 1 diabetes mellitus (T1DM) (n = 29) on standardized salt intake (amiloride 20-40 mg/day, 2 days). Plasma and tissue from ANG II-hypertensive mice with T1DM treated with amiloride (2 mg/kg/day, 4 days) were analyzed. The effect of amiloride and benzamil on macrophage cytokines was determined in vitro. Plasma cytokines showed higher concentrations (IL-17A ∼40-fold) in patients with T2DM compared with T1DM. In patients with T2DM, amiloride had no effect on IL-17A but lowered TNF and IL-6. In patients with T1DM, amiloride had no effect on IL-17A but increased TNF. In both cohorts, blood pressure decline and plasma K+ increase did not relate to plasma cytokine changes. In mice, amiloride exerted no effect on IL-17A in the plasma, kidney, aorta, or left cardiac ventricle but increased TNF in cardiac and kidney tissues. In lipopolysaccharide-stimulated human THP-1 macrophages, amiloride and benzamil (from 1 nmol/L) decreased TNF, IL-6, IL-10, and IL-1ß. In conclusion, inhibition of ENaC by amiloride reduces proinflammatory cytokines TNF and IL-6 but not IL-17A in patients with T2DM, potentially by a direct action on macrophages.NEW & NOTEWORTHY ENaC activity may contribute to macrophage-derived cytokine release, since amiloride exerts anti-inflammatory effects by suppression of TNF and IL-6 cytokines in patients with resistant hypertension and type 2 diabetes and in THP-1-derived macrophages in vitro.


Assuntos
Amilorida , Diabetes Mellitus Tipo 2 , Bloqueadores do Canal de Sódio Epitelial , Hipertensão , Interleucina-17 , Interleucina-6 , Fator de Necrose Tumoral alfa , Amilorida/farmacologia , Amilorida/uso terapêutico , Humanos , Interleucina-17/sangue , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/imunologia , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Hipertensão/tratamento farmacológico , Hipertensão/sangue , Feminino , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Fator de Necrose Tumoral alfa/sangue , Idoso , Camundongos , Canais Epiteliais de Sódio/metabolismo , Canais Epiteliais de Sódio/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Anti-Hipertensivos/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue
2.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L536-L547, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098422

RESUMO

Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.


Assuntos
Fibrose Cística , Canais Epiteliais de Sódio , Humanos , Ratos , Ovinos , Animais , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Amilorida/farmacologia , Depuração Mucociliar/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística/tratamento farmacológico , Mucosa Respiratória
3.
Curr Opin Pharmacol ; 64: 102209, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483215

RESUMO

Disruption of the equilibrium between ion secretion and absorption processes by the airway epithelium is central to many muco-obstructive lung diseases including cystic fibrosis (CF). Besides correction of defective folding and function of CFTR, inhibition of amiloride-sensitive epithelia sodium channels (ENaC) has emerged as a bona fide therapeutic strategy to improve mucociliary clearance in patients with CF. The short half-life of amiloride-based ENaC blockers and hyperosmotic therapies have led to the development of novel RNA-based interventions for targeted and sustained reduction of ENaC expression and function in preclinical models of CF. This review summarizes the recent advances in RNA therapeutics targeting ENaC for mutation-agnostic treatment of CF.


Assuntos
Fibrose Cística , Amilorida/farmacologia , Amilorida/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Bloqueadores do Canal de Sódio Epitelial/uso terapêutico , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Mutação , RNA
5.
Cell Rep ; 37(1): 109795, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610318

RESUMO

A controversial hypothesis pertaining to cystic fibrosis (CF) lung disease is that the CF transmembrane conductance regulator (CFTR) channel fails to inhibit the epithelial Na+ channel (ENaC), yielding increased Na+ reabsorption and airway dehydration. We use a non-invasive self-referencing Na+-selective microelectrode technique to measure Na+ transport across individual folds of distal airway surface epithelium preparations from CFTR-/- (CF) and wild-type (WT) swine. We show that, under unstimulated control conditions, WT and CF epithelia exhibit similar, low rates of Na+ transport that are unaffected by the ENaC blocker amiloride. However, in the presence of the cyclic AMP (cAMP)-elevating agents forskolin+IBMX (isobutylmethylxanthine), folds of WT tissues secrete large amounts of Na+, while CFTR-/- tissues absorb small, but potentially important, amounts of Na+. In cAMP-stimulated conditions, amiloride inhibits Na+ absorption in CFTR-/- tissues but does not affect secretion in WT tissues. Our results are consistent with the hypothesis that ENaC-mediated Na+ absorption may contribute to dehydration of CF distal airways.


Assuntos
AMP Cíclico/metabolismo , Canais Epiteliais de Sódio/metabolismo , Epitélio/metabolismo , Sódio/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Amilorida/farmacologia , Animais , Animais Geneticamente Modificados/metabolismo , Colforsina/farmacologia , Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/química , Transporte de Íons/efeitos dos fármacos , Masculino , Suínos
6.
Arch Pharm Res ; 44(6): 621-631, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34100261

RESUMO

The maintenance of lysosomal integrity is essential for lysosome function and cell fate. Damaged lysosomes are degraded by lysosomal autophagy, lysophagy. The mechanism underlying lysophagy remains largely unknown; this study aimed to contribute to the understanding of this topic. A cell-based screening system was used to identify novel lysophagy modulators. Triamterene (6-phenylpteridine-2,4,7-triamine) was identified as one of the most potent lysophagy inducers from the screening process. We found that triamterene causes lysosomal rupture without affecting other cellular organelles and increases autophagy flux in HepG2 cells. Damaged lysosomes in triamterene-treated cells were removed by autophagy-mediated pathway, which was inhibited by depletion of the autophagy regulator, ATG5 or SQSTM1. In addition, treatment of triamterene decreased the integrity of lysosome and cell viability, which were rescued by removing the triamterene treatment in HepG2 cells. Hence, our data suggest that triamterene is a novel lysophagy inducer through the disruption of lysosomal integrity.


Assuntos
Autofagia/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Lisossomos/efeitos dos fármacos , Triantereno/farmacologia , Autofagia/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células HeLa , Células Hep G2 , Humanos , Lisossomos/metabolismo
7.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069441

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel emerging pathogen causing an unprecedented pandemic in 21st century medicine. Due to the significant health and economic burden of the current SARS-CoV-2 outbreak, there is a huge unmet medical need for novel interventions effectively blocking SARS-CoV-2 infection. Unknown details of SARS-CoV-2 cellular biology hamper the development of potent and highly specific SARS-CoV-2 therapeutics. Angiotensin-converting enzyme-2 (ACE2) has been reported to be the primary receptor for SARS-CoV-2 cellular entry. However, emerging scientific evidence suggests the involvement of additional membrane proteins, such as heparan sulfate proteoglycans, in SARS-CoV-2 internalization. Here, we report that syndecans, the evolutionarily conserved family of transmembrane proteoglycans, facilitate the cellular entry of SARS-CoV-2. Among syndecans, the lung abundant syndecan-4 was the most efficient in mediating SARS-CoV-2 uptake. The S1 subunit of the SARS-CoV-2 spike protein plays a dominant role in the virus's interactions with syndecans. Besides the polyanionic heparan sulfate chains, other parts of the syndecan ectodomain, such as the cell-binding domain, also contribute to the interaction with SARS-CoV-2. During virus internalization, syndecans colocalize with ACE2, suggesting a jointly shared internalization pathway. Both ACE2 and syndecan inhibitors exhibited significant efficacy in reducing the cellular entry of SARS-CoV-2, thus supporting the complex nature of internalization. Data obtained on syndecan specific in vitro assays present syndecans as novel cellular targets of SARS-CoV-2 and offer molecularly precise yet simple strategies to overcome the complex nature of SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Receptores de Coronavírus/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Sindecanas/metabolismo , Internalização do Vírus , Amilorida/farmacologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , COVID-19/virologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Humanos , Peptídeos/farmacologia , Domínios Proteicos , SARS-CoV-2/metabolismo , Sindecana-4/antagonistas & inibidores , Sindecana-4/metabolismo , Sindecanas/antagonistas & inibidores
8.
Am J Physiol Cell Physiol ; 321(1): C147-C157, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038242

RESUMO

Many cancer cells, regardless of their tissue origin or genetic landscape, have increased expression or activity of the plasma membrane Na-H exchanger NHE1 and a higher intracellular pH (pHi) compared with untransformed cells. A current perspective that remains to be validated is that increased NHE1 activity and pHi enable a Warburg-like metabolic reprogramming of increased glycolysis and decreased mitochondrial oxidative phosphorylation. We tested this perspective and find it is not accurate for clonal pancreatic and breast cancer cells. Using the pharmacological reagent ethyl isopropyl amiloride (EIPA) to inhibit NHE1 activity and decrease pHi, we observe no change in glycolysis, as indicated by secreted lactate and intracellular pyruvate, despite confirming increased activity of the glycolytic enzyme phosphofructokinase-1 at higher pH. Also, in contrast to predictions, we find a significant decrease in oxidative phosphorylation with EIPA, as indicated by oxygen consumption rate (OCR). Decreased OCR with EIPA is not associated with changes in pathways that fuel oxidative phosphorylation or with mitochondrial membrane potential but occurs with a change in mitochondrial dynamics that includes a significant increase in elongated mitochondrial networks, suggesting increased fusion. These findings conflict with current paradigms on increased pHi inhibiting oxidative phosphorylation and increased oxidative phosphorylation being associated with mitochondrial fusion. Moreover, these findings raise questions on the suggested use of EIPA-like compounds to limit metabolic reprogramming in cancer cells.


Assuntos
Amilorida/análogos & derivados , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/genética , Amilorida/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Células Clonais , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Glicólise/genética , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Ácido Pirúvico/metabolismo , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/metabolismo
9.
Am J Physiol Renal Physiol ; 320(6): F1080-F1092, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969697

RESUMO

A major pathway in hypertension pathogenesis involves direct activation of ANG II type 1 (AT1) receptors in the kidney, stimulating Na+ reabsorption. AT1 receptors in tubular epithelia control expression and stimulation of Na+ transporters and channels. Recently, we found reduced blood pressure and enhanced natriuresis in mice with cell-specific deletion of AT1 receptors in smooth muscle (SMKO mice). Although impaired vasoconstriction and preserved renal blood flow might contribute to exaggerated urinary Na+ excretion in SMKO mice, we considered whether alterations in Na+ transporter expression might also play a role; therefore, we carried out proteomic analysis of key Na+ transporters and associated proteins. Here, we show that levels of Na+-K+-2Cl- cotransporter isoform 2 (NKCC2) and Na+/H+ exchanger isoform 3 (NHE3) are reduced at baseline in SMKO mice, accompanied by attenuated natriuretic and diuretic responses to furosemide. During ANG II hypertension, we found widespread remodeling of transporter expression in wild-type mice with significant increases in the levels of total NaCl cotransporter, phosphorylated NaCl cotransporter (Ser71), and phosphorylated NKCC2, along with the cleaved, activated forms of the α- and γ-epithelial Na+ channel. However, the increases in α- and γ-epithelial Na+ channel with ANG II were substantially attenuated in SMKO mice. This was accompanied by a reduced natriuretic response to amiloride. Thus, enhanced urinary Na+ excretion observed after cell-specific deletion of AT1 receptors from smooth muscle cells is associated with altered Na+ transporter abundance across epithelia in multiple nephron segments. These findings suggest a system of vascular-epithelial in the kidney, modulating the expression of Na+ transporters and contributing to the regulation of pressure natriuresis.NEW & NOTEWORTHY The use of drugs to block the renin-angiotensin system to reduce blood pressure is common. However, the precise mechanism for how these medications control blood pressure is incompletely understood. Here, we show that mice lacking angiotensin receptors specifically in smooth muscle cells lead to alternation in tubular transporter amount and function. Thus, demonstrating the importance of vascular-tubular cross talk in the control of blood pressure.


Assuntos
Angiotensina II/farmacologia , Células Epiteliais/metabolismo , Rim/irrigação sanguínea , Miócitos de Músculo Liso/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Amilorida/farmacologia , Animais , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Feminino , Furosemida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde , Hipertensão/induzido quimicamente , Proteínas Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Receptor Tipo 1 de Angiotensina/genética , Sódio/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Proteína Vermelha Fluorescente
10.
Eur J Pharmacol ; 904: 174123, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33974881

RESUMO

Cystic fibrosis (CF) is a recessive inherited disease caused by mutations affecting anion transport by the epithelial ion channel cystic fibrosis transmembrane conductance regulator (CFTR). The disease is characterized by mucus accumulation in the airways and intestine, but the major cause of mortality in CF is airway mucus accumulation, leading to bacterial colonization, inflammation and respiratory failure. Several drug targets are under evaluation to alleviate airway mucus obstruction in CF and one of these targets is the epithelial sodium channel ENaC. To explore effects of ENaC inhibitors on mucus properties, we used two model systems to investigate mucus characteristics, mucus attachment in mouse ileum and mucus bundle transport in piglet airways. We quantified mucus attachment in explants from CFTR null (CF) mice and tracheobronchial explants from newborn CFTR null (CF) piglets to evaluate effects of ENaC or sodium/hydrogen exchanger (NHE) inhibitors on mucus attachment. ENaC inhibitors detached mucus in the CF mouse ileum, although the ileum lacks ENaC expression. This effect was mimicked by two NHE inhibitors. Airway mucus bundles were immobile in untreated newborn CF piglets but were detached by the therapeutic drug candidate AZD5634 (patent WO, 2015140527). These results suggest that the ENaC inhibitor AZD5634 causes detachment of CF mucus in the ileum and airway via NHE inhibition and that drug design should focus on NHE instead of ENaC inhibition.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/metabolismo , Pulmão/metabolismo , Muco/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Bicarbonatos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Muco/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/genética , Suínos
11.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998392

RESUMO

Oxaliplatin-induced peripheral neuropathy is characterized by an acute hyperexcitability syndrome triggered/exacerbated by cold. The mechanisms underlying oxaliplatin-induced peripheral neuropathy are unclear, but the alteration of ion channel expression and activity plays a well-recognized central role. Recently, we found that oxaliplatin leads to cytosolic acidification in dorsal root ganglion (DRG) neurons. Here, we investigated the early impact of oxaliplatin on the proton-sensitive TREK potassium channels. Following a 6-h oxaliplatin treatment, both channels underwent a transcription upregulation that returned to control levels after 42 h. The overexpression of TREK channels was also observed after in vivo treatment in DRG cells from mice exposed to acute treatment with oxaliplatin. Moreover, both intracellular pH and TREK channel transcription were similarly regulated after incubation with amiloride, an inhibitor of the Na+/H+ exchanger. In addition, we studied the role of oxaliplatin-induced acidification on channel behavior, and, as expected, we observed a robust positive modulation of TREK channel activity. Finally, we focused on the impact of this complex modulation on capsaicin-evoked neuronal activity finding a transient decrease in the average firing rate following 6 h of oxaliplatin treatment. In conclusion, the early activation of TREK genes may represent a mechanism of protection against the oxaliplatin-related perturbation of neuronal excitability.


Assuntos
Antineoplásicos/efeitos adversos , Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oxaliplatina/efeitos adversos , Doenças do Sistema Nervoso Periférico/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Trocador 1 de Sódio-Hidrogênio/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Amilorida/farmacologia , Animais , Capsaicina/farmacologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , Técnicas de Patch-Clamp , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Canais de Potássio de Domínios Poros em Tandem/agonistas , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Cultura Primária de Células , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/metabolismo , Ativação Transcricional
12.
Pflugers Arch ; 472(10): 1507-1519, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32712714

RESUMO

Previous analysis of CFTR-knockout (CFTR-/-) in piglets has provided important insights into the pathology of cystic fibrosis. However, controversies exist as to the true contribution of CFTR to the pH balance in airways and intestine. We therefore compared ion transport properties in newborn wild-type (CFTR+/+) and CFTR-knockout (CFTR-/- piglets). Tracheas of CFTR-/- piglets demonstrated typical cartilage malformations and muscle cell bundles. CFTR-/- airway epithelial cells showed enhanced lipid peroxidation, suggesting inflammation early in life. CFTR was mainly expressed in airway submucosal glands and was absent in lungs of CFTR-/- piglets, while expression of TMEM16A was uncompromised. mRNA levels for TMEM16A, TMEM16F, and αßγENaC were unchanged in CFTR-/- airways, while mRNA for SLC26A9 appeared reduced. CFTR was undetectable in epithelial cells of CFTR-/- airways and intestine. Small intestinal epithelium of CFTR-/- piglets showed mucus accumulation. Secretion of both electrolytes and mucus was activated by stimulation with prostaglandin E2 and ATP in the intestine of CFTR+/+, but not of CFTR-/- animals. pH was measured inside small bronchi using a pH microelectrode and revealed no difference between CFTR+/+ and CFTR-/- piglets. Intracellular pH in porcine airway epithelial cells revealed only a small contribution of CFTR to bicarbonate secretion, which was absent in cells from CFTR-/- piglets. In contrast to earlier reports, our data suggest a minor impact of CFTR on ASL pH. In contrast, enhanced amiloride-sensitive Na+ absorption may contribute to lung pathology in CFTR-/- piglets, along with a compromised CFTR- and TMEM16A-dependent Cl- transport.


Assuntos
Fibrose Cística/metabolismo , Mucosa Respiratória/metabolismo , Absorção pelo Trato Respiratório , Sódio/metabolismo , Amilorida/farmacologia , Animais , Anoctaminas/genética , Anoctaminas/metabolismo , Brônquios/citologia , Brônquios/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Concentração de Íons de Hidrogênio , Absorção Intestinal , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Suínos
13.
Biomed Res Int ; 2020: 8150780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190682

RESUMO

Mesenchymal stem cells (MSCs) have been a potential strategy in the pretreatment of pulmonary diseases, while the mechanisms of MSCs-conditioned medium (MSCs-CM) involved with microRNAs on the regulation of lung ion transport are seldom reported. We investigated the role of miR-124-5p in lipopolysaccharide-involved epithelial sodium channel (ENaC) dysfunction and explored the potential target of miR-124-5p. We observed the lower expression of miR-124-5p after the administration of MSCs-CM, and the overexpression or inhibition of miR-124-5p regulated epithelial sodium channel α-subunit (α-ENaC) expression at protein levels in mouse alveolar type 2 epithelial (AT2) cells. We confirmed that α-ENaC is one of the target genes of miR-124-5p through dual luciferase assay and Ussing chamber assay revealed that miR-124-5p inhibited amiloride-sensitive currents associated with ENaC activity in intact H441 monolayers. Our results demonstrate that miR-124-5p can decrease the expression and function of α-ENaC in alveolar epithelial cells by targeting the 3'-UTR. The involvement of MSCs-CM in lipopolysaccharide-induced acute lung injury cell model could be related to the downregulation of miR-124-5p on α-ENaC, which may provide a new target for the treatment of acute lung injury.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/biossíntese , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Lesão Pulmonar Aguda/metabolismo , Amilorida/farmacologia , Animais , Meios de Cultivo Condicionados , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Transporte de Íons , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos
14.
J Cyst Fibros ; 19(4): 620-626, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699569

RESUMO

BACKGROUND: Nasal potential difference (NPD) is used to evaluate CFTR function in vivo. We aimed to evaluate the intrasubject and intersubject variability of NPD measurements. METHODS: We reviewed NPD tracings of 116 patients with CF enrolled in the placebo arm of a multicenter study. Patients carried at least one nonsense mutation and underwent repeated NPD tests every 16 weeks. NPD parameters included basal potential difference (basal PD), inhibition of sodium absorption by amiloride (Δ Amiloride), chloride (Cl-) transport in response to a Cl--free solution (Δ Low Cl-), isoproterenol (Δ Isoproterenol), the sum of Δ Low Cl- and Δ Isoproterenol (Δ Low Cl--Isoproterenol) and ATP (Δ ATP). RESULTS: Basal PD and Δ Amiloride displayed the highest variabilities, mainly stemming from intercenter and intrasubject effect. Δ Low Cl-, Δ Isoproterenol and Δ Low Cl--Isoproterenol demonstrated a large intrasubject variability but a smaller intersubject variability. The intrasubject measurement variability for Δ Low Cl--Isoproterenol, was within ± 7.2 mV with 95% probability. It was greater in patients reporting ongoing pulmonary exacerbations. CONCLUSIONS: The large intercenter variability of basal PD and Δ Amiloride highlights the operator-dependent aspect of these measurements. A difference greater than 7.2 mV in Δ Low Cl--Isoproterenol in a given patient on CFTR modulator can be attributed, with 95% probability, to a treatment effect rather than to the variability inherent in the measurement.


Assuntos
Amilorida/farmacologia , Transporte Biológico/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Isoproterenol/farmacologia , Potenciais da Membrana , Mucosa Nasal , Adulto , Broncodilatadores/farmacologia , Cloretos/metabolismo , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Feminino , Humanos , Masculino , Mutação , Mucosa Nasal/metabolismo , Mucosa Nasal/fisiopatologia , Variações Dependentes do Observador , Sódio/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 317(5): H958-H968, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490733

RESUMO

Previously we have shown that increased expression of renal epithelial sodium channels (ENaC) may contribute to the renal sodium and water retention observed during chronic heart failure (CHF). The goal of this study was to examine whether renal denervation (RDN) changed the expressions of renal sodium transporters ENaC, sodium-hydrogen exchanger-3 proteins (NHE3), and water channel aquaporin 2 (AQP2) in rats with CHF. CHF was produced by left coronary artery ligation in rats. Four weeks after ligation surgery, surgical bilateral RDN was performed. The expression of ENaC, NHE3, and AQP2 in both renal cortex and medulla were measured. As a functional test for ENaC activation, diuretic and natriuretic responses to ENaC inhibitor benzamil were monitored in four groups of rats (Sham, Sham+RDN, CHF, CHF+RDN). Western blot analysis indicated that RDN (1 wk later) significantly reduced protein levels of α-ENaC, ß-ENaC, γ-ENaC, and AQP2 in the renal cortex of CHF rats. RDN had no significant effects on the protein expression of kidney NHE3 in both Sham and CHF rats. Immunofluorescence studies of kidney sections confirmed the reduced signaling of ENaC and AQP2 in the CHF+RDN rats compared with the CHF rats. There were increases in diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. RDN reduced the diuretic and natriuretic responses to benzamil in CHF rats. These findings suggest a critical role for renal nerves in the enhanced expression of ENaC and AQP2 and subsequent pathophysiology of renal sodium and water retention associated with CHF.NEW & NOTEWORTHY This is the first study to show in a comprehensive way that renal denervation initiated after a period of chronic heart failure reduces the expression of epithelial sodium channels and aquaporin 2 leading to reduced epithelial sodium channel function and sodium retention.


Assuntos
Aquaporina 2/metabolismo , Denervação Autônoma , Canais Epiteliais de Sódio/metabolismo , Insuficiência Cardíaca/metabolismo , Rim/inervação , Rim/metabolismo , Natriurese , Eliminação Renal , Sódio/urina , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Aquaporina 2/genética , Doença Crônica , Modelos Animais de Doenças , Diuréticos/farmacologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/urina , Rim/efeitos dos fármacos , Masculino , Natriurese/efeitos dos fármacos , Ratos Sprague-Dawley , Eliminação Renal/efeitos dos fármacos
16.
Steroids ; 151: 108461, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344409

RESUMO

Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that in the airways result in reduced Cl- secretion and increased Na+ absorption, airway surface liquid (ASL) dehydration, decreased mucociliary clearance, infection and inflammation leading to lung injury. Cystic fibrosis patients often present with bile acids in the lower airways, however the effects of bile acids on ASL and ion transport in CF airways are not known. Secondary bile acids, such as ursodeoxycholic acid (UDCA), have been shown to modulate immune responses and epithelial ion transport. Here we investigated the effects of UDCA in normal and CF airway epithelial cell models. NuLi-1 (normal genotype) and CuFi-1 (CF genotype, Δ508/Δ508) primary immortalized airway epithelial cells were grown under an air-liquid interface. Electrogenic transepithelial ion transport was measured by short-circuit current (Isc) across cell monolayers mounted in Ussing chambers. We observed that UDCA (500 µM, 60 min, bilateral) decreased the basal Isc and ENaC currents in both NuLi-1 and CuFi-1 cells. UDCA inhibited the amiloride-sensitive ENaC current by 44% in NulI-1 monolayers and by 30% in CuFi-1 cells. Interestingly, UDCA also inhibited currents through the basolateral Na/K pump in both Nuli-1 and CuFi-1 monolayers without alterting the expression of ENaC or Na+/K+-ATPase proteins. The airway surface liquid height is regulated by transpeithelial Na+ absorption (ENaC) and Cl- secretion (CFTR) in normal airway but mainly by ENaC activity in CF epithelia when Cl- secretion is compromised by CFTR mutations. UDCA increased ASL height by 50% in Nuli-1 and by 40% in CUFI-1 monolayers. In conclusion, we demonstrate a previously unknown effect of UDCA to inhibit ENaC activity and increase ASL height in normal and CF human airway epithelial cells suggesting a therapeutic potential for UDCA in CF lung disease.


Assuntos
Brônquios/patologia , Fibrose Cística/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ácido Ursodesoxicólico/farmacologia , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Fenótipo , Propriedades de Superfície
17.
J Cyst Fibros ; 18(2): 244-250, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29936069

RESUMO

BACKGROUND: In healthy lungs, epithelial sodium channel (ENaC) is regulated by short, palate, lung, and nasal clone 1 (SPLUNC1). In cystic fibrosis (CF), ENaC is hyperactivated in part due to a loss of SPLUNC1 function. We have developed SPX-101 to replace the lost function of SPLUNC1 in the CF lung. METHODS: Expression of SPLUNC1 was determined in sputum from healthy and CF donors. Stability of SPLUNC1, S18 (the ENaC regulatory domain of SPLUNC1), and SPX-101 was determined in sputum from CF donors and towards neutrophil elastase. Activity of SPX-101 after exposure to CF sputum was determined in airway epithelial cells from CF donors and in the ßENaC transgenic mouse model. RESULTS: SPLUNC1 protein expression is significantly reduced in CF as compared to healthy sputum. SPLUNC1 is rapidly degraded in CF sputum as well as by a number of individual proteases known to be found in the sputum. SPX-101, but not S18, is stable in CF sputum. Finally, SPX-101 retains its ability to internalize ENaC, regulate airway surface liquid height, and increase survival of ßENaC mice after exposure to CF sputum. CONCLUSIONS: Our results demonstrate that SPX-101, but not SPLUNC1 or S18, is stable in CF sputum. These results support the therapeutic development of SPX-101 for the treatment of cystic fibrosis.


Assuntos
Fibrose Cística/metabolismo , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/metabolismo , Glicoproteínas/metabolismo , Fosfoproteínas/metabolismo , Mucosa Respiratória , Animais , Células Cultivadas , Descoberta de Drogas , Humanos , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Transgênicos , Depuração Mucociliar/efeitos dos fármacos , Peptídeos/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/enzimologia , Mucosa Respiratória/metabolismo , Escarro/metabolismo
18.
J Cell Biochem ; 120(1): 461-469, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30203535

RESUMO

Sodium influx is tightly regulated in the cells of blood origin. Amiloride-insensitive sodium channels were identified as one of the main sodium-transporting pathways in leukemia cells. To date, all known regulatory pathways of these channels are coupled with intracellular actin cytoskeleton dynamics. Here, to search for physiological mechanisms controlling epithelial Na+ channel (ENaC)-like channels, we utilized leukemia K562 cells as a unique model to examine single channel behavior in a whole-cell patch-clamp experiments. We have shown for the first time that extracellular serine protease trypsin directly activates sodium channels in plasma membrane of K562 cells. The whole-cell single current recordings clearly demonstrate no inhibition of trypsin-activated channels by amiloride or benzamil. Involvement of proteolytic cleavage in channel opening was confirmed in experiments with soybean trypsin inhibitor. More importantly, stabilization of F-actin with intracellular phalloidin did not prevent trypsin-induced channel activation indicating no implication of cytoskeleton rearrangements in stimulatory effect of extracellular protease. Our data reveals a novel mechanism modulating amiloride-insensitive ENaC-like channel activity and integral sodium permeability in leukemia cells.


Assuntos
Amilorida/farmacologia , Canais Epiteliais de Sódio/metabolismo , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Tripsina/farmacologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Amilorida/análogos & derivados , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Humanos , Células K562 , Potenciais da Membrana/efeitos dos fármacos , Microscopia de Fluorescência , Modelos Biológicos , Técnicas de Patch-Clamp , Faloidina/farmacologia , Sódio/metabolismo , Tripsina/metabolismo , Inibidores da Tripsina/farmacologia
19.
J Nutr Sci Vitaminol (Tokyo) ; 64(4): 287-291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175793

RESUMO

[6]-Gingerol possesses various beneficial pharmacological and therapeutic properties, including anti-carcinogenic and anti-inflammatory properties and the ability to regulate intestinal contraction. Recently, our group observed that the serosal administration of [6]-gingerol stimulated electrogenic sodium absorption in the rat colon via the capsaicin receptor, TRPV1. TRPV1 is known to be expressed in both the mucosal epithelium and the muscle layers in the colon. In the present study, we assessed whether [6]-gingerol stimulated sodium absorption via TRPV1 in the colonic mucosal epithelium. We compared the effect of [6]-gingerol on TRPV1-dependent colonic sodium absorption in the colon preparation with or without muscle layer. All experiments were performed by measuring the transmural potential difference (ΔPD) in an Ussing chamber system. [6]-Gingerol induced positive ΔPD when administered to the serosal side of the colon, and this effect was significantly larger in the colon preparation without muscle layer than in that with the muscle layer. In the colon preparation without muscle layer, the [6]-gingerol-dependent induction of ΔPD was markedly suppressed by mucosal addition of amiloride, a selective inhibitor of epithelial sodium channel. ΔPD induction by [6]-gingerol was considerably diminished by capsazepine, an inhibitor of the capsaicin receptor TRPV1, but not by AP-18, an inhibitor of TRPA1. These results suggest that [6]-gingerol induces amiloride-sensitive electrogenic sodium absorption in the rat colon via TRPV1 expressed in the colonic mucosal epithelium, and that this effect is independent of TRPV1 in the colonic muscle layer.


Assuntos
Catecóis/farmacologia , Colo/efeitos dos fármacos , Álcoois Graxos/farmacologia , Fármacos Gastrointestinais/farmacologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Sódio na Dieta/metabolismo , Canais de Cátion TRPV/agonistas , Amilorida/farmacologia , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Colo/fisiologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Técnicas In Vitro , Mucosa Intestinal/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Oximas/farmacologia , Ratos Sprague-Dawley , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
20.
Expert Opin Ther Targets ; 22(8): 687-701, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30028216

RESUMO

INTRODUCTION: Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for the CFTR anion channel. In the absence of functional CFTR, the epithelial Na+ channel is also dysregulated. Airway surface liquid (ASL) hydration is maintained by a balance between epithelial sodium channel (ENaC)-led Na+ absorption and CFTR-dependent anion secretion. This finely tuned homeostatic mechanism is required to maintain sufficient airway hydration to permit the efficient mucus clearance necessary for a sterile lung environment. In CF airways, the lack of CFTR and increased ENaC activity lead to ASL/mucus dehydration that causes mucus obstruction, neutrophilic infiltration, and chronic bacterial infection. Rehydration of ASL/mucus in CF airways can be achieved by inhibiting Na+ absorption with pharmacological inhibitors of ENaC. Areas covered: In this review, we discuss ENaC structure and function and its role in CF lung disease and focus on ENaC inhibition as a potential therapeutic target to rehydrate CF mucus. We also discuss the failure of the first generation of pharmacological inhibitors of ENaC and recent alternate strategies to attenuate ENaC activity in the CF lung. Expert opinion: ENaC is an attractive therapeutic target to rehydrate CF ASL that may serve as a monotherapy or function in parallel with other treatments. Given the increased number of strategies being employed to inhibit ENaC, this is an exciting and optimistic time to be in this field.


Assuntos
Fibrose Cística/tratamento farmacológico , Canais Epiteliais de Sódio/metabolismo , Pneumopatias/tratamento farmacológico , Animais , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Desenvolvimento de Medicamentos/métodos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Humanos , Pneumopatias/etiologia , Pneumopatias/fisiopatologia , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA