Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxicon ; 222: 106992, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493931

RESUMO

Snake venom metalloproteinases (SVMPs) are enzymatic proteins present in large amounts in snake venoms presenting proteolytic, hemorrhagic, and coagulant activities. BjussuMP-II, a class P-I SVMP, isolated from the Bothrops jararacussu snake venom does not have relevant hemorrhagic activity but presents fibrinolytic, fibrinogenolytic, antiplatelet, gelatinolytic, and collagenolytic action. This study aimed to verify the action of BjussuMP-II on human neutrophil functionality focusing on the lipid bodies formation and hydrogen peroxide production, the release of dsDNA through colorimetric and microscopic assays, and cytokines by immunoenzymatic assays. Results showed that BjussuMP-II at concentrations of 1.5 up to 50 µg/mL for 24 h is not toxic to human neutrophils using an MTT assay. Under non-cytotoxic concentrations, BjussuMP-II can induce an increase in the formation of lipid bodies, production of hydrogen peroxide and cytokines [tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and interleukin-8 (IL-8)] liberation and, the release of dsDNA to form NETs. Taken together, the data obtained show for the first time that BjussuMP-II has a pro-inflammatory action and activates human neutrophils that can contribute to local damage observed in snakebite victims.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Humanos , Venenos de Crotalídeos/metabolismo , Neutrófilos , Bothrops/genética , Peróxido de Hidrogênio/metabolismo , Metaloproteases/metabolismo , Citocinas/metabolismo , Interleucina-6
2.
J Proteome Res ; 18(9): 3419-3428, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337208

RESUMO

Snakebite is a major medical concern in many parts of the world with metalloproteases playing important roles in the pathological effects of Viperidae venoms, including local tissue damage, hemorrhage, and coagulopathy. Hemorrhagic Factor 3 (HF3), a metalloprotease from Bothrops jararaca venom, induces local hemorrhage and targets extracellular matrix (ECM) components, including collagens and proteoglycans, and plasma proteins. However, the full substrate repertoire of this metalloprotease is unknown. We report positional proteomic studies identifying >2000 N-termini, including neo-N-termini of HF3 cleavage sites in mouse embryonic fibroblast secretome proteins. Terminal amine isotopic labeling of substrates (TAILS) analysis identified a preference for Leu at the P1' position among candidate HF3 substrates including proteins of the ECM and focal adhesions and the cysteine protease inhibitor cystatin-C. Interestingly, 190 unique peptides matched to annotated cleavage sites in the TopFIND N-termini database, suggesting that these cleavages occurred at a site prone to cleavage or might have been generated by other proteases activated upon incubation with HF3, including caspases-3 and -7, cathepsins D and E, granzyme B, and MMPs 2 and 9. Using Proteomic identification of cleavage site specificity (PICS), a tryptic library derived from THP-1 monocytic cells was used as HF3 substrates for identifying protease cleavage sites and sequence preferences in peptides. A total of 799 unique cleavage sites were detected and, in accordance with TAILS analysis using native secreted protein substrates of MEF cells, revealed a clear preference for Leu at P1'. Taken together, these results greatly expand the known substrate degradome of HF3 and reveal potential new targets, which may serve as a basis to better elucidate the complex pathophysiology of snake envenomation.


Assuntos
Metaloproteases/genética , Proteoma/genética , Proteômica , Venenos de Serpentes/genética , Sequência de Aminoácidos/genética , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/isolamento & purificação , Bothrops/genética , Humanos , Marcação por Isótopo , Metaloproteases/química , Metaloproteases/isolamento & purificação , Camundongos , Biblioteca de Peptídeos , Proteoma/química , Venenos de Serpentes/química , Especificidade por Substrato/genética , Espectrometria de Massas em Tandem
3.
Protein Expr Purif ; 154: 33-43, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30205154

RESUMO

A mRNA transcript that codes for a phospholipase (PLA2) was isolated from a single venom gland of the Bothrops ammodytoides viper. The PLA2 transcript was cloned onto a pCR®2.1-TOPO vector and subsequently expressed heterologously in the E. coli strain M15, using the pQE30 vector. The recombinant phospholipase was named rBamPLA2_1, and is composed of an N-terminal fusion protein of 16 residues, along with 122 residues from the mature protein that includes 14 cysteines that form 7 disulfide bonds. Following bacterial expression, rBamPLA2_1 was obtained from inclusion bodies and extracted using a chaotropic agent. rBamPLA2_1 had an experimental molecular mass of 15,692.5 Da that concurred with its theoretical molecular mass. rBamPLA2_1 was refolded in in vitro conditions and after refolding, three main protein fractions with similar molecular masses, were identified. Although, the three fractions were considered to represent different oxidized cystine isoforms, their secondary structures were comparable. All three recombinant isoforms were active on egg-yolk phospholipid and recognized similar cell membrane phospholipids to be native PLA2s, isolated from B. ammodytoides venom. A mixture of the three rBamPLA2_1 cystine isoforms was used to immunize a horse in order to produce serum antibodies (anti-rBamPLA2_1), which partially inhibited the indirect hemolytic activity of B. ammodytoides venom. Although, anti-rBamPLA2_1 antibodies were not able to recognize crotoxin, a PLA2 from the venom of a related but different viper genus, Crotalus durissus terrificus, they recognized PLA2s in other venoms from regional species of Bothrops.


Assuntos
Bothrops/genética , Clonagem Molecular , Venenos de Crotalídeos , DNA Complementar , Expressão Gênica , Fosfolipases A2 , Dobramento de Proteína , Animais , Venenos de Crotalídeos/biossíntese , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/imunologia , Escherichia coli/enzimologia , Escherichia coli/genética , Cavalos/imunologia , Fosfolipases A2/biossíntese , Fosfolipases A2/genética , Fosfolipases A2/imunologia , Fosfolipases A2/isolamento & purificação
4.
Int J Biol Macromol ; 118(Pt A): 311-319, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29920366

RESUMO

Herein we evaluated the genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (PLA2) from Bothrops pauloensis, on breast cancer cells. BnSP-6 was able to induce a higher cytotoxic and genotoxic activity in MDA-MB-231 cells, when compared to MCF10A (a non-tumorigenic breast cell line), suggesting that this protein presented a possible preference for cancer cells. BnSP-6 inhibited MDA-MB-231 proliferation at 24, 48 and 72 h. In addition, BnSP-6 induced significant increase in the percentage of TUNEL-positive cells, a marker of DNA damage. To obtain novel insight into the direct DNA damage interference in MDA-MB-231 survival and proliferation, we evaluated cell cycle progression. BnSP-6 produced a significant decrease in 2N (G1) and an increase in the G2/M phase and this capacity is likely related to the modulation of expression of progression cell cycle-associated genes (CCND1, CCNE1, CDC25A, CHEK2, E2F1, CDH-1 and NF-kB). Taken together, these results indicate that BnSP-6 induces DNA damage in breast cancer cells and is an attractive model for developing innovative therapeutic agents against breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Venenos de Crotalídeos/farmacologia , Fosfolipases A2/farmacologia , Venenos de Serpentes/enzimologia , Sequência de Aminoácidos , Animais , Bothrops/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Venenos de Crotalídeos/química , Venenos de Crotalídeos/genética , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Lisina/química , Fosfolipases A2/química , Fosfolipases A2/genética , Homologia de Sequência de Aminoácidos , Venenos de Serpentes/química
5.
Toxicon ; 140: 105-117, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107670

RESUMO

Snakebites are a serious health problem in tropical countries. In Brazil, the genus Bothrops (Viperidae family) causes most of the ophidic accidents, characterized by proteolysis and haemorrhage. Snake venoms are rich sources of toxins with great therapeutic and biotechnological potential and omics approaches is a valuable tool for identification of new bioactive components in the venom. In this study, we described the first transcriptome of the venom gland of Bothrops moojeni snake, using the next-generation sequencing with the Illumina platform. We identified: (i) 20 venom components classes, among which metalloproteases were the most expressed ones, followed by serine proteases and phospholipases; and (ii) the 33 full-length amino acid sequences of toxins that have never been reported before in B. moojeni venom, such as one cysteine-rich secretory protein (Moojin), two hyaluronidases (BmooHyal-1 and BmooHyal-2), and one three-finger toxin (Bmoo-3FTx). Altogether, the transcripts identified herein represent a starting point for the analysis of structure-function relationships of toxins, which shall help develop novel biological tools and therapeutic drugs.


Assuntos
Bothrops/genética , Venenos de Crotalídeos/química , Venenos de Crotalídeos/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Venenos de Crotalídeos/enzimologia , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Metaloproteases/genética , Metaloproteases/metabolismo , Fosfolipases/genética , Fosfolipases/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(12): E2524-E2532, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265084

RESUMO

Pain-producing animal venoms contain evolutionarily honed toxins that can be exploited to study and manipulate somatosensory and nociceptive signaling pathways. From a functional screen, we have identified a secreted phospholipase A2 (sPLA2)-like protein, BomoTx, from the Brazilian lancehead pit viper (Bothrops moojeni). BomoTx is closely related to a group of Lys49 myotoxins that have been shown to promote ATP release from myotubes through an unknown mechanism. Here we show that BomoTx excites a cohort of sensory neurons via ATP release and consequent activation of P2X2 and/or P2X3 purinergic receptors. We provide pharmacological and electrophysiological evidence to support pannexin hemichannels as downstream mediators of toxin-evoked ATP release. At the behavioral level, BomoTx elicits nonneurogenic inflammatory pain, thermal hyperalgesia, and mechanical allodynia, of which the latter is completely dependent on purinergic signaling. Thus, we reveal a role of regulated endogenous nucleotide release in nociception and provide a detailed mechanism of a pain-inducing Lys49 myotoxin from Bothrops species, which are responsible for the majority of snake-related deaths and injuries in Latin America.


Assuntos
Trifosfato de Adenosina/metabolismo , Bothrops/fisiologia , Fosfolipases A2 do Grupo II/toxicidade , Dor/metabolismo , Proteínas de Répteis/toxicidade , Células Receptoras Sensoriais/efeitos dos fármacos , Mordeduras de Serpentes/metabolismo , Toxinas Biológicas/toxicidade , Venenos de Víboras/enzimologia , Animais , Bothrops/genética , Brasil , Feminino , Fosfolipases A2 do Grupo II/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/etiologia , Dor/genética , Dor/parasitologia , Ratos , Receptores Purinérgicos/metabolismo , Proteínas de Répteis/genética , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Mordeduras de Serpentes/genética , Mordeduras de Serpentes/parasitologia , Venenos de Víboras/toxicidade
7.
BMC Mol Biol ; 17: 7, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944950

RESUMO

BACKGROUND: Bothrops colombiensis is a highly dangerous pit viper and responsible for over 70% of snakebites in Venezuela. Although the composition in B. colombiensis venom has been identified using a proteome analysis, the venom gland transcriptome is currently lacking. RESULTS: We constructed a cDNA library from the venom gland of B. colombiensis, and a set of 729 high quality expressed sequence tags (ESTs) was identified. A total number of 344 ESTs (47.2% of total ESTs) was related to toxins. The most abundant toxin transcripts were metalloproteinases (37.5%), phospholipases A2s (PLA2, 29.7%), and serine proteinases (11.9%). Minor toxin transcripts were linked to waprins (5.5%), C-type lectins (4.1%), ATPases (2.9%), cysteine-rich secretory proteins (CRISP, 2.3%), snake venom vascular endothelium growth factors (svVEGF, 2.3%), L-amino acid oxidases (2%), and other putative toxins (1.7%). While 160 ESTs (22% of total ESTs) coded for translation proteins, regulatory proteins, ribosomal proteins, elongation factors, release factors, metabolic proteins, and immune response proteins. Other proteins detected in the transcriptome (87 ESTs, 11.9% of total ESTs) were undescribed proteins with unknown functions. The remaining 138 (18.9%) cDNAs had no match with known GenBank accessions. CONCLUSION: This study represents the analysis of transcript expressions and provides a physical resource of unique genes for further study of gene function and the development of novel molecules for medical applications.


Assuntos
Bothrops/genética , Transcriptoma , Peçonhas/genética , Sequência de Aminoácidos , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta , Alinhamento de Sequência , Peçonhas/química , Peçonhas/classificação
8.
Mol Phylogenet Evol ; 71: 1-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24140980

RESUMO

Eight current species of snakes of the Bothrops neuwiedi group are widespread in South American open biomes from northeastern Brazil to southeastern Argentina. In this paper, 140 samples from 93 different localities were used to investigate species boundaries and to provide a hypothesis of phylogenetic relationships among the members of this group based on 1122bp of cyt b and ND4 from mitochondrial DNA and also investigate the patterns and processes occurring in the evolutionary history of the group. Combined data recovered the B. neuwiedi group as a highly supported monophyletic group in maximum parsimony, maximum likelihood and Bayesian analyses, as well as four major clades (Northeast I, Northeast II, East-West, West-South) highly-structured geographically. Monophyly was recovered only for B. pubescens. By contrast, B. diporus, B. lutzi, B. erythromelas, B. mattogrossensis, B. neuwiedi, B. marmoratus, and B. pauloensis, as currently defined on the basis of morphology, were polyphyletic. Sympatry, phenotypic intergrades and shared mtDNA haplotypes, mainly between B. marmoratus and B. pauloensis suggest recent introgressive hybridization and the possible occurrence of a narrow hybrid zone in Central Brazil. Our data suggest at least three candidate species: B. neuwiedi from Espinhaço Range, B. mattogrossensis (TM173) from Serra da Borda (MT) and B. diporus (PT3404) from Castro Barros, Argentina. Divergence estimates highlight the importance of Neogene events in the origin of B. neuwiedi group, and the origin of species and diversification of populations of the Neotropical fauna from open biomes during the Quaternary climate fluctuations. Data reported here represent a remarkable increase of the B. neuwiedi group sampling size, since representatives of all the current recognized species from a wide geographic range are included in this study, providing basic information for understanding the evolution and conservation of Neotropical biodiversity.


Assuntos
Bothrops/genética , Filogenia , Animais , DNA Mitocondrial/genética , Haplótipos , Hibridização Genética , Fenótipo , Análise de Sequência de DNA , América do Sul
9.
Toxicon ; 69: 65-74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23500066

RESUMO

Defensins are components of the vertebrate innate immune system; they comprise a diverse group of small cationic antimicrobial peptides. Among them, ß-defensins have a characteristic ß-sheet-rich fold plus six conserved cysteines with particular spacing and intramolecular bonds. They have been fully studied in mammals, but there is little information about them in snakes. Using a PCR approach, we described 13 ß-defensin-like sequences in Bothrops and Lachesis snakes. The genes are organized in three exons and two introns, with exception of B.atrox_defensinB_01 which has only two exons. They show high similarities in exon 1, intron 1 and intron 2, but exons 2 and 3 have undergone accelerated evolution. The theoretical translated sequences encode a pre-ß-defensin-like molecule with a conserved signal peptide and a mature peptide. The signal peptides are leucine-rich and the mature ß-defensin-like molecules have a size around 4.5 kDa, a net charge from +2 to +11, and the conserved cysteine motif. Phylogenetic analysis was done using maximum parsimony, maximum likelihood and Bayesian analyses, and all resulted in similar topologies with slight differences. The genus Bothrops displayed two separate lineages. The reconciliation of gene trees and species tree indicated eight to nine duplications and 23 to 29 extinctions depending on the gene tree used. Our results together with previously published data indicate that the ancestral ß-defensin-like gene may have three exons in vertebrates and that their evolution occurred according to a birth-and-death model.


Assuntos
Bothrops/genética , Crotalus/genética , Filogenia , Viperidae/genética , beta-Defensinas/genética , Sequência de Aminoácidos , Animais , Teorema de Bayes , Brasil , Clonagem Molecular , DNA/genética , DNA/isolamento & purificação , Éxons , Imunidade Inata , Íntrons , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
10.
BMC Genet ; 12: 94, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22044657

RESUMO

BACKGROUND: Snake venom metalloproteinases (SVMPs) are widely distributed in snake venoms and are versatile toxins, targeting many important elements involved in hemostasis, such as basement membrane proteins, clotting proteins, platelets, endothelial and inflammatory cells. The functional diversity of SVMPs is in part due to the structural organization of different combinations of catalytic, disintegrin, disintegrin-like and cysteine-rich domains, which categorizes SVMPs in 3 classes of precursor molecules (PI, PII and PIII) further divided in 11 subclasses, 6 of them belonging to PII group. This heterogeneity is currently correlated to genetic accelerated evolution and post-translational modifications. RESULTS: Thirty-one SVMP cDNAs were full length cloned from a single specimen of Bothrops neuwiedi snake, sequenced and grouped in eleven distinct sequences and further analyzed by cladistic analysis. Class P-I and class P-III sequences presented the expected tree topology for fibrinolytic and hemorrhagic SVMPs, respectively. In opposition, three distinct segregations were observed for class P-II sequences. P-IIb showed the typical segregation of class P-II SVMPs. However, P-IIa grouped with class P-I cDNAs presenting a 100% identity in the 365 bp at their 5' ends, suggesting post-transcription events for interclass recombination. In addition, catalytic domain of P-IIx sequences segregated with non-hemorrhagic class P-III SVMPs while their disintegrin domain grouped with other class P-II disintegrin domains suggesting independent evolution of catalytic and disintegrin domains. Complementary regions within cDNA sequences were noted and may participate in recombination either at DNA or RNA levels. Proteins predicted by these cDNAs show the main features of the correspondent classes of SVMP, but P-IIb and P-IIx included two additional cysteines cysteines at the C-termini of the disintegrin domains in positions not yet described. CONCLUSIONS: In B. neuwiedi venom gland, class P-II SVMPs were represented by three different types of transcripts that may have arisen by interclass recombination with P-I and P-III sequences after the divergence of the different classes of SVMPs. Our observations indicate that exon shuffling or post-transcriptional mechanisms may be driving these recombinations generating new functional possibilities for this complex group of snake toxins.


Assuntos
Bothrops/genética , Variação Genética , Metaloproteases/genética , Venenos de Serpentes/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico/genética , Clonagem Molecular , DNA Complementar , Metaloproteases/química , Metaloproteases/metabolismo , Filogenia , Processamento de Proteína Pós-Traducional , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA , Venenos de Serpentes/metabolismo
11.
Toxicon ; 58(1): 123-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21641921

RESUMO

Disintegrins and disintegrins-like proteins are able to inhibit platelet aggregation and integrin-mediated cell adhesion. The aim of this study was to produce one disintegrin-like cloned from Bothrops leucurus venom gland and to characterize it regarding biological activity. The recombinant protein was purified by one step procedure involving anion-exchange chromatography (DEAE-cellulose) and presented a molecular mass of 10.4 kDa. The purified protein was able to inhibit platelet aggregation induced by collagen (IC50 = 0.65 µM) and to inhibit growth of Ehrlich tumor implanted in mice by more than 50% after 7 days administration of 10 µg/day. No effects were observed upon adenosine 5'-diphosphate (ADP)-and arachidonic acid (AA)-induced platelet aggregation. The recombinant protein was recognized by an antibody specific for jararhagin one metalloproteinase isolated from Bothrops jararaca venom, and therefore it was named leucurogin. Anti-angiogenesis effect of leucurogin was evaluated by the sponge implant model. After 7 days administration leucurogin inhibited, in a dose dependent way, the vascularization process in the sponge. Leucurogin represents a new biotechnological tool to understand biological processes where disintegrins-like are involved and may help to characterize integrins that can be involved in development and progression of malignant cells.


Assuntos
Bothrops/metabolismo , Carcinoma de Ehrlich/tratamento farmacológico , Desintegrinas/farmacologia , Proteínas Recombinantes/farmacologia , Sequência de Aminoácidos , Inibidores da Angiogênese/genética , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Bothrops/genética , Clonagem Molecular , Venenos de Crotalídeos , Desintegrinas/química , Desintegrinas/genética , Desintegrinas/isolamento & purificação , Masculino , Metaloendopeptidases , Camundongos , Dados de Sequência Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/farmacologia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Veneno de Bothrops jararaca
12.
São Paulo; s.n; 2011. 227 p. ilus, tab, graf.
Tese em Português | LILACS | ID: lil-600600

RESUMO

Estudos prévios demonstraram que as atividades biológicas do veneno da serpente Bothrops jararaca sofrem significantes modificações ontogenéticas. Neste estudo é apresentada uma análise comparativa do proteoma, peptidoma e transcriptoma da glândula de veneno de filhotes e adultos de B. jararaca, correlacionando os resultados obtidos com algumas características funcionais dos venenos. Venenos de 694 filhotes de até duas semanas de idade e 110 adultos, provenientes do Estado de São Paulo foram extraídos e liofilizados para as análises proteômicas/peptidômicas e funcionais. O mRNA de glândulas de veneno de 20 filhotes e 10 adultos foi obtido para a contrução de bibliotecas de cDNA e a análise de Expressed Sequence Tag (ESTs). Demonstramos que a atividade hemorrágica é similar para os venenos de filhotes e adultos, enquanto que o veneno de adultos é discretamente mais letal para camundongos; entretanto, o veneno de filhotes mostrou-se extremamente mais letal para aves, uma característica que pode garantir proteção contra potenciais predadores nas fases iniciais de vida da espécie. A atividade coagulante do veneno de filhotes é cerca de 10 vezes mais alta que aquela verificada para o veneno de adultos e é atribuída sobretudo à atividade de metaloproteinases. Essas diferenças nas atividades funcionais se refletiram nos diferentes perfis verificados por eletroforese bidimensional e identificação de spots de proteínas por digestão tripsínica in-gel seguida de análise por cromatografia líquida acoplada à espectrometria de massas em tandem, zimografia com gelatina, imunocoloração utilizando anticorpos específicos anti-proteinases, e glicoproteínas com afinidade pela concanavalina -A. A comparação dos venenos por derivatização com tags isóbaros (iTRAQ) e a análise das ESTs revelaram diferenças claras entre os níveis de toxinas presentes nos venenos e as metaloproteinases foram a classe de toxinas mais expressa, além de serem as toxinas cujos perfis estruturais ...


Previous studies have demonstrated that the biological activities displayed by the venom of the snake Bothrops jararaca undergo a significant ontogenetic shift. In this investigation, we performed comparative proteomic, peptidomic and transcriptomic analyses of venoms and venom glands from newborn and adult specimens of B. jararaca and correlated the results with the evaluation of functional venom features. Venoms from 694 two-week old newborns and 110 adults from São Paulo state were milked and lyophilized for functional and proteomic/peptidomic analyses. Additionally, mRNA was obtained from the venom glands of 20 newborns and 10 adults and used for the construction of cDNA libraries and Expressed Sequence Tag (ESTs). We demonstrate that newborn and adult venoms have similar hemorrhagic activities, while the adult venom has a slightly higher lethal activity upon mice; however, the newborn venom is extremely more potent to kill chicks, a feature that might ensure protection against potential predators in early stages of B. jararaca life. Interestingly, the coagulant activity of the newborn venom upon human plasma is ten times higher than that of the adult venom and is contributed mainly by metalloproteinases. Differences in functional activities were clearly reflected in the venom different profiles of two-dimensional gel electrophoresis (2D-PAGE) and protein spot identification by in-gel trypsin digestion followed by liquid chromatography and tandem mass spectrometry (LC-MS/MS), gelatin zimography, immunostaining using specific anti-proteinase antibodies, and concanavalin A-binding proteins. The venom comparison by isobaric tag peptide labeling (iTRAQ) and ESTs analysis revealed clear differences in toxin levels. The metalloproteinases were detected as the toxin class most expressed in the venoms in addition to being the toxins whose structural profile most changed, as illustrated by the ratio P-III/P-I class being higher in newborn venoms. Sexual ...


Assuntos
Animais , Bothrops/genética , Proteômica/métodos , Variação Genética/genética , Venenos de Víboras/análise , Venenos de Víboras/genética , Venenos de Víboras/química , Eletroforese , Glicosilação , Espectrometria de Massas
13.
BMC Genomics ; 11: 605, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20977763

RESUMO

BACKGROUND: The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. RESULTS: A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A2 (5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. CONCLUSIONS: Bothrops alternatus venom gland contains the major toxin classes described for other Bothrops venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA2 agrees with the lower myotoxicity of this venom compared to other Bothrops species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.


Assuntos
Estruturas Animais/metabolismo , Bothrops/anatomia & histologia , Bothrops/genética , Venenos de Crotalídeos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequência de Aminoácidos , Animais , Elementos de DNA Transponíveis/genética , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Sequências Repetidas Invertidas/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Proteínas/classificação , Proteínas/genética , Proteínas/metabolismo , Proteômica , Alinhamento de Sequência
14.
Toxicon ; 55(7): 1222-35, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20060013

RESUMO

A combination of anti-bothropic and anti-crotalic sera has been reported to be more effective in neutralizing the effects of Bothrops jararacussu venom than anti-bothropic serum alone. The role of proteins from B. jararacussu venom in the horse immune response was evaluated via the analysis of cross-reactivity with homologous and heterologous sera. Many of the proteins in B. jararacussu venom were identified via 2D gel electrophoresis. Western blots revealed that anti-jararacussu showed higher reactivity to l-aminoxidase (LAOs) and snake venom metalloproteinase, (SVMPs) and weaker reactivity towards Snake venom serine proteases (SVSPs), PLA(2), C-type lectin and cysteine-rich proteins. Anti-jararaca preferentially recognized LAOs, SVMPs and SVSPs. Both of these sera failed to recognize low-molecular weight proteins. Anti-crotalic serum clearly recognized LAOs, C-type lectin, SVSP, cysteine-rich proteins, SVMP and Asp49-PLA(2). The cross-reactivity with anti-PLA(2) revealed the immunoreactivity of these antibodies to proteins with molecular masses in a range that is poorly recognized by other studied anti-sera. Our results suggest that the contribution of anti-crotalic serum to the neutralization of B. jararacussu by may be due to its cross-reactivity with proteins such as C-type lectins, SVSPs, Asp49-PLA(2). These results also reinforce the importance of neutralizing the highly toxic proteins inclusive those with low immunogenicity in commercial antivenom production to obtain a highly protective serum against snake venoms.


Assuntos
Bothrops/genética , Bothrops/imunologia , Venenos de Serpentes/genética , Venenos de Serpentes/imunologia , Animais , Especificidade de Anticorpos , Antivenenos/química , Antivenenos/imunologia , Reações Cruzadas , Venenos de Crotalídeos/química , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/isolamento & purificação , Interpretação Estatística de Dados , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Imunoquímica , Indicadores e Reagentes , Peso Molecular , Fosfolipases A2/química , Hidrolisados de Proteína/química , Proteômica , Coelhos , Venenos de Serpentes/enzimologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
J Proteome Res ; 9(1): 564-77, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19911849

RESUMO

Intraspecific snake venom variations have implications in the preparation of venom pools for the generation of antivenoms. The impact of such variation in the cross-reactivity of antivenoms against Bothrops asper venom was assessed by comparing two commercial and four experimental antivenoms. All antivenoms showed similar immunorecognition pattern toward the venoms from adult and neonate specimens. They completely immunodepleted most P-III snake venom metalloproteinases (SVMPs), l-amino acid oxidases, serine proteinases, DC fragments, cysteine-rich secretory proteins (CRISPs), and C-type lectin-like proteins, and partially immunodepleted medium-sized disintegrins, phospholipases A(2) (PLA(2)s), some serine proteinases, and P-I SVMPs. Although all antivenoms abrogated the lethal, hemorrhagic, coagulant, proteinase, and PLA(2) venoms activities, monospecific experimental antivenoms were more effective than the polyspecific experimental antivenom. In addition, the commercial antivenoms, produced in horses subjected to repeated immunization cycles, showed higher neutralization than experimental polyspecific antivenom, produced by a single round of immunization. Overall, a conspicuous pattern of cross-neutralization was evident for all effects by all antivenoms, and monospecific antivenoms raised against venom from the Caribbean population were effective against venom from the Pacific population, indicating that geographic variations in venom proteomes of B. asper from Costa Rica do not result in overt variations in immunological cross-reactivity between antivenoms.


Assuntos
Antivenenos/química , Bothrops/genética , Venenos de Crotalídeos/química , Fosfolipases A2 do Grupo II/química , Proteínas de Répteis/química , Sequência de Aminoácidos , Animais , Antivenenos/metabolismo , Western Blotting , Bothrops/metabolismo , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/metabolismo , Ensaio de Imunoadsorção Enzimática , Fosfolipases A2 do Grupo II/genética , Fosfolipases A2 do Grupo II/metabolismo , Dados de Sequência Molecular , Testes de Neutralização , Proteínas de Répteis/genética , Proteínas de Répteis/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-18804547

RESUMO

The aim of this work was to investigate the involvement of caspases in apoptosis induced by l-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAAO. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in "Asp and Glu" residues. It displays high specificity toward hydrophobic l-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H2O2 production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspases/metabolismo , L-Aminoácido Oxidase/toxicidade , Venenos de Serpentes/enzimologia , Venenos de Serpentes/toxicidade , Sequência de Aminoácidos , Animais , Bothrops/genética , Bothrops/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Células HL-60 , Humanos , Técnicas In Vitro , L-Aminoácido Oxidase/genética , L-Aminoácido Oxidase/isolamento & purificação , L-Aminoácido Oxidase/metabolismo , Dados de Sequência Molecular , Células PC12 , Fragmentos de Peptídeos/genética , Mapeamento de Peptídeos , Agregação Plaquetária/efeitos dos fármacos , Coelhos , Ratos , Venenos de Serpentes/química , Venenos de Serpentes/genética , Especificidade por Substrato
17.
J Mol Graph Model ; 26(1): 69-85, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17081786

RESUMO

Snake venom metalloproteases (SVMPs) embody zinc-dependent multidomain enzymes responsible for a relevant pathophysiology in envenomation, including local and systemic hemorrhage. The molecular features responsible for hemorrhagic potency of SVMPs have been associated with their multidomains structures which can target these proteins them to several receptors of different tissues and cellular types. BjussuMP-I, a SVMP isolated from the Bothrops jararacussu venom, has been characterized as a P-III hemorrhagic metalloprotease. The complete cDNA sequence of BjussuMP-I with 1641bp encodes open reading frames of 547 amino acid residues, which conserve the common domains of P-III high molecular weight hemorrhagic metalloproteases: (i) pre-pro-peptide, (ii) metalloprotease, (iii) disintegrin-like and (iv) rich cysteine domain. BjussuMP-I induced lyses in fibrin clots and inhibited collagen- and ADP-induced platelet aggregation. We are reporting, for the first time, the primary structure of an RGD-P-III class snake venom metalloprotease. A phylogenetic analysis of the BjussuMP-I metalloprotease/catalytic domain was performed to get new insights into the molecular evolution of the metalloproteases. A theoretical molecular model of this domain was built through folding recognition (threading) techniques and refined by molecular dynamics simulation. Then, the final BjussuMP-I catalytic domain model was compared to other SVMPs and Reprolysin family proteins in order to identify eventual structural differences, which could help to understand the biochemical activities of these enzymes. The presence of large hydrophobic areas and some conserved surface charge-positive residues were identified as important features of the SVMPs and other metalloproteases.


Assuntos
Bothrops/genética , Bothrops/metabolismo , Venenos de Crotalídeos/química , Venenos de Crotalídeos/genética , Metaloendopeptidases/química , Metaloendopeptidases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bothrops/classificação , Domínio Catalítico/genética , Simulação por Computador , Venenos de Crotalídeos/classificação , Venenos de Crotalídeos/toxicidade , DNA Complementar/genética , Fibrinólise/efeitos dos fármacos , Técnicas In Vitro , Metaloendopeptidases/classificação , Metaloendopeptidases/toxicidade , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Agregação Plaquetária/efeitos dos fármacos , Coelhos , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Termodinâmica
18.
Biochimie ; 88(12): 1947-59, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17140721

RESUMO

Bothrops snake venoms contain a variety of phospholipases (PLA(2)), some of which are myotoxic. In this work, we used reverse-phase HPLC and mass spectrometry to purify and sequence two PLA(2) from the venom of Bothrops insularis. The two enzymes, designated here as BinTX-I and BinTx-II, were acidic (pI 5.05 and 4.49) Asp49 PLA(2), with molecular masses of 13,975 and 13,788, respectively. The amino acid sequence and molecular mass of BinTX-I were identical to those of a PLA(2) previously isolated from this venom (PA2_BOTIN, SwissProt accession number ) while those of BinTX-II indicated that this was a new enzyme. Multiple sequence alignments with other Bothrops PLA(2) showed that the amino acids His48, Asp49, Tyr52 and Asp99, which are important for enzymatic activity, were fully conserved, as were the 14 cysteine residues involved in disulfide bond formation, in addition to various other residues. A phylogenetic analysis showed that BinTX-I and BinTX-II grouped with other acidic Asp49 PLA(2) from Bothrops venoms, and computer modeling indicated that these enzymes had the characteristic structure of bothropic PLA(2) that consisted of three alpha-helices, a beta-wing, a short helix and a calcium-binding loop. BinTX-I (30 microg/paw) produced mouse hind paw edema that was maximal after 1h compared to after 3h with venom (10 and 100 microg/paw); in both cases, the edema decreased after 6h. BinTX-1 and venom (40 microg/ml each) produced time-dependent neuromuscular blockade in chick biventer cervicis preparations that reached 40% and 95%, respectively, after 120 min. BinTX-I also produced muscle fiber damage and an elevation in CK, as also seen with venom. These results indicate that BinTX-I contributes to the neuromuscular activity and tissue damage caused by B. insularis venom in vitro and in vivo.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/química , Fosfolipases A/química , Sequência de Aminoácidos , Animais , Bothrops/genética , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/toxicidade , Edema/induzido quimicamente , Fosfolipases A2 do Grupo IV , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/toxicidade , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fosfolipases A/genética , Fosfolipases A/toxicidade , Filogenia , Estrutura Secundária de Proteína , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray
19.
Toxicon ; 44(5): 571-5, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15450933

RESUMO

Vascular endothelial growth factors (VEGFs) are among the most important angiogenic proteins found on vertebrates. In the last years, some reports of the occurrence of such proteins in snake venoms are rising the importance of this family of proteins as toxins, since they appear to be involved in many features of Viperidae envenoming, such as hypotension and venom spread through increase in vascular permeability. Here we describe the occurrence of snake venom VEGF in Bothrops erythromelas, a clinical important snake from Northeast of Brazil, through immunodetection and cloning of its cDNA and briefly provide an overview comparison of all recent described svVEGF sequences.


Assuntos
Bothrops/genética , Venenos de Serpentes/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Western Blotting , Brasil , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Humanos , Técnicas Imunológicas , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Venenos de Serpentes/metabolismo , Venenos de Serpentes/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Protein J ; 23(4): 273-85, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15214498

RESUMO

In order to better understand the function of acidic phospholipases A2 (PLA2s) from snake venoms, expressed sequence tags (ESTs) that code for acidic PLA2s were isolated from a cDNA library prepared from the poly(A)+ RNA of venomous glands of Bothrops jararacussu. The complete nucleotide sequence (366 bp), named BOJU-III, encodes the BthA-I-PLA2 precursor, which includes a signal peptide and the mature protein with 16 and 122 amino acid residues, respectively. Multiple comparison of both the nucleotide and respective deduced amino acid sequence with EST and protein sequences from databases revealed that the full-length cDNA identified (BOJU III--AY145836) is related to an acidic PLA2 sharing similarity, within the range 55-81%, with acidic phospholipases from snake venoms. Moreover, phylogenetic analysis of amino acid sequences of acidic PLA2s from several pit viper genera showed close evolutionary relationships among acidic PLA2s from Bothrops, Crotalus, and Trimeresurus. The molecular modeling showed structural similarity with other dimeric class II PLA2s from snake venoms. The native protein BthA-I-PLA2, a nontoxic acidic PLA2 directly isolated from Bothrops jararacussu snake venom, was purified and submitted to various bioassays. BthA-I-PLA2 displayed high catalytic activity and induced Ca2+-dependent liposome disruption. Edema induced by this PLA2 was inhibited by indomethacin and dexamethasone, thus suggesting involvement of the cyclo-oxygenase pathway. BthA-I-PLA2 showed anticoagulant activity upon human plasma and inhibited phospholipid-dependent platelet aggregation induced by collagen or ADP. In addition, it displayed bactericidal activity against Escherichia coli and Staphylococcus aureus and antitumoral effect upon breast adrenocarcinoma as well as upon human leukemia T and Erlich ascitic tumor. Following chemical modification with p-bromophenacyl bromide, total loss of the enzymatic and pharmacological activities were observed. This is the first report on the isolation and identification of a cDNA encoding a complete acidic PLA2 from Bothrops venom, exhibiting bactericidal and antitumoral effects.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bothrops/genética , Venenos de Crotalídeos/enzimologia , Precursores Enzimáticos/genética , Precursores Enzimáticos/farmacologia , Fosfolipases A/genética , Fosfolipases A/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antineoplásicos/química , Sequência de Bases , Bioensaio , Linhagem Celular Tumoral , Clonagem Molecular , DNA Complementar/genética , Precursores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Fosfolipases A2 do Grupo II , Humanos , Camundongos , Dados de Sequência Molecular , Fosfolipases A/química , Fosfolipases A2 , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Répteis , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA