Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.931
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731963

RESUMO

Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.


Assuntos
Canais de Cálcio Tipo T , Modelos Animais de Doenças , Hiperalgesia , Dor Pós-Operatória , Venenos de Escorpião , Animais , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/química , Camundongos , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo , Cálcio/metabolismo , Masculino , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/química
2.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563869

RESUMO

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Assuntos
Antibacterianos , Bloqueadores dos Canais de Cálcio , Cálcio , Gentamicinas , Células Ciliadas Auditivas , Neomicina , Verapamil , Peixe-Zebra , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Verapamil/farmacologia , Neomicina/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Gentamicinas/toxicidade , Antibacterianos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/prevenção & controle , Aminoglicosídeos/toxicidade , Sistema da Linha Lateral/efeitos dos fármacos , Larva/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle
3.
Funct Integr Genomics ; 24(3): 77, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632140

RESUMO

BACKGROUND: Gastric cancer (GC) remains a leading cause of cancer mortality globally. Synaptotagmin-4 (SYT4), a calcium-sensing synaptic vesicle protein, has been implicated in the oncogenesis of diverse malignancies. PURPOSE: This study delineates the role of SYT4 in modulating clinical outcomes and biological behaviors in GC. METHODS: We evaluated SYT4 expression in GC specimens using bioinformatics analyses and immunohistochemistry. Functional assays included CCK8 proliferation tests, apoptosis assays via flow cytometry, confocal calcium imaging, and xenograft models. Western blotting elucidated MAPK pathway involvement. Additionally, we investigated the impact of the calcium channel blocker amlodipine on cellular dynamics and MAPK pathway activity. RESULTS: SYT4 was higher in GC tissues, and the elevated SYT4 was significantly correlated with adverse prognosis. Both univariate and multivariate analyses confirmed SYT4 as an independent prognostic indicator for GC. Functionally, SYT4 promoted tumorigenesis by fostering cellular proliferation, inhibiting apoptosis, and enhancing intracellular Ca2+ influx, predominantly via MAPK pathway activation. Amlodipine pre-treatment attenuated SYT4-driven cell growth and potentiated apoptosis, corroborated by in vivo xenograft assessments. These effects were attributed to MAPK pathway suppression by amlodipine. CONCLUSION: SYT4 emerges as a potential prognostic biomarker and a pro-oncogenic mediator in GC through a Ca2+-dependent MAPK mechanism. Amlodipine demonstrates significant antitumor effects against SYT4-driven GC, positing its therapeutic promise. This study underscores the imperative of targeting calcium signaling in GC treatment strategies.


Assuntos
Anlodipino , Sinalização do Cálcio , Neoplasias Gástricas , Sinaptotagminas , Humanos , Anlodipino/farmacologia , Anlodipino/uso terapêutico , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Sinaptotagminas/antagonistas & inibidores , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia
4.
Exp Physiol ; 109(5): 779-790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445814

RESUMO

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo T , Endotélio Vascular , Nifedipino , Nitrofenóis , Humanos , Masculino , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/efeitos dos fármacos , Idoso , Bloqueadores dos Canais de Cálcio/farmacologia , Nifedipino/farmacologia , Projetos Piloto , Método Duplo-Cego , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Di-Hidropiridinas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Compostos Organofosforados/farmacologia , Acetilcolina/farmacologia , Perna (Membro)/irrigação sanguínea , Nitroprussiato/farmacologia , Pessoa de Meia-Idade
5.
Ulus Travma Acil Cerrahi Derg ; 30(2): 73-79, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305651

RESUMO

BACKGROUND: Spinal cord injury is a devastating trauma that leaves survivors at risk for several medical complications throughout their lives. Lercanidipine, a third-generation calcium channel blocker, possesses anti-apoptotic, anti-inflammatory, and antioxidative properties. This study aimed to evaluate the neuroprotective effects of lercanidipine in an experimental spinal cord trauma model. METHODS: Twenty-one Wistar rats were randomly assigned to three groups. Group 1 (G1) underwent laminectomy. Group 2 (G2) were subjected to trauma following laminectomy. Group 3 (G3) were exposed to trauma following laminectomy and treated with lercanidipine. Lercanidipine was administered intraperitoneally for seven days. Histopathological and immunohistochemical evaluations were conducted. RESULTS: Regarding Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, there was no significant difference among the groups. However, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) levels were significantly different across the groups. G2 had significantly higher NF-κB levels compared to G1 and G3. CONCLUSION: Lercanidipine, a third-generation calcium channel blocker, is effective against inflammatory responses induced in spinal cord injury. Further studies are required to determine its capability in preventing apoptosis or improving functional recovery. To the best of our knowledge, this study is the first in the literature to examine the neuroprotective effects of lercanidipine on spinal cord injury.


Assuntos
Di-Hidropiridinas , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Wistar , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , NF-kappa B , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Traumatismos da Medula Espinal/complicações , Apoptose , Anti-Inflamatórios/uso terapêutico
6.
Chem Biodivers ; 21(4): e202400182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315068

RESUMO

Voltage-gated calcium channels (VGCCs), particularly T-type calcium channels (TTCCs), are crucial for various physiological processes and have been implicated in pain, epilepsy, and cancer. Despite the clinical trials of TTCC blockers like Z944 and MK8998, none are currently available on the market. This study investigates the efficacy of Lycopodium alkaloids, particularly as natural product-based TTCC blockers. We synthesized eighteen derivatives from α-obscurine, a lycodine-type alkaloid, and identified five derivatives with significant Cav3.1 blockade activity. The most potent derivative, compound 7, exhibited an IC50 value of 0.19±0.03 µM and was further analyzed through molecular docking, revealing key interactions with Cav3.1. These findings provide a foundation for the structural optimization of Cav3.1 calcium channel blockers and present compound 7 as a promising lead compound for drug development and a tool for chemical biology research.


Assuntos
Alcaloides , Bloqueadores dos Canais de Cálcio , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/química , Simulação de Acoplamento Molecular , Alcaloides/farmacologia , Alcaloides/química , Dor , Cálcio
7.
Expert Opin Drug Discov ; 19(1): 21-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37800853

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a progressive, irreversible, and multifactorial brain disorder that gradually and insidiously destroys individual's memory, thinking, and other cognitive abilities. AREAS COVERED: In this perspective, the authors examine the complex and multifactorial nature of Alzheimer's disease and believe that the best approach to develop new drugs is the MTDL strategy, which obviously faces several challenges. These challenges include identifying the key combination of targets and their suitability for coordinated actions, as well as developing an acceptable pharmacokinetic and toxicological profile to deliver a drug candidate. EXPERT OPINION: Since calcium plays a crucial role in the pathology of AD, a polypharmacological approach with calcium channel blockers reinforced by activities targeting other factors involved in AD is a serious option in our opinion. This is exemplified by a phase III clinical trial using a drug combination approach with Losartan, Amlodipine (a calcium channel blocker), and Atorvastatin, as well as several MTDL-based calcium channel blockade approaches with a promising in vitro and in vivo profile.


Assuntos
Doença de Alzheimer , Bloqueadores dos Canais de Cálcio , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Descoberta de Drogas , Losartan/uso terapêutico , Polifarmacologia
8.
Acta Pharmacol Sin ; 45(4): 738-750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38097716

RESUMO

Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg·kg-1·d-1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 µM) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18α-glycyrrhetinic acid (18α-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPKα), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3's downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.


Assuntos
Anticonvulsivantes , Bloqueadores dos Canais de Cálcio , Cardiomegalia , Quinase 3 da Glicogênio Sintase , Complexo de Endopeptidases do Proteassoma , Zonisamida , Animais , Camundongos , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/farmacologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Zonisamida/farmacologia , Zonisamida/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico
9.
Aging (Albany NY) ; 15(23): 13581-13592, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38095616

RESUMO

Smoking is the main risk factor for many lung diseases including chronic obstructive pulmonary disease. Cigarette smoke (CS) contains carcinogenic and reactive oxygen species that favor DNA mutations and perturb the homeostasis and environment of cells. CS induces lung cell senescence resulting in a stable proliferation arrest and a senescence-associated secretory phenotype. It was recently reported that senescent cell accumulation promotes several lung diseases. In this study, we performed a chemical screen, using an FDA-approved drug library, to identify compounds selectively promoting the death of CS-induced senescent lung cells. Aside from the well-known senolytic, ABT-263, we identified other potentially new senescence-eliminating compounds, including a new class of molecules, the dihydropyridine family of calcium voltage-gated channel (CaV) blockers. Among these blockers, Benidipine, decreased senescent lung cells and ameliorates lung emphysema in a mouse model. The dihydropyridine family of CaV blockers thus constitutes a new class of senolytics that could improve lung diseases. Hence, our work paves the way for further studies on the senolytic activity of CaV blockers in different senescence contexts and age-related diseases.


Assuntos
Fumar Cigarros , Di-Hidropiridinas , Enfisema , Enfisema Pulmonar , Camundongos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/genética , Pulmão/metabolismo , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/uso terapêutico , Di-Hidropiridinas/metabolismo , Enfisema/metabolismo , Senescência Celular
10.
Artigo em Inglês | MEDLINE | ID: mdl-38038000

RESUMO

Raised blood pressure is the most common complication worldwide that may lead to atherosclerosis and ischemic heart disease. Unhealthy lifestyles, smoking, alcohol consumption, junk food, and genetic disorders are some of the causes of hypertension. To treat this condition, numerous antihypertensive medications are available, either alone or in combination, that work via various mechanisms of action. Combinational therapy provides a certain advantage over monotherapy in the sense that it acts in multi mechanism mode and minimal drug amount is required to elicit the desired therapeutic effect. Such therapy is given to patients with systolic blood pressure greater than 20 mmHg and/or diastolic blood pressure exceeding 10 mmHg beyond the normal range, as well as those suffering from severe cardiovascular disease. The selection of antihypertensive medications, such as calcium channel blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and low-dose diuretics, hinges on their ability to manage blood pressure effectively and reduce cardiovascular disease risks. This review provides insights into the diverse monotherapy and combination therapy approaches used for elevated blood pressure management. In addition, it offers an analysis of combination therapy versus monotherapy and discusses the current status of these therapies, from researchbased findings to clinical trials.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Quimioterapia Combinada , Hipertensão/tratamento farmacológico
11.
Sci Rep ; 13(1): 22092, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086845

RESUMO

The abnormal expression in the T-type calcium channels is involved in various cancer types, thus inhibiting T-type calcium channels is one of approaches in cancer treatment. The fact that KTt-45 acted as a T-type calcium channel inhibitor as well as a pain-relief agent prompts us to address if KTt-45 plays any role against cancer cells. The results showed that KTt-45 caused cytotoxic effects towards HeLa cervical, Raji lymphoma, MCF-7 breast cancer, and A549 lung cancer cell lines with IC50 values less than 100 µM, in which highly selective toxicity was against HeLa cells (IC50 = 37.4 µM, SI > 3.2). Strikingly, the KTt-45 induced an accumulation of cytoplasmic vacuoles after 48 h treatment and mitochondrial-dependent apoptosis activation as evidenced by morphological features, chromatin condensation, nuclear fragmentation, and significant activation of caspase-9 as well as caspase-3. In conclusion, KTt-45 could inhibit cell growth and trigger mitochondrial-dependent apoptosis in HeLa cervical cancer cells. The results, taken together, strongly demonstrated that KTt-45 is a potential agent for further study on anticancer drug development which not only targets cancer cells but also helps to relieve neuropathic pain in cancer patients.


Assuntos
Antineoplásicos , Canais de Cálcio Tipo T , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Neoplasias do Colo do Útero/patologia , Bloqueadores dos Canais de Cálcio/farmacologia , Apoptose , Antineoplásicos/farmacologia , Proliferação de Células
12.
Protein J ; 42(5): 586-595, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531037

RESUMO

Spider venom contains various peptides and proteins, which can be used for pharmacological applications. Finding novel therapeutic strategies against neurodegenerative diseases with the use of purified peptides and proteins, extracted from spiders can be greatly precious. Neurodegenerative diseases are rapidly developing and expanding all over the world. Excitotoxicity is a frequent condition amongst neuro-degenerative disorders. This harmful process is usually induced through hyper-activation of N-Methyl-D-Aspartate (NMDA) receptor, and P/Q-type voltage-gated calcium channels (VGCCs). The omega-agatoxin-Aa4b is a selective and strong VGCCblocker. This study aimed to investigate the effects of this blocker on the NMDA-induced memory and learning defect in rats. For this purpose, nineteen spiders of the funnel-weaver Agelena orientalis species were collected. The extracted venom was lyophilized andpurified through gel-filtration chromatography, and capillary electrophoresis techniques. Subsequently, mass spectrometry (HPLC-ESI-MS) was used for identification of this bio-active small protein. Afterward, the effect of the omega-agatoxin-Aa4b (2 µg, intra-cornu ammonis-3 of the hippocampus) on the NMDA-induced learning and memory deficits in rats was evaluated. Learning and memory performances were evaluated by the use of passive avoidance test. For synaptic quantification and memory function the amount of calcium/calmodulin-dependent protein kinase ІІ (CaCdPKІІ) gene expression was measured using the Real-time PCR technique. To compare the experimental groups, hematoxylin and eosin (H&E) staining of hippocampus tissues was performed. Our results rendered that the omega-Agatoxin-Aa4b treatment can ameliorate and reverse the learning and memory impairment caused by NMDA-induced excitotoxicity in rat hippocampus.


Assuntos
Bloqueadores dos Canais de Cálcio , Ácido Glutâmico , Ratos , Animais , Ácido Glutâmico/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , ômega-Conotoxina GVIA/farmacologia , Ratos Wistar , N-Metilaspartato , Peptídeos/farmacologia
13.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240147

RESUMO

Calcium is a highly positively charged ionic species. It regulates all cell types' functions and is an important second messenger that controls and triggers several mechanisms, including membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications, and in the activation of kinases and gene expression. Therefore, controlling calcium transport and its intracellular homeostasis in physiology leads to the healthy functioning of the biological system. However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular, skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly focused on selective calcium transporters and blockers in the cardiovascular system.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sistema Cardiovascular/metabolismo , Sistemas do Segundo Mensageiro , Bloqueadores dos Canais de Cálcio/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Homeostase
14.
Am J Physiol Cell Physiol ; 325(1): C69-C78, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212547

RESUMO

Cardiac calcification is a crucial but underrecognized pathological process, greatly increasing the risk of cardiovascular diseases. Little is known about how cardiac fibroblasts, as a central mediator, facilitate abnormal mineralization. Erythropoietin-producing hepatoma interactor B2 (EphrinB2), previously identified as an angiogenic regulator, is involved in fibroblast activation, while its role in the osteogenic differentiation of cardiac fibroblasts is unknown. Bioinformatics analysis was conducted to characterize the expression of the Ephrin family in human calcified aortic valves and calcific mouse hearts. The effects of EphrinB2 on cardiac fibroblasts to adopt osteogenic fate was determined by gain- and loss-of-function. EphrinB2 mRNA level was downregulated in calcified aortic valves and mouse hearts. Knockdown of EphrinB2 attenuated mineral deposits in adult cardiac fibroblasts, whereas overexpression of EphrinB2 promoted their osteogenic differentiation. RNA sequencing data implied that Ca2+-related S100/receptor for advanced glycation end products (RAGE) signaling may mediate EphrinB2-induced mineralization in cardiac fibroblasts. Moreover, L-type calcium channel blockers inhibited osteogenic differentiation of cardiac fibroblasts, implying a critical role in Ca2+ influx. In conclusion, our data illustrated an unrecognized role of EphrinB2, which functions as a novel osteogenic regulator in the heart through Ca2+ signaling and could be a potential therapeutic target in cardiovascular calcification.NEW & NOTEWORTHY In this study, we observed that adult cardiac fibroblasts but not neonatal cardiac fibroblasts exhibit the ability of osteogenic differentiation. EphrinB2 promoted osteogenic differentiation of cardiac fibroblasts through activating Ca2+-related S100/RAGE signaling. Inhibition of Ca2+ influx using L-type calcium channel blockers inhibited EphrinB2-mediated calcification of cardiac fibroblasts. Our data implied an unrecognized role of EphrinB2 in regulating cardiac calcification though Ca2+-related signaling, suggesting a potential therapeutic target of cardiovascular calcification.


Assuntos
Carcinoma Hepatocelular , Eritropoetina , Neoplasias Hepáticas , Adulto , Animais , Humanos , Camundongos , Cálcio , Bloqueadores dos Canais de Cálcio/farmacologia , Diferenciação Celular , Eritropoetina/farmacologia , Fibroblastos , Osteogênese/fisiologia , Receptor para Produtos Finais de Glicação Avançada
15.
Biochem Biophys Res Commun ; 667: 138-145, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37224633

RESUMO

Childhood muscle-related cancer rhabdomyosarcoma is a rare disease with a 50-year unmet clinical need for the patients presented with advanced disease. The rarity of ∼350 cases per year in North America generally diminishes the viability of large-scale, pharmaceutical industry driven drug development efforts for rhabdomyosarcoma. In this study, we performed a large-scale screen of 640,000 compounds to identify the dihydropyridine (DHP) class of anti-hypertensives as a priority compound hit. A structure-activity relationship was uncovered with increasing cell growth inhibition as side chain length increases at the ortho and para positions of the parent DHP molecule. Growth inhibition was consistent across n = 21 rhabdomyosarcoma cell line models. Anti-tumor activity in vitro was paralleled by studies in vivo. The unexpected finding was that the action of DHPs appears to be other than on the DHP receptor (i.e., L-type voltage-gated calcium channel). These findings provide the basis of a medicinal chemistry program to develop dihydropyridine derivatives that retain anti-rhabdomyosarcoma activity without anti-hypertensive effects.


Assuntos
Di-Hidropiridinas , Rabdomiossarcoma , Humanos , Criança , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/química , Relação Estrutura-Atividade , Anti-Hipertensivos/farmacologia , Canais de Cálcio Tipo L/metabolismo , Rabdomiossarcoma/tratamento farmacológico , Di-Hidropiridinas/farmacologia
16.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047701

RESUMO

Cartilage is an avascular tissue and sensitive to mechanical trauma and/or age-related degenerative processes leading to the development of osteoarthritis (OA). Therefore, it is important to investigate the mesenchymal cell-based chondrogenic regenerating mechanisms and possible their regulation. The aim of this study was to investigate the role of intracellular calcium (iCa2+) and its regulation through voltage-operated calcium channels (VOCC) on chondrogenic differentiation of mesenchymal stem/stromal cells derived from human bone marrow (BMMSCs) and menstrual blood (MenSCs) in comparison to OA chondrocytes. The level of iCa2+ was highest in chondrocytes, whereas iCa2+ store capacity was biggest in MenSCs and they proliferated better as compared to other cells. The level of CaV1.2 channels was also highest in OA chondrocytes than in other cells. CaV1.2 antagonist nifedipine slightly suppressed iCa2+, Cav1.2 and the proliferation of all cells and affected iCa2+ stores, particularly in BMMSCs. The expression of the CaV1.2 gene during 21 days of chondrogenic differentiation was highest in MenSCs, showing the weakest chondrogenic differentiation, which was stimulated by the nifedipine. The best chondrogenic differentiation potential showed BMMSCs (SOX9 and COL2A1 expression); however, purposeful iCa2+ and VOCC regulation by blockers can stimulate a chondrogenic response at least in MenSCs.


Assuntos
Bloqueadores dos Canais de Cálcio , Condrócitos , Células-Tronco Mesenquimais , Nifedipino , Osteoartrite , Humanos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nifedipino/farmacologia , Osteoartrite/metabolismo , Canais de Cálcio Tipo L , Bloqueadores dos Canais de Cálcio/farmacologia
17.
Mar Drugs ; 21(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37103368

RESUMO

Chronic pain is one of the most prevalent health problems worldwide. An alternative to suppress or alleviate chronic pain is the use of peptide drugs that block N-type Ca2+ channels (Cav2.2), such as ω-conotoxin MVIIA. Nevertheless, the narrow therapeutic window, severe neurological side effects and low stability associated with peptide MVIIA have restricted its widespread use. Fortunately, self-assembly endows the peptide with high stability and multiple functions, which can effectively control its release to prolong its duration of action. Inspired by this, MVIIA was modified with appropriate fatty acid chains to render it amphiphilic and easier to self-assemble. In this paper, an N-terminal myristoylated MVIIA (Myr-MVIIA, medium carbon chain length) was designed and prepared to undergo self-assembly. The present results indicated that Myr-MVIIA can self-assemble into micelles. Self-assembled micelles formed by Myr-MVIIA at higher concentrations than MVIIA can prolong the duration of the analgesic effect and significantly reduce or even eliminate the side effects of tremor and coordinated motor dysfunction in mice.


Assuntos
Dor Crônica , ômega-Conotoxinas , Camundongos , Animais , Dor Crônica/tratamento farmacológico , Micelas , ômega-Conotoxinas/farmacologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia
18.
PLoS One ; 18(4): e0284364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053203

RESUMO

OBJECTIVE: Vascular endothelial growth factor (VEGF) plays a key role in diabetic retinopathy (DR). Previously, we have reported an association between mutations in a gene coding for the L-type calcium channel subunit, VEGF and DR. L-type calcium channel blockers (LTCCBs) have been widely used as antihypertensive medication (AHM), but their association with VEGF and DR is still unclear. Therefore, we explored the effect of LTCCBs compared to other AHMs on VEGF concentrations in retinal cells and human serum. Furthermore, we evaluated the association between the use of LTCCBs and the risk of severe diabetic eye disease (SDED). RESEARCH DESIGN AND METHODS: Müller cells (MIO-M1) were cultured as per recommended protocol and treated with LTCCBs and other AHMs. VEGF secreted from cells were collected at 24 hours intervals. In an interventional study, 39 individuals received LTCCBs or other AHM for four weeks with a four-week wash-out placebo period between treatments. VEGF was measured during the medication and placebo periods. Finally, we evaluated the risk of SDED associated with LTCCB usage in 192 individuals from the FinnDiane Study in an observational setting. RESULTS: In the cell cultures, the medium VEGF concentration increased time-dependently after amlodipine (P<0.01) treatment, but not after losartan (P>0.01), or lisinopril (P>0.01). Amlodipine, but no other AHM, increased the serum VEGF concentration (P<0.05) during the interventional clinical study. The usage of LTCCB was not associated with the risk of SDED in the observational study. CONCLUSIONS: LTCCB increases VEGF concentrations in retinal cells and human serum. However, the usage of LTCCBs does not appear to be associated with SDED in adults with type 1 diabetes.


Assuntos
Retinopatia Diabética , Fator A de Crescimento do Endotélio Vascular , Adulto , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Retinopatia Diabética/metabolismo , Anti-Hipertensivos/uso terapêutico , Anlodipino/farmacologia
19.
Clin Neurol Neurosurg ; 227: 107644, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842290

RESUMO

PURPOSE: The term "cerebrovascular diseases (CVDs)" refers to a broad category of diseases that affect the brain's blood vessels and cerebral circulation. Controlling acute hypertension (HTN) by antihypertensive drugs such as clevidipine and nicardipine can be a highly efficient method of lowering the incidence of CVDs. METHODS: This is a systematic review and meta-analysis study. The PubMed, Scopus, and Web of Science online databases and a gray literature search were performed to identify potentially eligible studies. The included studies were observational studies that compared adult patients receiving clevidipine or nicardipine for controlling HTN in the setting of CVD. RESULTS: We reviewed 5 final included articles, including 546 patients. The pooled standardized mean difference (SMD) for time to goal SBP was - 0.04 (95 % CI: [-0.66; 0.58], p-value: 0.86, I2: 79.0 %, pooled MD: -12.90 min), meaning that the clevidipine group had a shorter time to goal systolic blood pressure (SBP) than the nicardipine group. The pooled SMD for total volume infusion was - 0.52 (95 % CI: [-0.93; -0.12], p-value: 0.03, I2: 0.0 %, pooled MD: -1118.81 mL), showing a notably lower total volume infused into patients in the clevidipine group. CONCLUSIONS: We found that clevidipine reaches the SBP goal faster than nicardipine; however, there was no statistically significant difference between the two drugs. The total volume infused to achieve the goal SBP was significantly lower in the clevidipine group. Further prospective studies are needed to compare clevidipine and nicardipine in CVD patients on a large scale.


Assuntos
Transtornos Cerebrovasculares , Hipertensão , Adulto , Humanos , Nicardipino/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Anti-Hipertensivos/uso terapêutico , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/complicações , Pressão Sanguínea
20.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835507

RESUMO

Elevated TNF-α levels in serum and broncho-alveolar lavage fluid of acute lung injury patients correlate with mortality rates. We hypothesized that pharmacological plasma membrane potential (Em) hyperpolarization protects against TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells through inhibition of inflammatory Ca2+-dependent MAPK pathways. Since the role of Ca2+ influx in TNF-α-mediated inflammation remains poorly understood, we explored the role of L-type voltage-gated Ca2+ (CaV) channels in TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells. The CaV channel blocker, Nifedipine, decreased both CCL-2 and IL-6 secretion, suggesting that a fraction of CaV channels is open at the significantly depolarized resting Em of human microvascular pulmonary endothelial cells (-6 ± 1.9 mV), as shown by whole-cell patch-clamp measurements. To further explore the role of CaV channels in cytokine secretion, we demonstrated that the beneficial effects of Nifedipine could also be achieved by Em hyperpolarization via the pharmacological activation of large conductance K+ (BK) channels with NS1619, which elicited a similar decrease in CCL-2 but not IL-6 secretion. Using functional gene enrichment analysis tools, we predicted and validated that known Ca2+-dependent kinases, JNK-1/2 and p38, are the most likely pathways to mediate the decrease in CCL-2 secretion.


Assuntos
Células Epiteliais Alveolares , Quimiocina CCL2 , Canais de Potássio Ativados por Cálcio de Condutância Alta , Pneumonia , Fator de Necrose Tumoral alfa , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Nifedipino/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Pneumonia/metabolismo , Pneumonia/prevenção & controle , Quimiocina CCL2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA