Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pak J Biol Sci ; 25(1): 90-99, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35001579

RESUMO

<b>Background and Objective:</b> The proposed study involves the approach from the point of anti-viral activity of gold nanoparticles against the <i>Bluetongue virus</i>. Among viral diseases, Bluetongue is regarded as an economically scouring disease. Neither a vaccine nor an antiviral drug is available for the prevention or treatment of this disease. The antiviral activity of gold nanoparticles synthesized by a novel isolate of <i>Streptomyces tuirus</i> DBZ39 is the breakthrough of the study. <i>Streptomyces tuirus </i>DBZ39, a novel isolate obtained from alkaline soil was proved to be efficient actinomycetes, for the extracellular synthesis of gold nanoparticles. <b>Materials and Methods:</b> An upstream bioprocess was optimized and developed for the synthesis of controlled size gold nanoparticles with solitary mono dispersal pattern in aurum chloride solution. The characterization and confirmation of gold nanoparticles were illustrated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX) and Fourier Transmission Infrared Radiation Analysis (FTIR). <b>Results:</b> Biomass size of 3 g, substrate concentration of 1 mM, pH of 8.5 and temperature of 45°C were observed as optimum conditions for the synthesis of 15-24 nm size gold nanoparticles. The <i>Bluetongue virus</i> (BTV) which belongs to the genus Orbivirus in the family Reoviridae with 26 serotypes is an etiological agent of infectious and non-contagious Bluetongue disease of main sheep and several other domestic animals. <b>Conclusion:</b> Gold nanoparticles for the 1st time, at a higher concentration of 1:64 dilutions revealed a very promising and novel antiviral property against the <i>Bluetongue virus</i>.


Assuntos
Antivirais/normas , Vírus Bluetongue/efeitos dos fármacos , Ouro/farmacologia , Streptomyces/isolamento & purificação , Antivirais/farmacologia , Bluetongue/tratamento farmacológico , Bluetongue/fisiopatologia , Vírus Bluetongue/patogenicidade , Ouro/uso terapêutico , Nanopartículas/normas , Streptomyces/metabolismo
2.
J Recept Signal Transduct Res ; 40(5): 426-435, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32249640

RESUMO

Outstanding increase of oral absorption, bioavailability, and antiviral efficacy of phosphorylated nucleosides and basic antiviral influence of abacavir is the central idea for the development of new series of phosphorylated abacavir (ABC) derivatives. The designed compounds were primarily screened for antiviral nature against HN protein of NDV and VP7 protein of BTV using the molecular environment approach. Out of all the designed compounds, the compounds which are having higher binding energies against these two viral strains were prompted for the synthesis of the target compounds (5A-K). Among the synthesized title compounds (5A-K), the compounds which have exhibited higher dock scores akin to the rest of the compounds were then selected and screened for the antiviral activity against NDV and BTV infected embryonated eggs and BHK 21 cell lines through the in ovo and in vitro approaches. The results revealed that all the designed compounds have formed higher binding energies against both the targets. Among all, the compounds which are selected based on their dock scores such as 5A, 5F, 5G, 5H, 5I, and 5K against NDV and 5J, 5E, 5I, 5C, 5A, and 5K against BTV have shown significant antiviral activity against HN protein of NDV, VP7 protein of Bluetongue virus in both NDV- and BTV-treated embryonated eggs and BHK 21 cell lines. Hence, it is concluded that, the best lead compounds will stand as the potential antiviral agents and prompted them as virtuous therapeutics against NDV and BTV in future.


Assuntos
Bluetongue/tratamento farmacológico , Didesoxinucleosídeos/farmacologia , Proteína HN/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Animais , Doenças das Aves/tratamento farmacológico , Doenças das Aves/genética , Doenças das Aves/virologia , Bluetongue/genética , Bluetongue/virologia , Vírus Bluetongue/efeitos dos fármacos , Vírus Bluetongue/genética , Vírus Bluetongue/patogenicidade , Simulação por Computador , Didesoxinucleosídeos/química , Doença de Newcastle/tratamento farmacológico , Doença de Newcastle/genética , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Fosforilação , Ovinos/virologia , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/genética , Relação Estrutura-Atividade , Proteínas do Core Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA