Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134172, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569340

RESUMO

Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.


Assuntos
Boehmeria , Cádmio , Parede Celular , Vacúolos , Cádmio/toxicidade , Cádmio/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Boehmeria/metabolismo , Boehmeria/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/efeitos dos fármacos , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polissacarídeos/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos/metabolismo , Xilanos/metabolismo , Estresse Fisiológico/efeitos dos fármacos
2.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555743

RESUMO

Xyloglucan endotransglycosylase/hydrolase (XTH) genes play an important role in plant resistance to abiotic stress. However, systematic studies of the response of Boehmeria nivea (ramie) XTH genes (BnXTHs) to cadmium (Cd) stress are lacking. We sought to identify the BnXTH-family genes in ramie through bioinformatics analyses and to investigate their responses to Cd stress. We identified 19 members of the BnXTH gene family from the ramie genome, referred to as BnXTH1-19, among which BnXTH18 and BnXTH19 were located on no chromosomes and the remaining genes were unevenly distributed across 11 chromosomes. The 19 members were divided into four groups, Groups I/II/IIIA/IIIB, according to their phylogenetic relationships, and these groups were supported by analyses of intron-exon structure and conserved motif composition. A highly conserved catalytic site (HDEIDFEFLG) was observed in all BnXTH proteins. Additionally, three gene pairs (BnXTH6-BnXTH16, BnXTH8-BnXTH9, and BnXTH17-BnXTH18) were obtained with a fragment and tandem-repeat event analysis of the ramie genome. An analysis of cisregulatory elements revealed that BnXTH expression might be regulated by multiple hormones and abiotic and biotic stress responses. In particular, 17 cisregulatory elements related to abiotic and biotic stress responses and 11 cisregulatory elements related to hormone responses were identified. We also found that most BnXTH genes responded to Cd stress, and BnXTH1, BnXTH3, BnXTH6, and BnXTH15 were most likely to contribute to the Cd tolerance of ramie, as evidenced by the substantial increases in expression under Cd treatment. Heterologous expression of BnXTH1, BnXTH6, and BnXTH15 significantly enhanced the Cd tolerance of transgenic yeast cells. These results suggest that the BnXTH gene family is involved in Cd stress responses, laying a theoretical foundation for functional studies of BnXTH genes and the innovative breeding of Cd-tolerant ramie.


Assuntos
Boehmeria , Cádmio , Cádmio/toxicidade , Cádmio/metabolismo , Boehmeria/genética , Boehmeria/metabolismo , Filogenia , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas
3.
Sci Rep ; 10(1): 20408, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230149

RESUMO

Continuous cropping lowers the production and quality of ramie (Boehmeria nivea L. Gaud). This study aimed to reveal the metagenomic and metabolomic changes between the healthy- and obstacle-plant after a long period of continuous cropping. After 10 years of continuous cropping, ramie planted in some portions of the land exhibited weak growth and low yield (Obstacle-group), whereas, ramie planted in the other portion of the land grew healthy (Health-group). We collected rhizosphere soil and root samples from which measurements of soil chemical and plant physiochemical properties were taken. All samples were subjected to non-targeted gas chromatograph-mass spectrometer (GS/MS) metabolome analysis. Further, metagenomics was performed to analyze the functional genes in rhizospheric soil organisms. Based on the findings, ramie in Obstacle-group were characterized by shorter plant height, smaller stem diameter, and lower fiber production than that in Health-group. Besides, the Obstacle-group showed a lower relative abundance of Rhizobiaceae, Lysobacter antibioticus, and Bradyrhizobium japonicum, but a higher relative abundance of Azospirillum lipoferum and A. brasilense compared to the Health-group. Metabolomic analysis results implicated cysteinylglycine (Cys-Gly), uracil, malonate, and glycerol as the key differential metabolites between the Health- and Obstacle-group. Notably, this work revealed that bacteria such as Rhizobia potentially synthesize IAA and are likely to reduce the biotic stress of ramie. L. antibioticus also exerts a positive effect on plants in the fight against biotic stress and is mediated by metabolites including orthophosphate, uracil, and Cys-Gly, which may serve as markers for disease risk. These bacterial effects can play a key role in plant resistance to biotic stress via metabolic and methionine metabolism pathways.


Assuntos
Azospirillum brasilense/metabolismo , Azospirillum lipoferum/metabolismo , Boehmeria/metabolismo , Bradyrhizobium/metabolismo , Lysobacter/metabolismo , Solo/química , Azospirillum brasilense/crescimento & desenvolvimento , Azospirillum lipoferum/crescimento & desenvolvimento , Boehmeria/microbiologia , Bradyrhizobium/crescimento & desenvolvimento , Produtos Agrícolas , Dipeptídeos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glicerol/metabolismo , Humanos , Lysobacter/crescimento & desenvolvimento , Malonatos/metabolismo , Metabolômica/métodos , Metagenômica/métodos , Metionina/metabolismo , Fosfatos/metabolismo , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Uracila/metabolismo
4.
Int J Biol Macromol ; 164: 3340-3348, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871119

RESUMO

The bioactive form of thermostable and alkali stable pectinase of Bacillus pumilus dcsr1 is a homodimer of the molecular mass of 60 kDa with a pI of 4.6. The enzyme is optimally active at 50 °C and pH 10.5, and its Michaelis constant (Km), maximum rate of reaction (Vmax), activation energy (Ea), and temperature quotient (Q10) values (for citrus pectin) are 0.29 mg mL-1, 116 µmole mg-1 min-1, 74.73 KJmol-1 and 1.57, respectively. The enzyme has a shelf life of one and a half years at room temperature as well as 4 °C. The activity of the enzyme is stimulated by Mn2+ and Ca2+ and inhibited by Hg+, Cd2+, Co2+, Zn2+, Fe2+, Pb2+, EDTA and urea to a varied extent. The conformational studies of the enzyme revealed a high ß-sheet content in the bioactive dimer, and high α-helix in the inactive monomer. The Circular Dichroism (CD) spectra of the dimer in the presence of inhibitors suggested a marked decrease in ß-sheet, and a significant increase in α-helix, suggesting a key role of ß-sheets in the enzyme catalysis. Based on the end product analysis, the enzyme is an exopolygalacturonase with a unique ability of transglycosylation. When ramie fibers were treated with the enzyme, removal of gummy material (pectin) was visible, confirming its applicability in the degumming process.


Assuntos
Bacillus pumilus/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Bacillus/enzimologia , Bacillus pumilus/metabolismo , Proteínas de Bactérias/química , Boehmeria/química , Boehmeria/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/isolamento & purificação , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Pectinas/química , Poligalacturonase/química , Polissacarídeo-Liases/química , Especificidade por Substrato , Temperatura
5.
Sci Total Environ ; 666: 1126-1133, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970478

RESUMO

Cadmium (Cd) contamination in river sediments becomes increasingly serious, and phytoremediation has been used to remediate Cd contaminated sediments, but the remediation efficiency needs to be improved. In this study, tea waste derived biochar (TB) was used to facilitate the phytoremediation of Cd contaminated sediments. Results showed that TB at 100, 500 and 1000 mg kg-1 increased Cd accumulation and translocation in ramie seedlings by changing Cd speciation in sediments and altering the subcellular distribution of Cd in plant cells. TB at low contents alleviated Cd induced toxicity in ramie seedlings by promoting plant growth and mitigating the oxidative stress. In addition, the activities of urease-, phosphatase-, and catalase-producing microbes in the Cd contaminated sediments were promoted by the application of TB. These findings demonstrated that biochar at low concentrations could improve the phytoremediation efficiency and mitigating Cd-induced toxicity to plants and microbes in Cd contaminated sediments. This study herein provides a novel technological application of waste biomass in controlling and mitigating risks of heavy metals.


Assuntos
Boehmeria/metabolismo , Cádmio/análise , Camellia sinensis/química , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Boehmeria/efeitos dos fármacos , China , Manipulação de Alimentos , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Resíduos Industriais , Plântula/metabolismo , Plântula/microbiologia , Áreas Alagadas
6.
BMC Plant Biol ; 18(1): 369, 2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30577815

RESUMO

BACKGROUND: MicroRNAs (miRNAs) regulate numerous crucial abiotic stress processes in plants. However, information is limited on their involvement in cadmium (Cd) stress response and tolerance mechanisms in plants, including ramie (Boehmeria nivea L.) that produces a number of economic valuable as an important natural fibre crop and an ideal crop for Cd pollution remediation. RESULTS: Four small RNA libraries of Cd-stressed and non-stressed leaves and roots of ramie were constructed. Using small RNA-sequencing, 73 novel miRNAs were identified. Genome-wide expression analysis revealed that a set of miRNAs was differentially regulated in response to Cd stress. In silico target prediction identified 426 potential miRNA targets that include several uptake or transport factors for heavy metal ions. The reliability of small RNA sequencing and the relationship between the expression levels of miRNAs and their target genes were confirmed by quantitative PCR (q-PCR). We showed that the expression patterns of miRNAs obtained by q-PCR were consistent with those obtained from small RNA sequencing. Moreover, we demonstrated that the expression of six randomly selected target genes was inversely related to that of their corresponding miRNAs, indicating that the miRNAs regulate Cd stress response in ramie. CONCLUSIONS: This study enriches the number of Cd-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in ramie during Cd stress.


Assuntos
Boehmeria/genética , Cádmio/toxicidade , Genoma de Planta/genética , MicroRNAs/genética , Boehmeria/metabolismo , Boehmeria/fisiologia , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/fisiologia , MicroRNAs/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Análise de Sequência de DNA , Estresse Fisiológico
7.
Mater Sci Eng C Mater Biol Appl ; 62: 816-22, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952488

RESUMO

The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characters to market available ones. From natural origin only silk, cotton and linen fibers are presently available in market as non-absorbable suture biomaterials. In this study, we have developed a novel, cost-effective, and biocompatible suture biomaterial from ramie plant, Boehmeria nivea fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of raw and degummed ramie fiber, where the former one showed desirable characteristics for suture preparation. The braided multifilament ramie suture prepared from degummed fiber exhibited excellent tensile strength. The suture found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The fabricated ramie suture exhibited significant antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus; which can be attributed to the inherent bacteriostatic ability of ramie plant fiber. In vivo wound closure efficacy was evaluated in adult male wister rats by suturing the superficial wound incisions. Within seven days of surgery the wound got completely healed leaving no rash and scar. The role of the ramie suture in complete wound healing was supported by the reduced levels of serum inflammatory mediators. Histopathology studies confirmed the wound healing ability of ramie suture, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Tensile properties, biocompatibility and wound closure efficacy of the ramie suture were comparable with market available BMSF suture. The outcome of this study can drive tremendous possibility for the utilization of ramie plant fiber for various biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Boehmeria/metabolismo , Suturas , Animais , Bacillus subtilis/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Células MCF-7 , Masculino , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Resistência à Tração , Termogravimetria , Cicatrização/efeitos dos fármacos
8.
Environ Sci Pollut Res Int ; 22(18): 13960-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25948381

RESUMO

Crop germplasms substantially vary in their tolerance for and accumulation of heavy metals, and assessment of this variability plays a significant role in selecting species to use in phytoremediation projects. Here, we examined germplasm-variations in cadmium (Cd), lead (Pb), and zinc (Zn) tolerance and accumulation in ramie (Boehmeria nivea), a fiber crop native to China, which has received little attention. In an 8-week greenhouse test, fourteen germplasms of ramie, among and within deep, middle, and shallow rooted-types, were compared for growth and metal accumulation traits. Results showed that both tolerance and accumulation traits varied across germplasms and rooted-types. The deep rooted-type germplasms produced more biomass and had higher tolerance to metals than the two others. In addition, considerable variations in metal accumulation were observed among plant organs (root, stem, and leaf), rooted-types, germplasms, and metal supply. However, the observed variations in metal tolerance and accumulation among both germplasms and rooted-types were not significant in most cases. In addition to supporting the idea of a certain degree of constitutional metal tolerance for ramie, our results also contribute to deep-rooted germplasms of ramie as a good candidate, rather than middle-/shallow- ones as a least-bad option, for the remediation of multi metal-contaminated soils.


Assuntos
Boehmeria/metabolismo , Cádmio/metabolismo , Chumbo/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Zinco/metabolismo , Adaptação Fisiológica , Biodegradação Ambiental , Boehmeria/crescimento & desenvolvimento , China , Produtos Agrícolas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
9.
Bull Environ Contam Toxicol ; 94(4): 453-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724673

RESUMO

Ramie (Boehmeria nivea), a perennial herb belongs to Urticaceae family, is a rapid growth and high biomass crop with highly tolerant and accumulative to heavy metals. However, the gene expression and regulation caused by cadmium (Cd) in ramie has not been well studied. In the present study, a gene expression database of ramie root in the absence (control) or presence of 100 µM Cd was established. Solexa high-throughput sequencing technology showed that 3,654,395 and 3,572,333 tags have been obtained from control and Cd treatment respectively. In total, 3887 genes were detected with significant differential expression levels, in which 2883 genes were up-regulated and 1004 genes were down-regulated. Gene ontology and pathway-based analyses were performed to determine and further to understand the biological functions of those differentially expressed genes. Fifteen genes were selected and their expression levels were confirmed by quantitative RT-PCR, and twelve of them showed consistent expression patterns with the digital gene expression data. Results on these expression profiling of genes lay the basis for biotechnological modification of new transgenic plants with improved phytoremediation capacity.


Assuntos
Boehmeria/genética , Cádmio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metais Pesados/farmacologia , Boehmeria/efeitos dos fármacos , Boehmeria/metabolismo , Perfilação da Expressão Gênica , Raízes de Plantas/genética
10.
Environ Sci Pollut Res Int ; 22(5): 3489-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25242592

RESUMO

Cadmium (Cd)-induced growth inhibition is one of the primary factors limiting phytoremediation effect of Boehmeria nivea (L.) Gaud in contaminated soil. Sodium nitroprusside (SNP), a donor of nitric oxide (NO), has been evidenced to alleviate Cd toxicity in many plants. However, as an important mechanism of NO in orchestrating cellular functions, S-nitrosylation is still poorly understood in its relation with Cd tolerance of plants. In this study, higher exogenous NO levels were found to coincide with higher S-nitrosylation level expressed as content of S-nitrosothiols (SNO). The addition of low concentration (100 µM) SNP increased the SNO content, and it simultaneously induced an alleviating effect against Cd toxicity by enhancing the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) and reduced the accumulation of H2O2 as compared with Cd alone. Application of S-nitrosoglutathione reductase (GSNOR) inhibitors dodecanoic acid (DA) in 100 µM SNP group brought in an extra elevation in S-nitrosylation level and further reinforced the effect of SNP. While the additions of 400 µM SNP and 400 µM SNP + 50 µM DA further elevated the S-nitrosylation level, it markedly weakened the alleviating effect against Cd toxicity as compared with the addition of 100 µM SNP. This phenomenon could be owing to excess consumption of glutathione (GSH) to form SNO under high S-nitrosylation level. Therefore, the present study indicates that S-nitrosylation is involved in the ameliorating effect of SNP against Cd toxicity. This involvement exhibited a concentration-dependent property.


Assuntos
Antioxidantes/metabolismo , Boehmeria/efeitos dos fármacos , Cádmio/toxicidade , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , S-Nitrosotióis/metabolismo , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Biomassa , Boehmeria/crescimento & desenvolvimento , Boehmeria/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
11.
J Environ Sci (China) ; 26(12): 2508-16, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25499499

RESUMO

Boehmeria nivea (L.) Gaud. is a potential candidate for the remediation of Cd contaminated sites. The present investigation aims to explore Cd tolerance threshold and to quickly identify the role of exogenous organic acids in Cd uptake and abiotic metal stress damage. Elevated Cd levels (0-10mg/L) resulted in an obvious rise in Cd accumulation, ranging from 268.0 to 374.4 in root and 25.2 to 41.2mg/kg dry weight in shoot, respectively. Citric acid at 1.5 mmol/L significantly facilitated Cd uptake by 26.7% in root and by 1-fold in shoot, respectively. Cd translocation efficiency from root to shoot was improved by a maximum of 66.4% under 3 mmol/L of oxalic acid. Citric acid exhibited more prominent mitigating effect than oxalic acid due to its stronger ligand affinity for chelating with metal and avoiding the toxicity injury of free Cd ions more efficiently. The present work provides a potential strategy for efficient Cd remediation with B. nivea.


Assuntos
Boehmeria/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Boehmeria/efeitos dos fármacos , Boehmeria/crescimento & desenvolvimento , Cádmio/isolamento & purificação , Carotenoides/metabolismo , Clorofila/metabolismo , Ácido Cítrico/farmacologia , Peroxidação de Lipídeos , Ácido Oxálico/farmacologia , Proteínas de Plantas/metabolismo , Poluentes do Solo/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA