Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Gene ; 923: 148588, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38763363

RESUMO

Polygalacturonase inhibitor protein (PGIP) restricts fungal growth and colonization and functions in plant immunity. Gray mold in cucumber is a common fungal disease caused by Botrytis cinerea, and is widespread and difficult to control in cucumber (Cucumis sativus L.) production. In this study, Cucumis sativus polygalacturonase-inhibiting protein 2 (CsPGIP2) was found to be upregulated in response to gray mold in cucumber. CsPGIP2 was detected in the endoplasmic reticulum, cell membrane, and cell wall after transient transformation of protoplasts and tobacco. A possible interaction between Botrytis cinerea polygalacturonase 3 (BcPG3) and CsPGIP2 was supported by protein interaction prediction and BiFC analysis. Transgenic Arabidopsis plants expressing CsPGIP2 were constructed and exhibited smaller areas of gray mold infection compared to wild type (WT) plants after simultaneous inoculation. Evans blue dye (EBD) confirmed greater damage for WT plants, with more intense dyeing than for the transgenic Arabidopsis. Interestingly, compared to WT, transgenic Arabidopsis exhibited higher superoxide dismutase (AtSOD1) expression, antioxidant enzyme activities, lignin content, net photosynthetic rate (Pn), and photochemical activity. Our results suggest that CsPGIP2 stimulates a variety of plant defense mechanisms to enhance transgenic Arabidopsis resistance against gray mold disease.


Assuntos
Arabidopsis , Botrytis , Cucumis sativus , Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Cucumis sativus/microbiologia , Cucumis sativus/genética , Cucumis sativus/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Botrytis/patogenicidade , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 118(5): 1500-1515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516730

RESUMO

Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nicotiana , Doenças das Plantas , Tylenchoidea , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/parasitologia , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/metabolismo , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Botrytis/fisiologia , Botrytis/patogenicidade , Cisteína Proteases/metabolismo , Cisteína Proteases/genética , Imunidade Vegetal , Interações Hospedeiro-Parasita , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
3.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639149

RESUMO

Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.


Assuntos
Arabidopsis/imunologia , Botrytis/patogenicidade , Resistência à Doença/imunologia , Endo-1,4-beta-Xilanases/metabolismo , Fusarium/enzimologia , Nicotiana/imunologia , Imunidade Vegetal , Pseudomonas syringae/patogenicidade , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/metabolismo , Nicotiana/microbiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-34520340

RESUMO

The fungal pathogen Botrytis cinerea is the causal agent of devastating gray mold diseases in many economically important fruits, vegetables, and flowers, leading to serious economic losses worldwide. In this study, a novel actinomycete NEAU-LD23T exhibiting antifungal activity against B. cinerea was isolated, and its taxonomic position was evaluated using a polyphasic approach. Based on the genotypic, phenotypic and chemotaxonomic data, it is concluded that the strain represents a novel species within the genus Streptomyces, for which the name Streptomyces botrytidirepellens sp. nov. is proposed. The type strain is NEAU-LD23T (=CCTCC AA 2019029T=DSM 109824T). In addition, strain NEAU-LD23T showed a strong antagonistic effect against B. cinerea (82.6±2.5%) and varying degrees of inhibition on nine other phytopathogenic fungi. Both cell-free filtrate and methanol extract of mycelia of strain NEAU-LD23T significantly inhibited mycelial growth of B. cinerea. To preliminarily explore the antifungal mechanisms, the genome of strain NEAU-LD23T was sequenced and analyzed. AntiSMASH analysis led to the identification of several gene clusters responsible for the biosynthesis of bioactive secondary metabolites with antifungal activity, including 9-methylstreptimidone, echosides, anisomycin, coelichelin and desferrioxamine B. Overall, this research provided us an excellent strain with considerable potential to use for biological control of tomato gray mold.


Assuntos
Antibiose , Botrytis/patogenicidade , Filogenia , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , Agentes de Controle Biológico , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/isolamento & purificação
5.
J Virol ; 95(17): e0026421, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132570

RESUMO

Uncharacterized viral genomes that encode circular replication-associated proteins of single-stranded DNA viruses have been discovered by metagenomics/metatranscriptomics approaches. Some of these novel viruses are classified in the newly formed family Genomoviridae. Here, we determined the host range of a novel genomovirus, SlaGemV-1, through the transfection of Sclerotinia sclerotiorum with infectious clones. Inoculating with the rescued virions, we further transfected Botrytis cinerea and Monilinia fructicola, two economically important members of the family Sclerotiniaceae, and Fusarium oxysporum. SlaGemV-1 causes hypovirulence in S. sclerotiorum, B. cinerea, and M. fructicola. SlaGemV-1 also replicates in Spodoptera frugiperda insect cells but not in Caenorhabditis elegans or plants. By expressing viral genes separately through site-specific integration, the replication protein alone was sufficient to cause debilitation. Our study is the first to demonstrate the reconstruction of a metagenomically discovered genomovirus without known hosts with the potential of inducing hypovirulence, and the infectious clone allows for studying mechanisms of genomovirus-host interactions that are conserved across genera. IMPORTANCE Little is known about the exact host range of widespread genomoviruses. The genome of soybean leaf-associated gemygorvirus-1 (SlaGemV-1) was originally assembled from a metagenomic/metatranscriptomic study without known hosts. Here, we rescued SlaGemV-1 and found that it could infect three important plant-pathogenic fungi and fall armyworm (S. frugiperda Sf9) insect cells but not a model nematode, C. elegans, or model plant species. Most importantly, SlaGemV-1 shows promise for inducing hypovirulence of the tested fungal species in the family Sclerotiniaceae, including Sclerotinia sclerotiorum, Botrytis cinerea, and Monilinia fructicola. The viral determinant of hypovirulence was further identified as replication initiation protein. As a proof of concept, we demonstrate that viromes discovered in plant metagenomes can be a valuable genetic resource when novel viruses are rescued and characterized for their host range.


Assuntos
Ascomicetos/virologia , Geminiviridae/isolamento & purificação , Especificidade de Hospedeiro , Metagenoma , Nicotiana/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Virulência , Animais , Ascomicetos/genética , Ascomicetos/patogenicidade , Botrytis/genética , Botrytis/patogenicidade , Botrytis/virologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/virologia , Fusarium/genética , Fusarium/patogenicidade , Fusarium/virologia , Geminiviridae/classificação , Geminiviridae/genética , Genoma Viral , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Nicotiana/microbiologia , Nicotiana/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion
6.
Nat Commun ; 12(1): 2166, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846308

RESUMO

Crh proteins catalyze crosslinking of chitin and glucan polymers in fungal cell walls. Here, we show that the BcCrh1 protein from the phytopathogenic fungus Botrytis cinerea acts as a cytoplasmic effector and elicitor of plant defense. BcCrh1 is localized in vacuoles and the endoplasmic reticulum during saprophytic growth. However, upon plant infection, the protein accumulates in infection cushions; it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids are sufficient for protein uptake and cell death induction, respectively. BcCrh1 mutant variants that are unable to dimerize lack transglycosylation activity, but are still able to induce plant cell death. Furthermore, Arabidopsis lines expressing the bccrh1 gene exhibit reduced sensitivity to B. cinerea, suggesting a potential use of the BcCrh1 protein in plant immunization against this necrotrophic pathogen.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Botrytis/enzimologia , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Glicosiltransferases/metabolismo , Células Vegetais/microbiologia , Agrobacterium/metabolismo , Botrytis/crescimento & desenvolvimento , Botrytis/patogenicidade , Morte Celular , Resistência à Doença , Proteínas Fúngicas/química , Doenças das Plantas/microbiologia , Imunidade Vegetal , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/microbiologia
7.
Mol Plant Pathol ; 22(6): 710-726, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33835616

RESUMO

Fus3/Kss1, also known as Pmk1 in several pathogenic fungi, is a component of the mitogen-activated protein kinase (MAPK) signalling pathway that functions as a regulator in fungal development, stress response, mating, and pathogenicity. Cytospora chrysosperma, a notorious woody plant-pathogenic fungus, causes canker disease in many species, and its Pmk1 homolog, CcPmk1, is required for fungal development and pathogenicity. However, the global regulation network of CcPmk1 is still unclear. In this study, we compared transcriptional analysis between a CcPmk1 deletion mutant and the wild type during the simulated infection process. A subset of transcription factor genes and putative effector genes were significantly down-regulated in the CcPmk1 deletion mutant, which might be important for fungal pathogenicity. Additionally, many tandem genes were found to be regulated by CcPmk1. Eleven out of 68 core secondary metabolism biosynthesis genes and several gene clusters were significantly down-regulated in the CcPmk1 deletion mutant. GO annotation of down-regulated genes showed that the ribosome biosynthesis-related processes were over-represented in the CcPmk1 deletion mutant. Comparison of the CcPmk1-regulated genes with the Pmk1-regulated genes from Magnaporthe oryzae revealed only a few overlapping regulated genes in both CcPmk1 and Pmk1, while the enrichment GO terms in the ribosome biosynthesis-related processes were also found. Subsequently, we calculated that in vitro feeding artificial small interference RNAs of CcPmk1 could silence the target gene, resulting in inhibited fungal growth. Furthermore, silencing of BcPmk1 in Botrytis cinerea with conserved CcPmk1 and BcPmk1 fragments could significantly compromise fungal virulence using the virus-induced gene silencing system in Nicotiana benthamiana. These results suggest that CcPmk1 functions as a regulator of pathogenicity and can potentially be designed as a target for broad-spectrum disease control, but unintended effects on nonpathogenic fungi need to be avoided.


Assuntos
Ascomicetos/genética , Botrytis/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Transdução de Sinais , Árvores/microbiologia , Ascomicetos/patogenicidade , Botrytis/patogenicidade , Regulação para Baixo , Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Doenças das Plantas/prevenção & controle , Nicotiana/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
8.
Plant J ; 105(5): 1309-1325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617106

RESUMO

Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.


Assuntos
Hemípteros/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Solanum/metabolismo , Animais , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Hemípteros/genética , Hemípteros/microbiologia , Sesquiterpenos Monocíclicos/toxicidade , NADPH-Ferri-Hemoproteína Redutase/genética , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/patogenicidade , Solanum/genética
9.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567582

RESUMO

Cyclophilin (Cyp) and Ca2+/calcineurin proteins are cellular components related to fungal morphogenesis and virulence; however, their roles in mediating the pathogenesis of Botrytis cinerea, the causative agent of gray mold on over 1000 plant species, remain largely unexplored. Here, we show that disruption of cyclophilin gene BcCYP2 did not impair the pathogen mycelial growth, osmotic and oxidative stress adaptation as well as cell wall integrity, but delayed conidial germination and germling development, altered conidial and sclerotial morphology, reduced infection cushion (IC) formation, sclerotial production and virulence. Exogenous cyclic adenosine monophosphate (cAMP) rescued the deficiency of IC formation of the ∆Bccyp2 mutants, and exogenous cyclosporine A (CsA), an inhibitor targeting cyclophilins, altered hyphal morphology and prevented host-cell penetration in the BcCYP2 harboring strains. Moreover, calcineurin-dependent (CND) genes are differentially expressed in strains losing BcCYP2 in the presence of CsA, suggesting that BcCyp2 functions in the upstream of cAMP- and Ca2+/calcineurin-dependent signaling pathways. Interestingly, during IC formation, expression of BcCYP2 is downregulated in a mutant losing BcJAR1, a gene encoding histone 3 lysine 4 (H3K4) demethylase that regulates fungal development and pathogenesis, in B. cinerea, implying that BcCyp2 functions under the control of BcJar1. Collectively, our findings provide new insights into cyclophilins mediating the pathogenesis of B. cinerea and potential targets for drug intervention for fungal diseases.


Assuntos
Botrytis/patogenicidade , Ciclofilinas/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Adaptação Fisiológica , Ciclofilinas/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Folhas de Planta/microbiologia , Virulência
10.
Molecules ; 25(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081360

RESUMO

The aim of this work was to evaluate the antifungal activity in vapor phase of thymol, p-cymene, and γ-terpinene, the red thyme essential oil compounds (RTOCs). The Minimum Inhibitory Concentration (MIC) of RTOCs was determined against postharvest spoilage fungi of the genera Botrytis, Penicillium, Alternaria, and Monilinia, by measuring the reduction of the fungal biomass after exposure for 72 h at 25 °C. Thymol showed the lowest MIC (7.0 µg/L), followed by γ-terpinene (28.4 µg/L) and p-cymene (40.0 µg/L). In the case of P. digitatum ITEM 9569, resistant to commercial RTO, a better evaluation of interactions among RTOCs was performed using the checkerboard assay and the calculation of the Fractional Inhibitory Concentration Index (FICI). During incubation, changes in the RTOCs concentration were measured by GC-MS analysis. A synergistic effect between thymol (0.013 ± 0.003 L/L) and γ-terpinene (0.990 ± 0.030 L/L) (FICI = 0.50) in binary combinations, and between p-cymene (0.700 ± 0.010 L/L) and γ-terpinene (0.290 ± 0.010 L/L) in presence of thymol (0.008 ± 0.001 L/L) (FICI = 0.19), in ternary combinations was found. The synergistic effect against the strain P. digitatum ITEM 9569 suggests that different combinations among RTOCs could be defined to control fungal strains causing different food spoilage phenomena.


Assuntos
Antifúngicos/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Thymus (Planta)/química , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Sinergismo Farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Monoterpenos/química , Monoterpenos/farmacologia , Óleos Voláteis/química , Penicillium/efeitos dos fármacos , Penicillium/patogenicidade , Óleos de Plantas/farmacologia
11.
mBio ; 11(4)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753496

RESUMO

The plant pathogen Botrytis cinerea is responsible for gray-mold disease, which infects a wide variety of species. The outcome of this host-pathogen interaction, a result of the interplay between plant defense and fungal virulence pathways, can be modulated by various environmental factors. Among these, iron availability and acquisition play a crucial role in diverse biological functions. How B. cinerea obtains iron, an essential micronutrient, during infection is unknown. We set out to determine the role of the reductive iron assimilation (RIA) system during B. cinerea infection. This system comprises the BcFET1 ferroxidase, which belongs to the multicopper oxidase (MCO) family of proteins, and the BcFTR1 membrane-bound iron permease. Gene knockout and complementation studies revealed that, compared to the wild type, the bcfet1 mutant displays delayed conidiation, iron-dependent sclerotium production, and significantly reduced whole-cell iron content. Remarkably, this mutant exhibited a hypervirulence phenotype, whereas the bcftr1 mutant presents normal virulence and unaffected whole-cell iron levels and developmental programs. Interestingly, while in iron-starved plants wild-type B. cinerea produced slightly reduced necrotic lesions, the hypervirulence phenotype of the bcfet1 mutant is no longer observed in iron-deprived plants. This suggests that B. cinerea bcfet1 knockout mutants require plant-derived iron to achieve larger necrotic lesions, whereas in planta analyses of reactive oxygen species (ROS) revealed increased ROS levels only for infections caused by the bcfet1 mutant. These results suggest that increased ROS production, under an iron sufficiency environment, at least partly underlie the observed infection phenotype in this mutant.IMPORTANCE The plant-pathogenic fungus B. cinerea causes enormous economic losses, estimated at anywhere between $10 billion and $100 billion worldwide, under both pre- and postharvest conditions. Here, we present the characterization of a loss-of-function mutant in a component involved in iron acquisition that displays hypervirulence. While in different microbial systems iron uptake mechanisms appear to be critical to achieve full pathogenic potential, we found that the absence of the ferroxidase that is part of the reductive iron assimilation system leads to hypervirulence in this fungus. This is an unusual and rather underrepresented phenotype, which can be modulated by iron levels in the plant and provides an unexpected link between iron acquisition, reactive oxygen species (ROS) production, and pathogenesis in the Botrytis-plant interaction.


Assuntos
Botrytis/genética , Botrytis/patogenicidade , Ceruloplasmina/metabolismo , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Botrytis/enzimologia , Ceruloplasmina/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Folhas de Planta/microbiologia , Esporos Fúngicos , Virulência/genética
12.
Gene ; 759: 145002, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32726608

RESUMO

Recent evidence has shown that microRNAs are transferred from one species to another through cross-species transmission and exhibit biological activities in the receptor. However, the cross-kingdom regulation of pathogen virulence by plant-derived miRNAs is rarely reported. This study investigated the regulatory role of novel tomato miRNA miR1001 in the growth and development of Botrytis cinerea. Results showed that miR1001 inhibited the virulence of B. cinerea-infected plants, and the inhibitory effect of miR1001/miR1001* was stronger than that of miR1001. Moreover, miR1001 exerted a significant inhibitory effect on the conidiospore germination of B. cinerea. Degradome-seq experiment showed that miR1001 can directly target the Bcin03g02170.1 and Bcin10g01400.1 genes, which respectively encode the ATP-dependent metallopeptidase and cysteine-type endopeptidase, in B. cinerea. The interactions of both targets with miR1001 were further confirmed by using transient co-expression in tobacco. Real-time RT-PCR analysis showed that the expression levels of the two target genes were significantly downregulated in B. cinerea with miR1001 treatment. Our findings provide new evidence into the coevolution of pathogens and host plants, as well as new directions for the use of plant-derived miRNAs to control pathogens.


Assuntos
Botrytis/patogenicidade , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , RNA de Plantas/metabolismo , Solanum lycopersicum/genética , Botrytis/fisiologia , Proteínas Fúngicas/metabolismo , Solanum lycopersicum/microbiologia , MicroRNAs/genética , RNA de Plantas/genética , Esporos Fúngicos/fisiologia
13.
PLoS One ; 15(7): e0235918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645090

RESUMO

Leaves of lettuce, pepper, tomato and grapevine plants grown in greenhouse conditions were exposed to UV-C light for either 60 s or 1 s, using a specific LEDs-based device, and wavelengths and energy were the same among different light treatments. Doses of UV-C light that both effectively stimulated plant defences and were innocuous were determined beforehand. Tomato plants and lettuce plants were inoculated with Botrytis cinerea, pepper plants with Phytophthora capsici, and grapevine with Plasmopara viticola. In some experiments we investigated the effect of a repetition of treatments over periods of several days. All plants were inoculated 48 h after exposure to the last UV-C treatment. Lesions on surfaces were measured up to 12 days after inoculation, depending on the experiment and the pathogen. The results confirmed that UV-C light stimulates plant resistance; they show that irradiation for one second is more effective than irradiation for 60 s, and that repetition of treatments is more effective than single light treatments. Moreover a systemic effect was observed in unexposed leaves that were close to exposed leaves. The mechanisms of perception and of the signalling and metabolic pathways triggered by flashes of UV-C light vs. 60 s irradiation exposures are briefly discussed, as well as the prospects for field use of UV-C flashes in viticulture and horticulture.


Assuntos
Lactuca/efeitos da radiação , Piper/efeitos da radiação , Solanum lycopersicum/efeitos da radiação , Raios Ultravioleta , Botrytis/patogenicidade , Clorofila/química , Lactuca/microbiologia , Solanum lycopersicum/microbiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Phytophthora/patogenicidade , Piper/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Folhas de Planta/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos
14.
Plant Physiol Biochem ; 154: 508-516, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32688295

RESUMO

The Early-Response to Dehydration six-like (ERD6l) is one of the largest families of sugar transporters in plants, however, is also one of the less studied with very few members characterized. In this work, we identified 18 members of the grapevine ERD6l family, analyzed their promoters and putative topology and additionally functionally characterized the member VvERD6l13. VvERD6l13 was strongly up-regulated in grape berries infected with Botrytis cinerea and Erysiphe necator in cv. Trincadeira and Carignan, respectively, suggesting an important role in grape berry-pathogen interaction, as we had hypothesized. In Cabernet Sauvignon Berry suspension cultured cells, VvERD6l13 was also up-regulated, by 4-fold, 48 h after elicitation with mycelium extract of B. cinerea. Besides being expressed in grape berries from various developmental stages, VvERD6l13 is also expressed in leaves, canes, flowers and, noticeably, in roots. Using tobacco and an hxt-null Saccharomyces cerevisiae strain as heterologous expression models, we showed that VvERD6l13 is localized at the plasma membrane and mediates the H+-dependent transport of sucrose (Km = 33 mM) thus confirming VvERD6l13 as a bona fide sugar transporter involved in sugar mobilization in grapevine and transcriptionally induced in response to biotic stress.


Assuntos
Botrytis/patogenicidade , Erysiphe/patogenicidade , Proteínas de Membrana Transportadoras/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Vitis/genética , Animais , Células Cultivadas , Frutas , Doenças das Plantas/microbiologia , Sacarose , Vitis/microbiologia
15.
Plant Physiol ; 183(2): 717-732, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32317359

RESUMO

Programmed cell death (PCD), a highly regulated feature of the plant immune response, involves multiple molecular players. Remorins (REMs) are plant-specific proteins with varied biological functions, but their function in PCD and plant defense remains largely unknown. Here, we report a role for remorin in disease resistance, immune response, and PCD regulation. Overexpression of tomato (Solanum lycopersicum) REMORIN1 (SlREM1) increased susceptibility of tomato to the necrotrophic fungus Botrytis cinerea and heterologous expression of this gene triggered cell death in Nicotiana benthamiana leaves. Further investigation indicated that amino acids 173 to 187 and phosphorylation of SlREM1 played key roles in SlREM1-triggered cell death. Intriguingly, multiple tomato REMs induced cell death in N benthamiana leaves. Yeast two-hybrid, split luciferase complementation, and coimmunoprecipitation assays all demonstrated that remorin proteins could form homo- and heterocomplexes. Using isobaric tags for relative and absolute quantitative proteomics, we identified that some proteins related to cell death regulation, as well as N benthamiana RESPIRATORY BURST OXIDASE HOMOLOG B (which is essential for reactive oxygen species production), were notably upregulated in SlREM1-expressing leaves. Heterologous expression of SlREM1 increased reactive oxygen species accumulation and triggered other cell death regulators. Our findings indicate that SlREM1 is a positive regulator of plant cell death and provide clues for understanding the PCD molecular regulatory network in plants.


Assuntos
Morte Celular/fisiologia , Proteínas de Plantas/metabolismo , Explosão Respiratória/fisiologia , Botrytis/patogenicidade , Morte Celular/genética , Resistência à Doença/genética , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
16.
Food Microbiol ; 88: 103411, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31997759

RESUMO

Fungal pathogens lead to severe quality deterioration and yield loss, making it urgent to explore efficient measures to control fungal diseases at the preharvest and postharvest stages of plants. Therefore, studies on natural substances targeting alternative antimicrobial targets have become hot spots of research. Here, we show that honokiol, a polyphenolic compound obtained from Magnolia officinalis, significantly suppressed mycelial growth and reduced virulence of B. cinerea on harvested fruit by inducing autophagic activities and apoptosis. Moreover, honokiol was capable of abolishing the mitochondrial membrane potential and inducing the accumulation of reactive oxygen species. Some key genes involved in pathogenicity on fruit were also found significantly down-regulated. In summary, honokiol was effective as an alternative agent targeting autophagic and apoptotic machineries to control the incidence of gray mold, which may further enrich the toolkit of crop managers for fighting postharvest diseases caused by this and similar fungi.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Lignanas/farmacologia , Botrytis/crescimento & desenvolvimento , Regulação para Baixo , Frutas/microbiologia , Genes Fúngicos , Magnolia/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Virulência
17.
New Phytol ; 225(2): 930-947, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529514

RESUMO

Histone 3 Lysine 4 (H3K4) demethylation is ubiquitous in organisms, however the roles of H3K4 demethylase JARID1(Jar1)/KDM5 in fungal development and pathogenesis remain largely unexplored. Here, we demonstrate that Jar1/KDM5 in Botrytis cinerea, the grey mould fungus, plays a crucial role in these processes. The BcJAR1 gene was deleted and its roles in fungal development and pathogenesis were investigated using approaches including genetics, molecular/cell biology, pathogenicity and transcriptomic profiling. BcJar1 regulates H3K4me3 and both H3K4me2 and H3K4me3 methylation levels during vegetative and pathogenic development, respectively. Loss of BcJAR1 impairs conidiation, appressorium formation and stress adaptation; abolishes infection cushion (IC) formation and virulence, but promotes sclerotium production in the ΔBcjar1 mutants. BcJar1 controls reactive oxygen species (ROS) production and proper assembly of Sep4, a core septin protein and virulence determinant, to initiate infection structure (IFS) formation and host penetration. Exogenous cAMP partially restored the mutant appressorium, but not IC, formation. BcJar1 orchestrates global expression of genes for ROS production, stress response, carbohydrate transmembrane transport, secondary metabolites, etc., which may be required for conidiation, IFS formation, host penetration and virulence of the pathogen. Our work systematically elucidates BcJar1 functions and provides novel insights into Jar1/KDM5-mediated H3K4 demethylation in regulating fungal development and pathogenesis.


Assuntos
Botrytis/genética , Botrytis/patogenicidade , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adaptação Fisiológica , Botrytis/crescimento & desenvolvimento , Parede Celular/metabolismo , Sequência Conservada , AMP Cíclico/metabolismo , Desmetilação , Regulação para Baixo/genética , Ontologia Genética , Modelos Biológicos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Oxirredução , Oxigênio/metabolismo , Esporos Fúngicos/metabolismo , Estresse Fisiológico , Virulência/genética
18.
Food Chem ; 310: 125901, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31816533

RESUMO

The mechanism of SlMYC2, involved in methyl jasmonate (MJ)-induced tomato fruit resistance to pathogens, was investigated. The data indicated that MJ treatment enhanced the accumulation of total phenolics and flavonoids, as well as individual phenolic acids and flavonoids, which might be caused by the increased phenylalanine ammonia-lyase and polyphenol oxidase activities, induced pathogenesis-related gene (PR) expression, ß-1,3-glucanase and chitinase activities, as well as α-tomatine, by inducing GLYCOALKALOID METABOLISM gene expression. These effects, induced by MJ, partly contributed to tomato fruit resistance to Botrytis cinerea. Nevertheless, the induction effects of MJ were almost counteracted by silence of SlMYC2, and the disease incidence and lesion diameter in MJ + SlMYC2-silenced fruit were higher than those in MJ-treated fruit. These observations are the first evidence that SlMYC2 plays vital roles in MJ-induced fruit resistance to Botrytis cinerea, possibly by regulating defence enzyme activities, SlPRs expression, α-tomatine, special phenolic acids and flavonoid compounds.


Assuntos
Acetatos/metabolismo , Botrytis/patogenicidade , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/microbiologia , Acetatos/farmacologia , Ciclopentanos/farmacologia , Resistência à Doença/fisiologia , Flavonoides/metabolismo , Frutas/efeitos dos fármacos , Frutas/microbiologia , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/fisiologia , Oxilipinas/farmacologia , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Tomatina/análogos & derivados , Tomatina/metabolismo
19.
Plant Physiol ; 182(2): 1066-1082, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31776183

RESUMO

Brassinosteroids (BRs) and jasmonates (JAs) regulate plant growth, development, and defense responses, but how these phytohormones mediate the growth-defense tradeoff is unclear. Here, we identified the Arabidopsis (Arabidopsis thaliana) dwarf at early stages1 (dwe1) mutant, which exhibits enhanced expression of defensin genes PLANT DEFENSIN1.2a (PDF1.2a) and PDF1.2b The dwe1 mutant showed increased resistance to herbivory by beet armyworms (Spodoptera exigua) and infection by botrytis (Botrytis cinerea). DWE1 encodes ROTUNDIFOLIA3, a cytochrome P450 protein essential for BR biosynthesis. The JA-inducible transcription of PDF1.2a and PDF1.2b was significantly reduced in the BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1) gain-of-function mutant bes1- D, which was highly susceptible to S. exigua and B. cinerea BES1 directly targeted the terminator regions of PDF1.2a/PDF1.2b and suppressed their expression. PDF1.2a overexpression diminished the enhanced susceptibility of bes1- D to B. cinerea but did not improve resistance of bes1- D to S. exigua In response to S. exigua herbivory, BES1 inhibited biosynthesis of the JA-induced insect defense-related metabolite indolic glucosinolate by interacting with transcription factors MYB DOMAIN PROTEIN34 (MYB34), MYB51, and MYB122 and suppressing expression of genes encoding CYTOCHROME P450 FAMILY79 SUBFAMILY B POLYPEPTIDE3 (CYP79B3) and UDP-GLUCOSYL TRANSFERASE 74B1 (UGT74B1). Thus, BR contributes to the growth-defense tradeoff by suppressing expression of defensin and glucosinolate biosynthesis genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Brassinosteroides/biossíntese , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Animais , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Botrytis/patogenicidade , Brassinosteroides/metabolismo , Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Glucosinolatos/biossíntese , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Oxilipinas/farmacologia , Doenças das Plantas/imunologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Estômatos de Plantas/genética , Estômatos de Plantas/microbiologia , Estômatos de Plantas/parasitologia , Estômatos de Plantas/ultraestrutura , Plantas Geneticamente Modificadas/metabolismo , Spodoptera/patogenicidade , Fatores de Transcrição/metabolismo
20.
Food Chem ; 310: 125827, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31734011

RESUMO

Pathogenic fungi cause enormous losses to fruits, and ethylene (ET) is associated with disease development in fruit crops. In this study, ET production of several fungal pathogens was enhanced by light, probably through the free radicals produced by photochemical reactions. Real-time gas analysis showed a sharp increase in ET production when fungal cultures were moved from dark-to-light (DTL). Similarly, light accelerated ET production in the Botrytis cinerea-infected Arabidopsis thaliana plants even when pyrazinamide, the inhibitor for plant ET synthesis, was applied, suggesting that the fungus is responsible for ET production during host invasion. Furthermore, a sharp increase in ET production after DTL transition was observed in B. cinerea-infected tomatoes and grapes, but not in healthy or physically wounded fruits. Taken together, these findings indicate that the DTL-induced ET is specific to the plant materials with fungal infection, and thus represents a candidate marker for non-destructive disease diagnosis of harvested fruits.


Assuntos
Etilenos/biossíntese , Microbiologia de Alimentos/métodos , Frutas/microbiologia , Fungos/patogenicidade , Doenças das Plantas/microbiologia , Arabidopsis/microbiologia , Botrytis/metabolismo , Botrytis/patogenicidade , Cromatografia Gasosa , Etilenos/análise , Interações Hospedeiro-Patógeno , Luz , Solanum lycopersicum/microbiologia , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA