Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Thyroid ; 31(2): 315-326, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32762296

RESUMO

Background: Mutations of thyroid hormone receptor α1 (TRα1) cause resistance to thyroid hormone (RTHα). Patients exhibit growth retardation, delayed bone development, anemia, and bradycardia. By using mouse models of RTHα, much has been learned about the molecular actions of TRα1 mutants that underlie these abnormalities in adults. Using zebrafish models of RTHα that we have recently created, we aimed to understand how TRα1 mutants affect the heart function during this period. Methods: In contrast to human and mice, the thra gene is duplicated, thraa and thrab, in zebrafish. Using CRISPR/Cas9-mediated targeted mutagenesis, we created C-terminal mutations in each of two duplicated thra genes in zebrafish (thraa 8-bp insertion or thrab 1-bp insertion mutations). We recently showed that these mutant fish faithfully recapitulated growth retardation as found in patients and thra mutant mice. In the present study, we used histological analysis, gene expression profiles, confocal fluorescence, and transmission electron microscopy (TEM) to comprehensively analyze the phenotypic characteristics of mutant fish heart during development. Results: We found both a dilated atrium and an abnormally shaped ventricle in adult mutant fish. The retention of red blood cells in the two abnormal heart chambers, and the decreased circulating blood speed and reduced expression of contractile genes indicated weakened contractility in the heart of mutant fish. These abnormalities were detected in mutant fish as early as 35 days postfertilization (juveniles). Furthermore, the expression of genes associated with the sarcomere assembly was suppressed in the heart of mutant fish, resulting in abnormalities of sarcomere organization as revealed by TEM, suggesting that the abnormal sarcomere organization could underlie the bradycardia exhibited in mutant fish. Conclusions: Using a zebrafish model of RTHα, the present study demonstrated for the first time that TRα1 mutants could act to cause abnormal heart structure, weaken contractility, and disrupt sarcomere organization that affect heart functions. These findings provide new insights into the bradycardia found in RTHα patients.


Assuntos
Bradicardia/genética , Cardiopatias Congênitas/genética , Mutação , Receptores alfa dos Hormônios Tireóideos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Bradicardia/metabolismo , Bradicardia/patologia , Bradicardia/fisiopatologia , Predisposição Genética para Doença , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Função Ventricular , Peixe-Zebra/anormalidades , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
Exp Physiol ; 103(10): 1302-1308, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30070742

RESUMO

NEW FINDINGS: What is the central question of this study? How do gastric stretch and gastric cooling stimuli affect cardiac autonomic control? What is the main finding and its importance? Gastric stretch causes an increase in cardiac sympathetic activity. Stretch combined with cold stimulation result in an elimination of the sympathetic response to stretch and an increase in cardiac parasympathetic activity, in turn resulting in a reduction in heart rate. Gastric cold stimulation causes a shift in sympathovagal balance towards parasympathetic dominance. The cold-induced bradycardia has the potential to decrease cardiac workload, which might be significant in individuals with cardiovascular pathologies. ABSTRACT: Gastric distension increases blood pressure and heart rate in young, healthy humans, but little is known about the effect of gastric stretch combined with cooling. We used a randomized crossover study to assess the cardiovascular responses to drinking 300 ml of ispaghula husk solution at either 6 or 37°C in nine healthy humans (age 24.08 ± 9.36 years) to establish the effect of gastric stretch with and without cooling. The effect of consuming peppermint oil capsules to activate cold thermoreceptors was also investigated. The ECG, respiratory movements and continuous blood pressure were recorded during a 5 min baseline period, followed by a 115 min post-drink period, during which 5 min epochs of data were recorded. Cardiac autonomic activity was assessed using time and frequency domain analyses of respiratory sinus arrhythmia to quantify parasympathetic autonomic activity, and corrected QT (QTc) interval analysis to quantify sympathetic autonomic activity. Gastric stretch only caused a significant reduction in QTc interval lasting up to 15 min, with a concomitant but non-significant increase in heart rate, indicating an increased sympathetic cardiac tone. The additional effect of gastric cold stimulation was significantly to reduce heart rate for up to 15 min, elevate indicators of cardiac parasympathetic tone and eliminate the reduction in QTc interval seen with gastric stretch only. Stimulation of gastric cold thermoreceptors with menthol also caused a significant reduction in heart rate and concomitant increase in the root mean square of successive differences. These findings indicate that gastric cold stimulation causes a shift in the sympathovagal balance of cardiac control towards a more parasympathetic dominant pattern.


Assuntos
Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Mentol/administração & dosagem , Adulto , Sistema Nervoso Autônomo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bradicardia/metabolismo , Temperatura Baixa , Estudos Cross-Over , Eletrocardiografia/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Mentha piperita , Óleos de Plantas/administração & dosagem , Psyllium/administração & dosagem , Termorreceptores/metabolismo , Adulto Jovem
3.
Respir Res ; 19(1): 142, 2018 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-30055609

RESUMO

Adenosine 5'-triphiosphate (ATP) is released from cells under physiologic and pathophysiologic conditions. Extracellular ATP acts as an autocrine and paracrine agent affecting various cell types by activating cell surface P2 receptors (P2R), which include trans-cell membrane cationic channels, P2XR, and G protein coupled receptors, P2YR. We have previously shown that ATP stimulates vagal afferent nerve terminals in the lungs by activating P2X2/3R. This action could lead to bronchoconstriction, cough and the local release of pro-inflammatory neuropeptides. In addition, ATP markedly enhances the IgE-dependent histamine release from human lung mast cells. Thus, we have proposed for the first time that extracellular ATP plays a mechanistic role in pulmonary pathophysiology in general and chronic obstructive pulmonary disease (COPD), and acute bronchoconstriction in asthma in particular. The present review examines whether ATP could also play a role in bradycardia and syncope in a subset of patients with pulmonary embolism.


Assuntos
Trifosfato de Adenosina/fisiologia , Bradicardia/metabolismo , Ativação Plaquetária/fisiologia , Embolia Pulmonar/metabolismo , Síncope/metabolismo , Animais , Bradicardia/diagnóstico , Bradicardia/epidemiologia , Humanos , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/epidemiologia , Síncope/diagnóstico , Síncope/epidemiologia
4.
Int Heart J ; 59(3): 601-606, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29628472

RESUMO

A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 103 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.


Assuntos
Relógios Biológicos/fisiologia , Bradicardia/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Bradicardia/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Imunofluorescência , Frequência Cardíaca/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Coelhos , Ratos , Telemetria , Transfecção
5.
Neuropharmacology ; 131: 403-413, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29339292

RESUMO

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is the most frequent adverse effect of pharmacological cancer treatments. The occurrence of neuropathy prevents the administration of fully-effective drug regimen, affects negatively the quality of life of patients, and may lead to therapy discontinuation. CIPN is currently treated with anticonvulsants, antidepressants, opioids and non-opioid analgesics, all of which are flawed by insufficient anti-hyperalgesic efficacy or addictive potential. Understandably, developing new drugs targeting CIPN-specific pathogenic mechanisms would dramatically improve efficacy and tolerability of anti-neuropathic therapies. Neuropathies are associated to aberrant excitability of DRG neurons due to the alteration in the expression or function of a variety of ion channels. In this regard, Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels are overexpressed in inflammatory and neuropathic pain states, and HCN blockers have been shown to reduce neuronal excitability and to ameliorate painful states in animal models. However, HCN channels are critical in cardiac action potential, and HCN blockers used so far in pre-clinical models do not discriminate between cardiac and non-cardiac HCN isoforms. In this work, we show an HCN current gain of function in DRG neurons from oxaliplatin-treated rats. Biochemically, we observed a downregulation of HCN2 expression and an upregulation of the HCN regulatory beta-subunit MirP1. Finally, we report the efficacy of the selective HCN1 inhibitor MEL57A in reducing hyperalgesia and allodynia in oxaliplatin-treated rats without cardiac effects. In conclusion, this study strengthens the evidence for a disease-specific role of HCN1 in CIPN, and proposes HCN1-selective inhibitors as new-generation pain medications with the desired efficacy and safety profile.


Assuntos
Antineoplásicos/toxicidade , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Compostos Organoplatínicos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Bloqueadores dos Canais de Potássio/farmacologia , Analgésicos/farmacologia , Animais , Benzazepinas/farmacologia , Bradicardia/induzido quimicamente , Bradicardia/metabolismo , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Frequência Cardíaca/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Masculino , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Neuralgia/patologia , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Oxaliplatina , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Canais de Potássio/metabolismo , Ratos Wistar
6.
Molecules ; 22(7)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726742

RESUMO

Nearly 90 years ago, Drury and Szent-Györgyi revealed that adenosine produced profound hypotension and bradycardia, and it affected kidney function in mammals [1]. [...].


Assuntos
Receptores Purinérgicos P1/metabolismo , Animais , Bradicardia/metabolismo , Humanos , Hipotensão/metabolismo
8.
FASEB J ; 31(10): 4325-4334, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28615326

RESUMO

Maternal cigarette smoke, including prenatal nicotinic exposure (PNE), is responsible for sudden infant death syndrome (SIDS). The fatal events of SIDS are characterized by severe bradycardia and life-threatening apneas. Although activation of transient receptor potential vanilloid 1 (TRPV1) of superior laryngeal C fibers (SLCFs) could induce bradycardia and apnea and has been implicated in SIDS pathogenesis, how PNE affects the SLCF-mediated cardiorespiratory responses remains unexplored. Here, we tested the hypothesis that PNE would aggravate the SLCF-mediated apnea and bradycardia via up-regulating TRPV1 expression and excitation of laryngeal C neurons in the nodose/jugular (N/J) ganglia. To this end, we compared the following outcomes between control and PNE rat pups at postnatal days 11-14: 1) the cardiorespiratory responses to intralaryngeal application of capsaicin (10 µg/ml, 50 µl), a selective stimulant for TRPV1 receptors, in anesthetized preparation; 2) immunoreactivity and mRNA of TRPV1 receptors of laryngeal sensory C neurons in the N/J ganglia retrogradely traced by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; and 3) TRPV1 currents and electrophysiological characteristics of these neurons by using whole-cell patch-clamp technique in vitro Our results showed that PNE markedly prolonged the apneic response and exacerbated the bradycardic response to intralaryngeal perfusion of capsaicin, which was associated with up-regulation of TRPV1 expression in laryngeal C neurons. In addition, PNE increased the TRPV1 currents, depressed the slow delayed rectifier potassium currents, and increased the resting membrane potential of these neurons. Our results suggest that PNE is capable of aggravating the SLCF-mediated apnea and bradycardia through TRPV1 sensitization and neuronal excitation, which may contribute to the pathogenesis of SIDS.-Gao, X., Zhao, L., Zhuang, J., Zang, N., Xu, F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation.


Assuntos
Apneia/metabolismo , Bradicardia/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Nicotina/farmacologia , Células Receptoras Sensoriais/metabolismo , Fumaça/efeitos adversos , Canais de Cátion TRPV/metabolismo , Animais , Animais Recém-Nascidos , Apneia/induzido quimicamente , Bradicardia/induzido quimicamente , Capsaicina/farmacologia , Modelos Animais de Doenças , Técnicas de Patch-Clamp/métodos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos
9.
Brain Res ; 1657: 297-303, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28043808

RESUMO

The pituitary adenylyl cyclase-activating polypeptide (PACAP) and its G protein-coupled receptors, PAC1, VPAC1 and VPAC2 form a system involved in a variety of biological processes. Although some sympathetic stimulatory effects of this system have been reported, its central cardiovascular regulatory properties are poorly characterized. VPAC1 receptors are expressed in the nucleus ambiguus (nAmb), a key center controlling cardiac parasympathetic tone. In this study, we report that selective VPAC1 activation in rhodamine-labeled cardiac vagal preganglionic neurons of the rat nAmb produces inositol 1,4,5-trisphosphate receptor-mediated Ca2+ mobilization, membrane depolarization and activation of P/Q-type Ca2+ channels. In vivo, this pathway converges onto transient reduction in heart rate of conscious rats. Therefore we demonstrate a VPAC1-dependent mechanism in the central parasympathetic regulation of the heart rate, adding to the complexity of PACAP-mediated cardiovascular modulation.


Assuntos
Bulbo/metabolismo , Neurônios/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Bradicardia/induzido quimicamente , Bradicardia/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Bulbo/citologia , Bulbo/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Neurônios/efeitos dos fármacos , Parassimpatolíticos/farmacologia , Ratos Sprague-Dawley , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/agonistas , Nervo Vago/citologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 312(1): H106-H127, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836893

RESUMO

Early afterdepolarization (EAD) is known as a cause of ventricular arrhythmias in long QT syndromes. We theoretically investigated how the rapid (IKr) and slow (IKs) components of delayed-rectifier K+ channel currents, L-type Ca2+ channel current (ICaL), Na+/Ca2+ exchanger current (INCX), Na+-K+ pump current (INaK), intracellular Ca2+ (Cai) handling via sarcoplasmic reticulum (SR), and intracellular Na+ concentration (Nai) contribute to initiation, termination, and modulation of phase-2 EADs, using two human ventricular myocyte models. Bifurcation structures of dynamical behaviors in model cells were explored by calculating equilibrium points, limit cycles (LCs), and bifurcation points as functions of parameters. EADs were reproduced by numerical simulations. The results are summarized as follows: 1) decreasing IKs and/or IKr or increasing ICaL led to EAD generation, to which mid-myocardial cell models were especially susceptible; the parameter regions of EADs overlapped the regions of stable LCs. 2) Two types of EADs (termination mechanisms), IKs activation-dependent and ICaL inactivation-dependent EADs, were detected; IKs was not necessarily required for EAD formation. 3) Inhibiting INCX suppressed EADs via facilitating Ca2+-dependent ICaL inactivation. 4) Cai dynamics (SR Ca2+ handling) and Nai strongly affected bifurcations and EAD generation in model cells via modulating ICaL, INCX, and INaK Parameter regions of EADs, often overlapping those of stable LCs, shifted depending on Cai and Nai in stationary and dynamic states. 5) Bradycardia-related induction of EADs was mainly due to decreases in Nai at lower pacing rates. This study demonstrates that bifurcation analysis allows us to understand the dynamical mechanisms of EAD formation more profoundly. NEW & NOTEWORTHY: We investigated mechanisms of phase-2 early afterdepolarization (EAD) by bifurcation analyses of human ventricular myocyte (HVM) models. EAD formation in paced HVMs basically depended on bifurcation phenomena in non-paced HVMs, but was strongly affected by intracellular ion concentrations in stationary and dynamic states. EAD generation did not necessarily require IKs.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Canais de Potássio de Retificação Tardia/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Potenciais de Ação , Bradicardia/metabolismo , Sistema de Condução Cardíaco/metabolismo , Ventrículos do Coração/citologia , Humanos , Síndrome do QT Longo/metabolismo , Potenciais da Membrana , Modelos Cardiovasculares , Modelos Teóricos
11.
Exp Physiol ; 102(1): 34-47, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27763697

RESUMO

NEW FINDINGS: What is the central question of this study? In this study, we sought to investigate whether cardiovascular responses to peripheral chemoreflex activation of rats recovered from protein restriction are related to activation of AT1 receptors. What is the main finding and its importance? This study highlights the fact that angiotensinergic mechanisms activated by AT1 receptors do not support increased responses to peripheral chemoreflex activation by KCN in rats recovered from protein restriction. Also, we found that protein restriction led to increased resting ventilation in adult rats, even after recovery. The effects of a low-protein diet followed by recovery on cardiorespiratory responses to peripheral chemoreflex activation were tested before and after systemic angiotensin II type 1 (AT1 ) receptor antagonism. Male Fischer rats were divided into control and recovered (R-PR) groups after weaning. The R-PR rats were fed a low-protein (8%) diet for 35 days and recovered with a normal protein (20%) diet for 70 days. Control rats received a normal protein diet for 105 days (CG105 ). After cannulation surgery, mean arterial pressure, heart rate, respiratory frequency, tidal volume and minute ventilation were acquired using a digital recording system in freely moving rats. The role of angintensin II was evaluated by systemic antagonism of AT1 receptors with losartan (20 mg kg-1 i.v.). The peripheral chemoreflex was elicited by increasing doses of KCN (20-160 µg kg min-1 , i.v.). At baseline, R-PR rats presented increased heart rate and minute ventilation (372 ± 34 beats min-1 and 1.274 ± 377 ml kg-1  min-1 ) compared with CG105 animals (332 ± 22 beats min-1 and 856 ± 112 ml kg-1  min-1 ). Mean arterial pressure was not different between the groups. Pressor and bradycardic responses evoked by KCN (60 µg kg-1 ) were increased in R-PR (+45 ± 13 mmHg and -77 ± 47 beats min-1 ) compared with CG105 rats (+25 ± 17 mmHg and -27 ± 28 beats min-1 ), but no difference was found in the tachypnoeic response. These differences were preserved after losartan. The data suggest that angiotensin II acting on AT1 receptors may not be associated with the increased heart rate, increased minute ventilation and acute cardiovascular responses to peripheral chemoreflex activation in rats that underwent postweaning protein restriction followed by recovery.


Assuntos
Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Reflexo/fisiologia , Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Bradicardia/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Células Quimiorreceptoras/efeitos dos fármacos , Dieta com Restrição de Proteínas/métodos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Losartan/farmacologia , Masculino , Ratos , Ratos Endogâmicos F344 , Reflexo/efeitos dos fármacos , Taquicardia/metabolismo , Volume de Ventilação Pulmonar/efeitos dos fármacos , Volume de Ventilação Pulmonar/fisiologia
12.
Sci Rep ; 6: 26992, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27270403

RESUMO

Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0-450 kPa (0-800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146-220 kPa and 221-290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0-145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85-145 kPa.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Explosões , Aldeídos/metabolismo , Animais , Traumatismos por Explosões/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Bradicardia/metabolismo , Bradicardia/patologia , Encéfalo/irrigação sanguínea , Lesões Encefálicas Traumáticas/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Microvasos/enzimologia , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Nitrosativo , Ratos Sprague-Dawley , Tirosina/análogos & derivados , Tirosina/metabolismo
13.
J Appl Physiol (1985) ; 120(6): 580-91, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26718787

RESUMO

Acute inhalation of airborne pollutants alters cardiovascular function and evidence suggests that pollutant-induced activation of airway sensory nerves via the gating of ion channels is critical to these systemic responses. Here, we have investigated the effect of capsaicin [transient receptor potential (TRP) vanilloid 1 (TRPV1) agonist], AITC [TRP ankyrin 1 (TRPA1) agonist], and ATP (P2X2/3 agonist) on bronchopulmonary sensory activity and cardiovascular responses of conscious Sprague-Dawley (SD) rats. Single fiber recordings show that allyl isothiocyanate (AITC) and capsaicin selectively activate C fibers, whereas subpopulations of both A and C fibers are activated by stimulation of P2X2/3 receptors. Inhalation of the agonists by conscious rats caused significant bradycardia, atrioventricular (AV) block, and prolonged PR intervals, although ATP-induced responses were lesser than those evoked by AITC or capsaicin. Responses to AITC were inhibited by the TRP channel blocker ruthenium red and the muscarinic antagonist atropine. AITC inhalation also caused a biphasic blood pressure response: a brief hypertensive phase followed by a hypotensive phase. Atropine accentuated the hypertensive phase, while preventing the hypotension. AITC-evoked bradycardia was not abolished by terazosin, the α1-adrenoceptor inhibitor, which prevented the hypertensive response. Anesthetics had profound effects on AITC-evoked bradycardia and AV block, which was abolished by urethane, ketamine, and isoflurane. Nevertheless, AITC inhalation caused bradycardia and AV block in paralyzed and ventilated rats following precollicular decerebration. In conclusion, we provide evidence that activation of ion channels expressed on nociceptive airway sensory nerves causes significant cardiovascular effects in conscious SD rats via reflex modulation of the autonomic nervous system.


Assuntos
Trifosfato de Adenosina/farmacologia , Capsaicina/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Isotiocianatos/farmacologia , Reflexo/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Trifosfato de Adenosina/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/metabolismo , Bradicardia/induzido quimicamente , Bradicardia/metabolismo , Capsaicina/efeitos adversos , Sistema Cardiovascular/metabolismo , Isotiocianatos/efeitos adversos , Masculino , Fibras Nervosas Amielínicas/metabolismo , Ratos , Ratos Sprague-Dawley , Sistema Respiratório/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo
14.
Basic Clin Pharmacol Toxicol ; 118(2): 113-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26301462

RESUMO

In vivo stimulation of cardiac vagal neurons induces bradycardia by acetylcholine (ACh) release. As vagal release of ACh may be modulated by autoreceptors (muscarinic M2 ) and heteroreceptors (including serotonin 5-HT1 ), this study has analysed the pharmacological profile of the receptors involved in histamine-induced inhibition of the vagal bradycardic out-flow in pithed rats. For this purpose, 180 male Wistar rats were pithed, artificially ventilated and pre-treated (i.v.) with 1 mg/kg atenolol, followed by i.v. administration of physiological saline (1 ml/kg), histamine (10, 50, 100 and 200 µg/kg) or the selective histamine H1 (2-pyridylethylamine), H2 (dimaprit), H3 (methimepip) and H4 (VUF 8430) receptor agonists (1, 10, 50 and 100 µg/kg each). Under these conditions, electrical stimulation (3, 6 and 9 Hz; 15 ± 3 V and 1 ms) of the vagus nerve resulted in frequency-dependent bradycardic responses, which were (i) unchanged during the infusions of saline, 2-pyridylethylamine, dimaprit or VUF 8430; and (ii) dose-dependently inhibited by histamine or methimepip. Moreover, the inhibition of the bradycardia caused by 50 µg/kg of either histamine or methimepip (which failed to inhibit the bradycardic responses to i.v. bolus injections of acetylcholine; 1-10 µg/kg) was abolished by the H3 receptor antagonist JNJ 10181457 (1 mg/kg, i.v.). In conclusion, our results suggest that histamine-induced inhibition of the vagal bradycardic out-flow in pithed rats is mainly mediated by pre-junctional activation of histamine H3 receptors, as previously demonstrated for the vasopressor sympathetic out-flow and the vasodepressor sensory CGRPergic (calcitonin gene-related peptide) out-flow.


Assuntos
Bradicardia/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Receptores Histamínicos H3/metabolismo , Animais , Histamina/metabolismo , Imidazóis/farmacologia , Masculino , Piperidinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
15.
Clin Perinatol ; 42(4): 825-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26593081

RESUMO

Hypoxic episodes are troublesome components of bronchopulmonary dysplasia (BPD) in preterm infants. Immature respiratory control seems to be the major contributor, superimposed on abnormal respiratory function. Relatively short respiratory pauses may precipitate desaturation and bradycardia. This population is predisposed to pulmonary hypertension; it is likely that pulmonary vasoconstriction also plays a role. The natural history has been well-characterized in the preterm population at risk for BPD; however, the consequences are less clear. Proposed associations of intermittent hypoxia include retinopathy of prematurity, sleep disordered breathing, and neurodevelopmental delay. Future study should address whether these associations are causal relationships.


Assuntos
Apneia/fisiopatologia , Displasia Broncopulmonar/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Apneia/metabolismo , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Displasia Broncopulmonar/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro , Transtornos Respiratórios/metabolismo , Transtornos Respiratórios/fisiopatologia
16.
Braz. j. med. biol. res ; 48(11): 1010-1022, Nov. 2015. graf
Artigo em Inglês | LILACS | ID: lil-762907

RESUMO

Exercise training (Ex) has been recommended for its beneficial effects in hypertensive states. The present study evaluated the time-course effects of Ex without workload on mean arterial pressure (MAP), reflex bradycardia, cardiac and renal histology, and oxidative stress in two-kidney, one-clip (2K1C) hypertensive rats. Male Fischer rats (10 weeks old; 150–180 g) underwent surgery (2K1C or SHAM) and were subsequently divided into a sedentary (SED) group and Ex group (swimming 1 h/day, 5 days/week for 2, 4, 6, 8, or 10 weeks). Until week 4, Ex decreased MAP, increased reflex bradycardia, prevented concentric hypertrophy, reduced collagen deposition in the myocardium and kidneys, decreased the level of thiobarbituric acid-reactive substances (TBARS) in the left ventricle, and increased the catalase (CAT) activity in the left ventricle and both kidneys. From week 6 to week 10, however, MAP and reflex bradycardia in 2K1C Ex rats became similar to those in 2K1C SED rats. Ex effectively reduced heart rate and prevented collagen deposition in the heart and both kidneys up to week 10, and restored the level of TBARS in the left ventricle and clipped kidney and the CAT activity in both kidneys until week 8. Ex without workload for 10 weeks in 2K1C rats provided distinct beneficial effects. The early effects of Ex on cardiovascular function included reversing MAP and reflex bradycardia. The later effects of Ex included preventing structural alterations in the heart and kidney by decreasing oxidative stress and reducing injuries in these organs during hypertension.


Assuntos
Animais , Masculino , Hipertensão Renovascular/fisiopatologia , Rim/patologia , Miocárdio/patologia , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Pressão Arterial/fisiologia , Barorreflexo/fisiologia , Bradicardia/metabolismo , Bradicardia/patologia , Catalase/metabolismo , Frequência Cardíaca/fisiologia , Rim/metabolismo , Miocárdio/enzimologia , Miocárdio/metabolismo , Artéria Renal/cirurgia , Comportamento Sedentário , Estruturas Criadas Cirurgicamente , Fatores de Tempo , Substâncias Reativas com Ácido Tiobarbitúrico/análise
17.
Braz J Med Biol Res ; 48(11): 1010-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26270472

RESUMO

Exercise training (Ex) has been recommended for its beneficial effects in hypertensive states. The present study evaluated the time-course effects of Ex without workload on mean arterial pressure (MAP), reflex bradycardia, cardiac and renal histology, and oxidative stress in two-kidney, one-clip (2K1C) hypertensive rats. Male Fischer rats (10 weeks old; 150-180 g) underwent surgery (2K1C or SHAM) and were subsequently divided into a sedentary (SED) group and Ex group (swimming 1 h/day, 5 days/week for 2, 4, 6, 8, or 10 weeks). Until week 4, Ex decreased MAP, increased reflex bradycardia, prevented concentric hypertrophy, reduced collagen deposition in the myocardium and kidneys, decreased the level of thiobarbituric acid-reactive substances (TBARS) in the left ventricle, and increased the catalase (CAT) activity in the left ventricle and both kidneys. From week 6 to week 10, however, MAP and reflex bradycardia in 2K1C Ex rats became similar to those in 2K1C SED rats. Ex effectively reduced heart rate and prevented collagen deposition in the heart and both kidneys up to week 10, and restored the level of TBARS in the left ventricle and clipped kidney and the CAT activity in both kidneys until week 8. Ex without workload for 10 weeks in 2K1C rats provided distinct beneficial effects. The early effects of Ex on cardiovascular function included reversing MAP and reflex bradycardia. The later effects of Ex included preventing structural alterations in the heart and kidney by decreasing oxidative stress and reducing injuries in these organs during hypertension.


Assuntos
Hipertensão Renovascular/fisiopatologia , Rim/patologia , Miocárdio/patologia , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Pressão Arterial/fisiologia , Barorreflexo/fisiologia , Bradicardia/metabolismo , Bradicardia/patologia , Catalase/metabolismo , Frequência Cardíaca/fisiologia , Rim/metabolismo , Masculino , Miocárdio/enzimologia , Miocárdio/metabolismo , Ratos Endogâmicos F344 , Artéria Renal/cirurgia , Comportamento Sedentário , Estruturas Criadas Cirurgicamente , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Fatores de Tempo
18.
J Mol Cell Cardiol ; 83: 88-100, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25668431

RESUMO

Sick sinus syndrome remains a highly relevant clinical entity, being responsible for the implantation of the majority of electronic pacemakers worldwide. It is an infinitely more complex disease than it was believed when first described in the mid part of the 20th century. It not only involves the innate leading pacemaker region of the heart, the sinoatrial node, but also the atrial myocardium, predisposing to atrial tachydysrhythmias. It remains controversial as to whether the dysfunction of the sinoatrial node directly causes the dysfunction of the atrial myocardium, or vice versa, or indeed whether these two aspects of the condition arise through some related underlying pathological mechanism, such as extracellular matrix remodeling, i.e., fibrosis. This review aims to shed new light on the myriad possible contributing factors in the development of sick sinus syndrome, with a particular focus on the sinoatrial nodal myocyte. This article is part of a Special Issue entitled CV Aging.


Assuntos
Envelhecimento/metabolismo , Fibrilação Atrial/metabolismo , Bradicardia/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Nó Sinoatrial/metabolismo , Idoso , Envelhecimento/patologia , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Bradicardia/genética , Bradicardia/patologia , Conexinas/genética , Conexinas/metabolismo , Regulação da Expressão Gênica , Átrios do Coração/patologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Transporte de Íons , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Sistema Renina-Angiotensina/genética , Nó Sinoatrial/patologia
19.
Cardiology ; 128(1): 15-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24514589

RESUMO

OBJECTIVES: Bradycardia is caused by loss-of-function mutations in potassium channels that regulate phase 3 repolarization of the cardiac action potential. The purpose of this study is to monitor the effects of potassium channel (KCNQ1) inhibition and to evaluate the effects of isoproterenol (ISO) and MgSO4 in restoring sinus rhythm in atrial cells. METHODS: Microelectrode array was used to analyze conduction velocity, voltage amplitude and cycle length of atrial cells (HL-1). A combination of ISO and MgSO4 was used to restore sinus rhythm in these cells. RESULTS: mRNA expression levels of KCNQ1 (42.2 vs. 100%, p < 0.0001), connexin 43 (29.6 vs. 100%, p = 0.0033), atrial natriuretic peptide (31.0 vs. 100%, p = 0.0030), cardiac actin (38.2 vs. 100%, p < 0.0001) and α-myosin heavy chain (31.2 vs. 100%, p = 0.00254) were significantly lower in the KCNQ1 gene-inhibited group compared to the control group. When treated with MgSO4 (1 mM) and ISO (10 µM), conduction velocity (0.0208 ± 0.0036 vs. 0.0086 ± 0.0014 m/s, p = 0.0004) and voltage amplitude (1,210.78 ± 65.81 vs. 124.1 ± 13.30 µV, p < 0.0001) were higher, and cycle length (431.55 ± 2.05 vs. 1,015.15 ± 4.31 ms, p < 0.0001) was shorter than in the gene-inhibited group. CONCLUSION: Inhibition of sinus rhythm in the bradycardia cell model was recovered by treatment with ISO and MgSO4, demonstrating the potency of combination therapy in the treatment of bradycardia.


Assuntos
Bradicardia/tratamento farmacológico , Cardiotônicos/uso terapêutico , Isoproterenol/uso terapêutico , Canal de Potássio KCNQ1/metabolismo , Sulfato de Magnésio/uso terapêutico , Animais , Bradicardia/metabolismo , Cardiotônicos/farmacologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Isoproterenol/farmacologia , Canal de Potássio KCNQ1/genética , Sulfato de Magnésio/farmacologia , Camundongos , Microeletrodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Interferência de RNA , RNA Interferente Pequeno
20.
Circ Arrhythm Electrophysiol ; 6(4): 799-808, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23884198

RESUMO

BACKGROUND: When complete atrioventricular block (AVB) occurs, infranodal escape rhythms are essential to prevent bradycardic death. The role of T-type Ca(2+) channels in pacemaking outside the sinus node is unknown. We investigated the role of T-type Ca(2+) channels in escape rhythms and bradycardia-related ventricular tachyarrhythmias after AVB in mice. METHODS AND RESULTS: Adult male mice lacking the main T-type Ca(2+) channel subunit Cav3.1 (Cav3.1(-/-)) and wild-type (WT) controls implanted with ECG telemetry devices underwent radiofrequency atrioventricular node ablation to produce AVB. Before ablation, Cav3.1(-/-) mice showed sinus bradycardia (mean±SEM; RR intervals, 148±3 versus 128±2 ms WT; P<0.001). Immediately after AVB, Cav3.1(-/-) mice had slower escape rhythms (RR intervals, 650±75 versus 402±26 ms in WT; P<0.01) but a preserved heart-rate response to isoproterenol. Over the next 24 hours, mortality was markedly greater in Cav3.1(-/-) mice (19/31; 61%) versus WT (8/26; 31%; P<0.05), and Torsades de Pointes occurred more frequently (73% Cav3.1(-/-) versus 35% WT; P<0.05). Escape rhythms improved in both groups during the next 4 weeks but remained significantly slower in Cav3.1(-/-). At 4 weeks after AVB, ventricular tachycardia was more frequent in Cav3.1(-/-) than in WT mice (746±116 versus 214±78 episodes/24 hours; P<0.01). Ventricular function remodeling was similar in Cav3.1(-/-) and WT, except for smaller post-AVB fractional-shortening increase in Cav3.1(-/-). Expression changes were seen post-AVB for a variety of genes; these tended to be greater in Cav3.1(-/-) mice, and overexpression of fetal and profibrotic genes occurred only in Cav3.1(-/-). CONCLUSIONS: This study suggests that T-type Ca(2+) channels play an important role in infranodal escape automaticity. Loss of T-type Ca(2+) channels worsens bradycardia-related mortality, increases bradycardia-associated adverse remodeling, and enhances the risk of malignant ventricular tachyarrhythmias complicating AVB.


Assuntos
Bloqueio Atrioventricular/metabolismo , Bradicardia/metabolismo , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Sistema de Condução Cardíaco/metabolismo , Frequência Cardíaca , Periodicidade , Torsades de Pointes/metabolismo , Potenciais de Ação , Animais , Bloqueio Atrioventricular/diagnóstico , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/fisiopatologia , Bradicardia/diagnóstico , Bradicardia/genética , Bradicardia/fisiopatologia , Bradicardia/prevenção & controle , Canais de Cálcio Tipo T/deficiência , Canais de Cálcio Tipo T/genética , Modelos Animais de Doenças , Eletrocardiografia Ambulatorial , Técnicas Eletrofisiológicas Cardíacas , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Telemetria , Fatores de Tempo , Torsades de Pointes/diagnóstico , Torsades de Pointes/genética , Torsades de Pointes/fisiopatologia , Torsades de Pointes/prevenção & controle , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA