Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38997084

RESUMO

The predicted global warming of surface waters can be challenging to aquatic ectotherms like freshwater mussels. Especially animals in northern temperate latitudes may face and physiologically acclimate to significant stress from seasonal temperature fluctuations. Na+/K+-ATPase enzyme is one of the key mechanisms that allow mussels to cope with changing water temperatures. This enzyme plays a major role in osmoregulation, energy control, ion balance, metabolite transport and electrical excitability. Here, we experimentally studied the effects of temperature on Na+/K+-ATPase activity of gills in two freshwater mussel species, Anodonta anatina and Unio tumidus. The study animals were acclimated to three ambient temperatures (+4, +14, +24 °C) and Na+/K+-ATPase activity was measured at those temperatures for each acclimation group. Both species had their highest gill Na+/K+-ATPase activity at the highest acclimation temperature. Na+/K+-ATPase activity of gills exhibited species-specific differences, and was higher in A. anatina than U. tumidus in all test groups at all test temperatures. Temperature dependence of Na+/K+-ATPase was confirmed in both species, being highest at temperatures between +4 and + 14 °C when Q10 values in the acclimation groups varied between 5.06 and 6.71. Our results underline the importance of Na+/K+-ATPase of gills for the freshwater mussels in warming waters. Because Na+/K+-ATPase is the driving force behind ciliary motion, our results also suggest that in warming waters A. anatina may be more tolerant at sustaining vigorous ciliary action (associated with elevated respiration rates and filter-feeding) than U. tumidus. Overall, our results indicate great flexibility of the mussel's ecophysiological characteristics as response to changing conditions.


Assuntos
Aclimatação , Anodonta , Água Doce , Brânquias , ATPase Trocadora de Sódio-Potássio , Especificidade da Espécie , Temperatura , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , Brânquias/enzimologia , Anodonta/enzimologia , Anodonta/fisiologia , Unio/metabolismo , Unio/enzimologia , Unio/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39004301

RESUMO

Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the ß-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-ß interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.


Assuntos
Sequência de Aminoácidos , Decápodes , Osmorregulação , Filogenia , ATPase Trocadora de Sódio-Potássio , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Osmorregulação/genética , Decápodes/genética , Decápodes/enzimologia , Decápodes/fisiologia , Evolução Molecular , Brânquias/metabolismo , Brânquias/enzimologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38740177

RESUMO

The Macrobrachium amazonicum complex is composed of at least the Macrobrachium amazonicum and Macrobrachium pantanalense species, with the latter described from specimens originally identified as part of an endemic M. amazonicum population in the Brazilian Pantanal region. While there may be a reproductive barrier between these two Macrobrachium species, both are phylogenetically close, with small genetic distance. However, there is currently no available biochemical information of Macrobrachium pantanalense (Na+, K+)-ATPase. Here, we report the kinetic characteristics of the gill (Na+, K+)-ATPase in two populations of M. pantanalense from Baiazinha Lagoon (Miranda, MS, Brazil) and Araguari River (Uberlândia, MG, Brazil), and compare them with Macrobrachium amazonicum populations from the Paraná-Paraguay River Basin. (Na+, K+)-ATPase activities were 67.9 ± 3.4 and 93.3 ± 4.1 nmol Pi min-1 mg-1 protein for the Baiazinha Lagoon and Araguari River populations, respectively. Two ATP hydrolyzing sites were observed for the Araguari River population while a single ATP site was observed for the Baiazinha Lagoon shrimps. Compared to the Araguari River population, a 3-fold greater apparent affinity for Mg2+ and Na+ was estimated for the Baiazinha Lagoon population, but no difference in K+ affinity and ouabain inhibition was seen. The kinetic differences observed in the gill (Na+, K+)-ATPase between the two populations of M. pantanalense, compared with those of various M. amazonicum populations, highlight interspecific divergence within the Macrobrachium genus, now examined from a biochemical perspective.


Assuntos
Brânquias , Palaemonidae , ATPase Trocadora de Sódio-Potássio , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Palaemonidae/genética , Palaemonidae/enzimologia , Brânquias/metabolismo , Brânquias/enzimologia , Brasil , Rios , Cinética
4.
J Comp Physiol B ; 194(2): 155-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459993

RESUMO

Many teleosts possess a unique set of respiratory characteristics allowing enhanced oxygen unloading to the tissues during stress. This system comprises three major components: highly pH sensitive haemoglobins (large Bohr and Root effects), rapid red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of membrane-bound plasma-accessible carbonic anhydrase (paCA; absence in the gills). The first two components have received considerable research effort; however, the evolutionary loss of branchial paCA has received little attention. In the current study, we investigated the availability of branchial membrane-bound CA, along with several other CA-related characteristics in species belonging to three basal actinopterygian groups: the Lepisosteiformes, Acipenseriformes and Polypteriformes to assess the earlier hypothesis that Root effect haemoglobins constrain branchial paCA availability. We present the first evidence suggesting branchial membrane-bound CA presence in a basal actinopterygian species: the Senegal bichir (Polypterus senegalus) and show that like the teleosts, white sturgeon (Acipenser transmontanus) and alligator gar (Atractosteus spatula) do not possess branchial membrane-bound CA. We discuss the varying respiratory strategies for these species and propose that branchial paCA may have been lost much earlier than previously thought, likely in relation to the changes in haemoglobin buffer capacity associated with the increasing magnitude of the Bohr effect. The findings described here represent an important advancement in our understanding of the evolution of the unique system of enhanced oxygen unloading thought to be present in most teleosts, a group that encompasses half of all vertebrates.


Assuntos
Anidrases Carbônicas , Peixes , Brânquias , Animais , Brânquias/enzimologia , Brânquias/metabolismo , Peixes/sangue , Peixes/fisiologia , Anidrases Carbônicas/metabolismo , Eritrócitos/enzimologia , Eritrócitos/metabolismo , Concentração de Íons de Hidrogênio
5.
Artigo em Inglês | MEDLINE | ID: mdl-33249144

RESUMO

The marble goby, Oxyeleotris marmorata, is a freshwater teleost, but can acclimate progressively to survive in seawater (salinity 30). As an obligatory air-breather, it can also survive long periods of emersion. Two isoforms of Na+/K+-ATPase (nka) α-subunit, nkaα1 and nkaα3, but not nkaα2, had been cloned from the gills of O. marmorata. The cDNA sequence of nkaα1 consisted of 3069 nucleotides, coding for 1023 amino acids (112.5 kDa), whereas nkaα3 consisted of 2976 nucleotides, coding for 992 amino acids (109.5 kDa). As only one form of branchial Nkaα1 was identified using molecular cloning in this study, O. marmorata lacks specific freshwater- and seawater-type Nkaα isoforms as demonstrated by some other euryhaline fish species. The nkaα1 transcript level was about 2.5-fold higher than that of nkaα3 in the gills of freshwater O. marmorata. During exposure to seawater, the branchial transcript level of nkaα1 increased significantly on day 1 (~3.3-fold) and day 6 (~2.6-fold). By contrast, the branchial transcript level of nkaα3 increased significantly on day 1 (~2.6-fold), but not on day 6, of seawater exposure. Six days of exposure to seawater also led to significant increases in protein abundances of Nkaα1 (~6.9-fold) and Nkaα3 (~2.8-fold) in the gills of O. marmorata. Hence, the mRNA and protein expressions of both nkaα1/Nkaα1 and nkaα3/Nkaα3 were up-regulated in O. marmorata during seawater acclimation. This could explain why Vmax increases but Km for Na+ and K+ remain unchanged in Nka extracted from the gills of O. marmorata acclimated to seawater as reported previously.


Assuntos
Aclimatação/fisiologia , Brânquias/enzimologia , Isoenzimas/metabolismo , Perciformes/metabolismo , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo , Sequência de Aminoácidos , Animais , Isoenzimas/química , Isoenzimas/genética , Osmorregulação , Perciformes/classificação , Perciformes/genética , Filogenia , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética
6.
PLoS One ; 15(7): e0236507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730281

RESUMO

In air-breathing fish a reduction of gill surface area reduces the danger of losing oxygen taken up in the air-breathing organ (ABO) to hypoxic water, but it also reduces the surface area available for ion exchange, so that ion regulation may at least in part be transferred to other organs, like the kidney or the gut. In the air-breathing Arapaima gigas, gill lamellae regress as development proceeds, and starting as a water-breathing embryo Arapaima turns into an obligate air-breathing fish with proceeding development, suggesting that ion regulation is shifted away from the gills as the fish grows. In Arapaima the kidney projects medially into the ABO and thus, probably a unique situation among fishes, is in close contact to the gas of the ABO. We therefore hypothesized that the kidney would be predestined to adopt an increased importance for ion homeostasis, because the elevated ATP turnover connected to ion transport can easily be met by aerobic metabolism based on the excellent oxygen supply directly from the ABO. We also hypothesized that in gill tissue the reduced ion regulatory activity should result in a reduced metabolic activity. High metabolic activity and exposure to high oxygen tensions are connected to the production of reactive oxygen species (ROS), therefore the tissues exposed to these conditions should have a high ROS defense capacity. Using in vitro studies, we assessed metabolic activity and ROS production of gill, kidney and ABO tissue, and determined the activity of ROS degrading enzymes in small (~ 5g, 2-3 weeks old) and larger (~ 670 g, 3-4 months old) A. gigas. Comparing the three tissues revealed that kidney tissue oxygen uptake by far exceeded the uptake measured in gill tissue or ABO. ROS production was particularly high in gill tissue, and all three tissues had a high capacity to degrade ROS. Gill tissue was characterized by high activities of enzymes involved in the glutathione pathway to degrade ROS. By contrast, the tissues of the ABO and in particular the kidney were characterized by high catalase activities, revealing different, tissue-specific strategies in ROS defense in this species. Overall the differences in the activity of cells taken from small and larger fish were not as pronounced as expected, while at the tissue level the metabolic activity of kidney cells by far exceeded the activity of ABO and gill cells.


Assuntos
Peixes/fisiologia , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Brasil , Catalase/metabolismo , Brânquias/enzimologia , Brânquias/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo
7.
Aquat Toxicol ; 225: 105527, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32599436

RESUMO

A diverse range of chemicals are used in agriculture to increase food production on a large scale, and among them is the use of pesticides such as chlorothalonil, a broad-spectrum fungicide used in the control of foliar fungal diseases. This study aimed to elucidate the effects of chlorothalonil on biochemical biomarkers of oxidative stress in tissues of the fish Danio rerio. To achieve this, animals were exposed for 4 and 7 days, to nominal concentrations of chlorothalonil at 0 µg/L (DMSO, 0.001%), 0.1 µg/L and 10 µg/L, and after the exposure period, the tissues (gills and liver) were removed for biochemical analysis. Antioxidant capacity against peroxyl radicals (ACAP) and enzyme activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutamate cysteine ligase (GCL), were evaluated in both tissues. In addition, the concentration of reactive oxygen species (ROS), reduced glutathione (GSH) and lipid peroxidation (LPO) levels were also analysed. A significant increase in ROS concentration, ACAP levels, GST and GCL activities and a significant reduction of LPO levels in gills exposed to the highest concentration were observed after 4 days. However, there was a significant reduction of ACAP and CAT activity, as well as a significant increase of GST activity and LPO levels in gills exposed to the lower concentration after 7 days. The liver was less affected, presenting a significant reduction in CAT activity and LPO levels after 4 days. However, a significant increase in SOD activity and LPO levels occurred after 7 days. These results indicate that chlorothalonil, after 4 days, caused activation of the antioxidant defence system in gills of animals exposed to the highest concentration. However, after 7 days, the lowest concentration of this compound caused oxidative stress in this same organ. Also, the results show that gills were more affected than the liver, probably because gills can be involved in chlorothalonil metabolisation. Therefore, it is possible that the liver could be exposed to lower chlorothalonil concentrations or less toxic metabolites due to the metabolism taking place in the gills.


Assuntos
Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Nitrilas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Catalase/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos/metabolismo , Superóxido Dismutase/metabolismo
8.
Fish Physiol Biochem ; 46(4): 1537-1547, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32383148

RESUMO

We assessed the acute and chronic effects of copper (Cu2+) on the antioxidant system in golden trout (Oncorhynchus mykiss aguabonita). The median lethal concentration after 96 h was determined as 0.24 mg L-1. We then used 0.06 (L) and 0.12 mg L-1 (H) Cu2+ to assess the responses of the antioxidant system to long-term exposure. The activities of superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, reduced glutathione, and oxidized glutathione were measured in gill and liver tissue after 24 and 72 h and 7, 14, 21, and 28 days of exposure, as well as after 16 days of recovery in Cu2+-free water. Cu2+ accumulated to a greater extent in the liver than in the gill (0.61-0.75 mg kg-1 vs. 24.0-69.9 mg kg-1 in L group and 0.98-1.47 mg kg-1 vs. 33.3-66.03 mg kg-1 in H group). In the gill, we observed increases in the activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as in the concentrations of reduced glutathione and oxidized glutathione. In the liver of L group, we observed increases in glutathione reductase activity and in the levels of reduced glutathione and oxidized glutathione. In L group, the activity of superoxide dismutase and reduced glutathione content increased after 24 h and then decreased over time, while catalase and glutathione reductase activity and oxidized glutathione levels increased. Data from the recovery period indicated that higher concentrations of Cu2+ may induce irreversible oxidative damage to the gill of golden trout.


Assuntos
Cobre/toxicidade , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oncorhynchus mykiss/metabolismo , Animais , Catalase/metabolismo , Cobre/metabolismo , Brânquias/enzimologia , Brânquias/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Dose Letal Mediana , Fígado/enzimologia , Fígado/metabolismo , Oxirredução/efeitos dos fármacos , Distribuição Aleatória , Superóxido Dismutase/metabolismo
9.
Aquat Toxicol ; 224: 105493, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32408004

RESUMO

Currently, the contamination of water with different insecticides like profenofos (PFF) is a critical concern in the aquatic ecosystem. There are limited studies available on the negative impacts of PFF on common carp fish (Cyprinus carpio L.). Therefore, the existing study was designed to investigate the effect of PFF exposure (1/10 of the 96 h-LC50) on the neurobehavior, growth performance, chemical composition, oxidative status, DNA damage, apoptotic status and histological indices of the brain and gill tissues. In addition, this study seeks to detect the ability of geranium essential oil (GEO) dietary supplementation to mitigate the negative impacts of PFF. Accordingly, a total of 120 healthy fish were divided into four groups: the control group, fed on basal diet only; the other groups were fed on a basal diet supplemented with 400 mg kg-1 GEO, basal diet and PFF in water (PFF group), and supplemented diet with GEO and PFF in water (GEO + PFF), respectively, for 60 days. The results showed that PFF significantly reduced fish growth performance, crude protein, and lipid contents. It caused several behavioral alterations including spiral movement, decreased activeness, and changes in feeding behavior. Moreover, PFF increased the DNA tail length, tail moment, and the level of 8-hydroxy-2'-deoxyguanosine. Histologically, PFF induced a wide array of circulatory, inflammatory, regressive and progressive alterations in the brain and gill tissues. PFF significantly downregulated Bcl-2 and upregulated caspase-3 immuno-expression in both organs. Further, it considerably depleted the antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase. The GEO supplementation did not reach the respective control values but markedly improved most of the behavioral, physical, biochemical, oxidative, apoptotic, and inflammatory markers, altered by PFF exposure. It also protected the gill and brain tissues from the branchial and encephalopathic effects of PFF. These findings suggest that GEO dietary supplements could be advantageous for mitigating PFF negative impacts and presenting a promising feed additive for common carp in aquaculture.


Assuntos
Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Carpas , Dano ao DNA/efeitos dos fármacos , Geranium/química , Óleos Voláteis/farmacologia , Organotiofosfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Aquicultura , Encéfalo/enzimologia , Encéfalo/patologia , Carpas/genética , Carpas/metabolismo , Dieta , Suplementos Nutricionais , Ecossistema , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Brânquias/patologia , Óleos Voláteis/isolamento & purificação
10.
Aquat Toxicol ; 218: 105358, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31805486

RESUMO

Mangroves are tidal wetlands that are often under strong anthropogenic pressures, despite the numerous ecosystem services they provide. Pollution from urban runoffs is one such threats, yet some mangroves are used as a bioremediation tool for wastewater (WW) treatment. This practice can impact mangrove crabs, which are key engineer species of the ecosystem. Using an experimental area with controlled WW releases, this study aimed to determine from an ecological and ecotoxicological perspective, the effects of WW on the red mangrove crab Neosarmatium africanum. Burrow density and salinity levels (used as a proxy of WW dispersion) were recorded, and a 3-week caging experiment was performed. Hemolymph osmolality, gill Na+/K+-ATPase (NKA) activity and gill redox balance were assessed in anterior and posterior gills of N. africanum. Burrow density decreased according to salinity decreases around the discharged area. Crabs from the impacted area had a lower osmoregulatory capacity despite gill NKA activity remaining undisturbed. The decrease of the superoxide dismutase activity indicates changes in redox metabolism. However, both catalase activity and oxidative damage remained unchanged in both areas but were higher in posterior gills. These results indicate that WW release may induce osmoregulatory and redox imbalances, potentially explaining the decrease in crab density. Based on these results we conclude that WW release should be carefully monitored as crabs are key players involved in the bioremediation process.


Assuntos
Braquiúros/efeitos dos fármacos , Monitoramento Ambiental/métodos , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Animais , Biodegradação Ambiental , Braquiúros/fisiologia , Ecossistema , França , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Hemolinfa/efeitos dos fármacos , Ilhas do Oceano Índico , Oxirredução , Salinidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Águas Residuárias/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-31669372

RESUMO

The razor clam Sinonovacula constricta is a commercial benthic bivalve, and burrows the deeper cave than the other buried benthic bivalves. Due to the little exchange of seawater and to anoxic conditions, S. constricta is exposed to considerable amounts of sulfide during low tide, but exhibits strong sulfide tolerance. Mitochondrial sulfide oxidation is a particular defense strategy against sulfide toxicity of sulfide-tolerant organisms, for which sulfide:quinone oxidoreductase (SQR) is the first key enzyme. In order to investigate the mechanism of sulfide tolerance in S. constricta, its SQR (designated as ScSQR), was cloned and characterized. The full-length cDNA of ScSQR was 3698 bp and encoded 443 amino acids. The deduced ScSQR protein contained conserved FAD-binding domains, two cysteine residues, two histidines, and one glutamic acid, which are the essential elements for the catalytic mechanism of SQR. Subcellular localization analysis by the TargetP 1.1 prediction and the Western blot confirmed that ScSQR was only located in the mitochondria. The response of ScSQR in the gill and liver of S. constricta were investigated during sulfide exposure (50, 150, and 300 µM sulfide) for 0, 3, 6, 12, 24, 48, 72, and 96 h by qRT-PCR. Moreover, the time-course expressions of ScSQR protein in the S. constricta gill were detected when exposed to 150 µM sulfide by Western blot. The expression level of ScSQR increased significantly and showed a time-dependent pattern. In addition, under sulfide stress, the expression level of the gill was higher than that of liver. Together, our results suggest that ScSQR may perform important roles in protecting cells from sulfide stress by participating in mitochondrial sulfide detoxification and providing high sulfide tolerance to S. constricta.


Assuntos
Bivalves/embriologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Quinona Redutases/biossíntese , Estresse Fisiológico/efeitos dos fármacos , Sulfetos/farmacologia , Animais , Brânquias/enzimologia , Fígado/enzimologia
12.
Aquat Toxicol ; 216: 105318, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31590133

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are among the main contaminants in aquatic environments. PAHs can affect organisms due to their carcinogenic, mutagenic and/or teratogenic characteristics. Depending on the PAHs, concentration, and period of exposure, biological damage can occur leading to histopathologic alterations. This study aimed to evaluate the molecular, biochemical and histological responses of the oyster Crassostrea gasar exposed to pyrene (0.25 and 0.5 µM) and fluorene (0.6 and 1.2 µM), after exposure for 24 and 96 h. Concentrations of both PAHs were quantified in the water and in oyster tissues. Transcript levels of phase I (CYP3475C1, CYP2-like, CYP2AU1 and CYP356A) and phase II (GSTO-like, MGST-like and SULT-like) biotransformation-related genes and the activities of ethoxyresorufin-O-deethylase (EROD), total and microsomal glutathione S-transferase (GST and MGST) were evaluated in the gills. Also, histological changes and localization of mRNA transcripts CYP2AU1 in gills, mantle, and digestive diverticula were evaluated. Both PAHs accumulated in oyster tissues. Pyrene half-life in water was significantly lower than fluorene. Transcript levels of all genes were higher in oysters exposed to of pyrene 0.5 µM (24 h). Only CYP2AU1 gene was up-regulated by fluorene exposure. EROD and MGST activities were higher in oysters exposed to pyrene. Tubular atrophy in the digestive diverticula and an increased number of mucous cells in the mantle were observed in oysters exposed to pyrene. CYP2AU1 transcripts were observed in different tissues of pyrene-exposed oysters. A significant correlation was observed between tubular atrophy and the CYP2AU1 hybridization signal in oysters exposed to pyrene, suggesting the sensibility of the species to this PAH. These results suggest an important role of biotransformation-related genes and enzymes and tissue alterations associated to pyrene metabolism but not fluorene. In addition, it reinforces the role of CYP2AU1 gene in the biotransformation process of PAHs in the gills of C. gasar.


Assuntos
Crassostrea/citologia , Crassostrea/genética , Fluorenos/toxicidade , Pirenos/toxicidade , Animais , Biotransformação/efeitos dos fármacos , Crassostrea/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistema Digestório/efeitos dos fármacos , Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/toxicidade
13.
Aquat Toxicol ; 216: 105315, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31561138

RESUMO

Blooms of cyanobacteria, a common event in eutrophic environments, result in the release of potentially toxic substances into the water. The cyanobacterium Radiocystis fernandoi produces microcystin (MC) and other peptides that may disturb homeostasis. This study evaluated the effect of intraperitoneal injections containing the crude extract (CE) of R. fernandoi strain R28 on the gills and kidneys of neotropical fish, Piaractus mesopotamicus, 3, 6 and 24 h post-injection. CE contained MC-RR, MC-YR and minor other oligopeptides. Plasma ions and the activities of the enzymes PP1 and PP2A, Na+/K+-ATPase (NKA), H+-ATPase (HA) and carbonic anhydrase (CA) were determined and morphological changes in both the gills and kidneys were characterized. Compared to controls, the concentration of Na+ within the plasma of P. mesopotamicus decreased after treatment with CE 3 h post treatment and increased after 24 h; the concentration of K+ decreased after 6 h. The activity of the endogenous PP1 and PP2A was unchanged in the gills and was inhibited in the kidneys 6 h after i.p. injection. In the gills, NKA activity increased after 3 h and decreased 6 h post i.p. exposure. Further, NKA activity did not differ from the controls 24-h post injection. In the kidneys, NKA, HA and CA activities were unaffected by treatment. The mitochondria-rich cell (MRC) density in the gills decreased after 3 h in the filament and 3 and 6 h in the lamellae and was restored to the control levels 24 h post-exposure. Filament epithelial hyperplasia and hypertrophy, lamellar atrophy and rupture of the lamellar epithelium were the most common effects of treatment in the gills. No histopathological changes occurred in the kidneys. This study demonstrates that a single dose of toxic CE from R. fernandoi can cause a transitory ion imbalance in P. mesopotamicus which is related to the changes in MRC levels and NKA activity. Ionic balance was recovered 24 h post i.p. injection, however, morphological changes that occurred in the gills took a longer amount of time to return to normal. To conclude, the effects of components contained within the CE of R. fernandoi may be harmful to P. mesopotamicus. In particular, the recovery of ionic regulation depends on MRC responses and histopathological changes produced by CE may affect gas exchange and other gill functions.


Assuntos
Caraciformes/fisiologia , Misturas Complexas/toxicidade , Cianobactérias/metabolismo , Exposição Ambiental , Osmorregulação , Animais , Caraciformes/sangue , Cloretos/sangue , Creatinina/sangue , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Brânquias/patologia , Íons/sangue , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osmorregulação/efeitos dos fármacos , Potássio/sangue , ATPases Translocadoras de Prótons/metabolismo , Sódio/sangue , ATPase Trocadora de Sódio-Potássio/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Fish Physiol Biochem ; 45(4): 1245-1260, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31190261

RESUMO

Anthropogenic use of water systems may cause temperature fluctuations between tributaries and large rivers for which physiological population related-effects on osmoregulatory capacity of Atlantic salmon are not well described. We simulated the downstream route in the case of the River Meuse basin to investigate the impact of a 5 °C temperature shift during smoltification on hypo-osmoregulatory capacities of smolts. Three temperature regimes were tested: control temperature-treatment (T1) without temperature shift, early (T2) or late (T3) temperature shift-treatment. Moreover, fish were subjected to seawater challenge during and after the downstream migration peak time. Two allochtonous strains were used: Loire-Allier (LA) and Cong (CG). Without temperature shift (T1), significant differences between the strains were noticed in the peak date and maximum activity of gill Na+/K+ATPase as well as in plasma sodium and potassium concentrations. For early (T2) and late (T3) temperature shift-treatments, gill Na+/K+ATPase activity, plasma osmolality and ion concentrations were negatively influenced in both strains. After salinity challenge, the highest osmolality was measured in smolts subjected to the temperature shift. Predictably circulating levels of GH and IGF-1 changed over the smolting period but they did not explain the observed modifications in hypo-osmoregulatory abilities whatever the population. The results show a negative impact of a temperature shift on hypo-osmoregulatory capacities of smolts regardless of population differences in smoltification timing under conditions without temperature shift. The resilience of such physiological impact was sustained at least for 1 week, comforting the role of high temperature in influencing the rate of changes occurring during smoltification. Therefore, favouring the downstream migration to help smolts reach the sea faster may mitigate the impact of a rapid temperature increase.


Assuntos
Migração Animal , Osmorregulação , Salmo salar/fisiologia , Temperatura , Animais , Proteínas de Peixes/metabolismo , Brânquias/enzimologia , Hormônio do Crescimento/sangue , Fator de Crescimento Insulin-Like I/análise , ATPase Trocadora de Sódio-Potássio/metabolismo , Especificidade da Espécie
15.
PLoS One ; 14(4): e0214236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964867

RESUMO

Chlorothalonil is a thiol-reactive antifoulant that disperses widely and has been found in the marine environment. However, there is limited information on the deleterious effects of chlorothalonil in marine mollusks. In this study, we evaluated the effects of chlorothalonil on the gill tissues of the Pacific oyster, Crassostrea gigas and the blue mussel, Mytilus edulis after exposure to different concentrations of chlorothalonil (0.1, 1, and 10 µg L-1) for 96 h. Following exposure to 1 and/or 10 µg L-1 of chlorothalonil, malondialdehyde (MDA) levels significantly increased in the gill tissues of C. gigas and M. edulis compared to that in the control group at 96 h. Similarly, glutathione (GSH) levels were significantly affected in both bivalves after chlorothalonil exposure. The chlorothalonil treatment caused a significant time- and concentration-dependent increase in the activity of enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR), in the antioxidant defense system. Furthermore, 10 µg L-1 of chlorothalonil resulted in significant inhibitions in the enzymatic activity of Na+/K+-ATPase and acetylcholinesterase (AChE). These results suggest that chlorothalonil induces potential oxidative stress and changes in osmoregulation and the cholinergic system in bivalve gill tissues. This information will be a useful reference for the potential toxicity of chlorothalonil in marine bivalves.


Assuntos
Acetilcolinesterase/metabolismo , Organismos Aquáticos/enzimologia , Crassostrea/enzimologia , Brânquias/enzimologia , Mytilus edulis/enzimologia , Nitrilas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Antioxidantes/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Crassostrea/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Glutationa/metabolismo , Malondialdeído/metabolismo , Mytilus edulis/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-30818018

RESUMO

Aeglidae anomuran crabs originated in the sea, but invaded and diversified in southern South American freshwater (FW) streams. We here aimed at examining their tolerance of increased salinity, after a long time of evolution in FW (~33 million years). Aegla schmitti were exposed to FW and dilute seawater of salinities 15, 20, and 25‰ for 1, 5 and 10 days. Mortality in 35‰ was also assessed. Hemolymph osmolality, Na+, K+, Cl-, and Mg2+ ions, and hydration levels of the abdominal muscle were assayed. The activities of the Carbonic Anhydrase (CA), Na+/K+-ATPase (NKA) and V-H+-ATPase (VHA) were also assayed in the gills. A. schmitti preserves osmoregulatory mechanisms of its marine ancestors. It is able to survive in high salinities (25‰) for at least 10 days. Mortality in 35‰ was of 56% after 1 day, and of 100% after 7 days. In 25‰, NaCl is apparently hyporegulated at all times, while hemolymph osmolality rises after 5 days. CA and NKA activities remained unchanged in all experimental conditions, while VHA activity decreased after 10 days in 25‰. Hemolymph NaCl data was compatible with either hyporegulation and/or putative influx of NaCl into cells for regulatory volume increase (RVI). Further studies should deepen the understanding of the roles of low permeabilities and saturation of high affinity uptake systems in truly FW decapods, in their responses to high salinities. Moreover, the fate of extracellular NaCl as secretion in true hypo-regulation and/or influx into cells for RVI should also be investigated.


Assuntos
Anidrases Carbônicas/metabolismo , Crustáceos/fisiologia , Brânquias/enzimologia , Osmorregulação , ATPases Translocadoras de Prótons/metabolismo , Salinidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Brânquias/fisiologia
17.
Aquat Toxicol ; 211: 1-10, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30901626

RESUMO

Flowback and produced water (FPW) is a complex, often brackish, solution formed during the process of hydraulic fracturing. Despite recent findings on the short-term toxicity of FPW on aquatic biota, longer-term impacts of FPW on fish have not yet been investigated and the mechanisms of chronic effects remain unknown. The aim of the present study was to observe the effect of a diluted FPW on ionoregulatory endpoints in the rainbow trout Oncorhynchus mykiss, following a 28-d sub-chronic exposure. A salinity-matched control solution (SW), recreating the salt content of the FPW, was used to differentiate the specific effect of the salts from the effects of the other FPW components (i.e. organics and metals). Overall, fish ionoregulation was not impacted by the chronic exposure. An accumulation of strontium (Sr) and bromide (Br) occurred in the plasma of the FPW-exposed fish only, however no change of plasma ions (Na, K, Cl, Ca, Mg) was observed in SW- or FPW-exposed fish. Similarly, exposures did not alter branchial activity of the osmoregulatory enzymes sodium/potassium ATPase and proton ATPase. Finally, FPW exposure resulted in modifications of gill morphology over time, with fish exposed to the fluid displaying shorter lamellae and increased interlamellar-cell mass. However, these effects were not distinct from morphological changes that also occurred in the gills of control groups.


Assuntos
Monitoramento Ambiental/métodos , Brânquias/efeitos dos fármacos , Fraturamento Hidráulico , Oncorhynchus mykiss/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Cloretos/sangue , Brânquias/enzimologia , Brânquias/patologia , Modelos Teóricos , Oncorhynchus mykiss/sangue , Osmose , Sódio/sangue , ATPase Trocadora de Sódio-Potássio/metabolismo , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
18.
Ecotoxicol Environ Saf ; 176: 178-185, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30927639

RESUMO

Diarrhetic shellfish poisoning (DSP) toxins are key shellfish toxins that cause diarrhea, vomiting and even tumor. Interestingly, bivalves such as Perna viridis have been reported to exhibit some resistances to alleviate toxic effects of DSP toxins in a species-specific manner. Nevertheless, the molecular mechanisms underlying the resistance phenomenon to DSP toxins, particularly the mechanistic role of CYP450 is scant despite its crucial role in detoxification. Here, we exposed P. viridis to Prorocentrum lima and examined the expression pattern of the CYP450 and our comprehensive analyses revealed that P. lima exposure resulted in unique expression pattern of key CYP450 genes in bivalves. Exposure to P. lima (2 × 105 cells/L) dramatically orchestrated the relative expression of CYP450 genes. CYP2D14-like mRNA was significantly down-regulated at 6 h in gill, but up-regulated at 2 h in digestive gland compared with control counterparts (p < 0.05), while CYP3A4 mRNA was increased at 12 h in gill. After exposure to P. lima at 2 × 106 cells/L, the expression of CYP3A4 mRNA was significantly increased in digestive gland at 2 h and 12 h, while CYP2D14-like was up-regulated at 6 h. Besides, CYP3L3 and CYP2C8 also exhibited differential expression. These data suggested that CYP3A4, CYP2D14-like, and even CYP3L3 and CYP2C8 might be involved in DSP toxins metabolism. Besides, provision of ketoconazole resulted in significant decrement of CYP3A4 in digestive gland at 2 h and 12 h, while the OA content significantly decreased at 2 h and 6 h compared to control group without ketoconazole. These findings indicated that ketoconazole could depress CYP3A4 activity in bivalves thereby altering the metabolic activities of DSP toxins in bivalves, and also provided novel insights into the mechanistic role of CYP3A4 on DSP toxins metabolism in bivalves.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Dinoflagellida/metabolismo , Toxinas Marinhas/toxicidade , Perna (Organismo)/enzimologia , Intoxicação por Frutos do Mar , Poluentes da Água/toxicidade , Animais , Sistema Enzimático do Citocromo P-450/genética , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Perna (Organismo)/efeitos dos fármacos , Alimentos Marinhos/análise
19.
Environ Toxicol Pharmacol ; 67: 61-65, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30716677

RESUMO

The induction of CYP1A activity (EROD) and protein expression was compared in liver and gills of rainbow trout from a stream polluted with crude oil, and through laboratory exposures to 1% and 5% of water accommodated fraction of the crude oil (WAF) for 1 and 4 days. Gills EROD increased 1.6-2.7-fold in fish from the polluted stream and during experiments, while liver EROD was induced only by 1% WAF at day 1 (1.5-fold). Contrastingly, crude oil pollution strongly induced both liver and gills CYP1A protein expression in the field (14-36-fold) and in experiments (4-25-fold). This highlights that crude oil induced CYP1A activity markedly in gills but only slightly or not at all in the liver, suggesting that differences between organ EROD activities are related to the modulation of CYP1A enzyme activity but not to the regulation at transcriptional or translational levels.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Água Doce , Brânquias/enzimologia , Fígado/enzimologia , Oncorhynchus mykiss , Poluição por Petróleo/efeitos adversos
20.
Arch Environ Contam Toxicol ; 76(3): 469-482, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30607445

RESUMO

The present study delineate the various biochemical and histopathological tool to evaluate as strong biomarker in the field condition for detection of the least and maximize level of pollution and contamination. We have collected Labeo rohita from 13 different sites from East Kolkata wetland to determine biochemical and histopathological status to analyse metal contamination in the significant biological hot spot EKW. The biochemical marker as antioxidative status, i.e., catalase, superoxide dismutase (SOD), and glutathione-S-transferase (GST) in liver and gill, were remarkably higher (p < 0.01) at some of the sampling sites, but catalase in brain, SOD in kidney, GST in brain and kidney, and neurotransmitter as acetylcholine esterase (AChE) in brain were not significant (p > 0.05) among the sampling sites. The glycolytic enzymes, such as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) in liver, gill, and muscle, and protein metabolic enzymes, such as alanine amino transferase (ALT) and aspartate amino transferase (AST) in liver, gill, muscle, and kidney, were noticeably higher (p < 0.01) at some of the sampling sites. The histopathology of the liver and gill were altered at different sampling sites, such as blood congestion, leucocyte infiltration with parenchymal vacuolisation, nucleus with blood vessels, hepatocytes granular degeneration, haemorrhage, karyorrhexis, shrink nucleus, and pyknotic nuclei in liver. In the gill, structural changes, such as complete destruction and shortening of secondary gill lamellae, blood vessel in gill arch, curling of secondary gill lamellae, aneurism in gill lamellae, and neoplasia, were observed. Most of the metals were found within the safe limit all along the 13 sampling sites, indicating that fishes are safe for the consumption. Based on our finding, we could recommend that a rational application of biochemical profiles, such as oxidative and metabolic stress parameters, including histopathology to be used as biomarkers for biomonitoring the metal contamination in the aquatic environment.


Assuntos
Monitoramento Ambiental/métodos , Peixes/metabolismo , Metais/análise , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/análise , Áreas Alagadas , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Brânquias/enzimologia , Brânquias/patologia , Índia , Fígado/enzimologia , Fígado/patologia , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA