Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 674, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004738

RESUMO

BACKGROUND: Kale, a versatile cruciferous crop, valued for its pro-health benefits, stress resistance, and potential applications in forage and cosmetics, holds promise for further enhancement of its bioactive compounds through in vitro cultivation methods. Micropropagation techniques use cytokinins (CKs) which are characterized by various proliferative efficiency. Despite the extensive knowledge regarding CKs, there remains a gap in understanding their role in the physiological mechanisms. That is why, here we investigated the effects of three CKs - kinetin (Kin), 6-benzylaminopurine (BAP), and 2-isopentenyladenine (2iP) - on kale physiology, antioxidant status, steroidal metabolism, and membrane integrity under in vitro cultivation. RESULTS: Our study revealed that while BAP and 2iP stimulated shoot proliferation, they concurrently diminished pigment levels and photosynthetic efficiency. Heightened metabolic activity in response to all CKs was reflected by increased respiratory rate. Despite the differential burst of ROS, the antioxidant properties of kale were associated with the upregulation of guaiacol peroxidase and the scavenging properties of ascorbate rather than glutathione. Notably, CKs fostered the synthesis of sterols, particularly sitosterol, pivotal for cell proliferation and structure of membranes which are strongly disrupted under the action of BAP and 2iP possibly via pathway related to phospholipase D and lipoxygenase which were upregulated. Intriguingly, both CKs treatment spurred the accumulation of sitostenone, known for its ROS scavenging and therapeutic potential. The differential effects of CKs on brassicasterol levels and brassinosteroid (BRs) receptor suggest potential interactions between CKs and BRs. CONCLUSION: Based on the presented results we conclude that the effect evoked by BAP and 2iP in vitro can improve the industrial significance of kale because this treatment makes possible to control proliferation and/or biosynthesis routes of valuable beneficial compounds. Our work offers significant insights into the nuanced effects of CKs on kale physiology and metabolism, illuminating potential avenues for their application in plant biotechnology and medicinal research.


Assuntos
Antioxidantes , Citocininas , Cinetina , Reguladores de Crescimento de Plantas , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Cinetina/farmacologia , Antioxidantes/metabolismo , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/fisiologia , Brassica/crescimento & desenvolvimento , Compostos de Benzil/farmacologia , Purinas , Fotossíntese/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Plant Physiol Biochem ; 213: 108867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936069

RESUMO

Understanding the heavy metals (HMs) tolerance mechanism is crucial for improving plant growth in metal-contaminated soil. In order to evaluate the lead (Pb) tolerance mechanism in Brassica species, a comparative proteomic study was used. Thirteen-day-old seedlings of B. juncea and B. napus were treated with different Pb(NO3)2 concentrations at 0, 3, 30, and 300 mg/L. Under 300 mg/L Pb(NO3)2 concentration, B. napus growth was significantly decreased, while B. juncea maintained normal growth similar to the control. The Pb accumulation was also higher in B. napus root and shoot compared to B. juncea. Gel-free proteomic analysis of roots revealed a total of 68 and 37 differentially abundant proteins (DAPs) in B. juncea and B. napus-specifically, after 300 mg/L Pb exposure. The majority of these proteins are associated with protein degradation, cellular respiration, and enzyme classification. The upregulated RPT2 and tetrapyrrole biosynthesis pathway-associated proteins maintain the cellular homeostasis and photosynthetic rate in B. juncea. Among the 55 common DAPs, S-adenosyl methionine and TCA cycle proteins were upregulated in B. juncea and down-regulated in B. napus after Pb exposure. Furthermore, higher oxidative stress also reduced the antioxidant enzyme activity in B. napus. The current finding suggests that B. juncea is more Pb tolerant than B. napus, possibly due to the upregulation of proteins involved in protein recycling, degradation, and tetrapyrrole biosynthesis pathway.


Assuntos
Chumbo , Proteínas de Plantas , Proteômica , Tetrapirróis , Chumbo/toxicidade , Chumbo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteômica/métodos , Tetrapirróis/metabolismo , Tetrapirróis/biossíntese , Mostardeira/metabolismo , Mostardeira/efeitos dos fármacos , Mostardeira/genética , Brassica/metabolismo , Brassica/efeitos dos fármacos , Brassica/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos
3.
J Environ Manage ; 359: 120956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669883

RESUMO

The interaction between cadmium(Cd) and copper(Cu) during combined pollution can lead to more complex toxic effects on humans and plants.However, there is still a lack of sufficient understanding regarding the types of interactions at the plant molecular level and the response strategies of plants to combined pollution. To assess this, we investigated the phenotypic and transcriptomic patterns of pakchoi (Brassica chinensis L) roots in response to individual and combined pollution of Cd and Cu. The results showed that compared to single addition, the translocation factor of heavy metals in roots significantly decreased (p < 0.05) under the combined addition, resulting in higher accumulation of Cd and Cu in the roots. Transcriptomic analysis of pakchoi roots revealed that compared to single pollution, there were 312 and 1926 differentially expressed genes (DEGs) specifically regulated in the Cd2Cu20 and Cd2Cu100 combined treatments, respectively. By comparing the expression of these DEGs among different treatments, we found that the combined pollution of Cd and Cu mainly affected the transcriptome of the roots in an antagonistic manner. Enrichment analysis indicated that pakchoi roots upregulated the expression of genes involved in glucosetransferase activity, phospholipid homeostasis, proton transport, and the biosynthesis of phenylpropanoids and flavonoids to resist Cd and Cu combined pollution. Using weighted gene co-expression network analysis (WGCNA), we identified hub genes related to the accumulation of Cd and Cu in the roots, which mainly belonged to the LBD, thaumatin-like protein, ERF, MYB, WRKY, and TCP transcription factor families. This may reflect a transcription factor-driven trade-off strategy between heavy metal accumulation and growth in pakchoi roots. Additionally, compared to single metal pollution, the expression of genes related to Nramp, cation/H+ antiporters, and some belonging to the ABC transporter family in the pakchoi roots was significantly upregulated under combined pollution. This could lead to increased accumulation of Cd and Cu in the roots. These findings provide new insights into the interactions and toxic mechanisms of multiple metal combined pollution at the molecular level in plants.


Assuntos
Brassica , Cádmio , Cobre , Raízes de Plantas , Transcriptoma , Cádmio/toxicidade , Brassica/genética , Brassica/efeitos dos fármacos , Brassica/metabolismo , Cobre/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Transcriptoma/efeitos dos fármacos , Poluentes do Solo/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos
4.
Food Chem ; 450: 139349, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631205

RESUMO

Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.


Assuntos
Brassica , Homeostase , Microplásticos , Oxirredução , Fotossíntese , Reguladores de Crescimento de Plantas , Metabolismo Secundário , Selênio , Fotossíntese/efeitos dos fármacos , Brassica/metabolismo , Brassica/química , Brassica/crescimento & desenvolvimento , Brassica/efeitos dos fármacos , Microplásticos/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Poluentes do Solo/metabolismo
5.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361799

RESUMO

Addition of selenium or application of ultraviolet A (UVA) radiation for crop production could be an effective way of producing phytochemical-rich food. This study was conducted to investigate the effects of selenium and UVA radiation, as well as their combination on growth and phytochemical contents in broccoli microgreens. There were three treatments: Se (100 µmol/L Na2SeO3), UVA (40 µmol/m2/s) and Se + UVA (with application of Se and UVA). The control (CK) was Se spraying-free and UVA radiation-free. Although treatment with Se or/and UVA inhibited plant growth of broccoli microgreens, results showed that phytochemical contents increased. Broccoli microgreens under the Se treatment had higher contents of total soluble sugars, total phenolic compounds, total flavonoids, ascorbic acid, Fe, and organic Se and had lower Zn content. The UVA treatment increased the contents of total chlorophylls, total soluble proteins, total phenolic compounds, and FRAP. However, the Se + UVA treatment displayed the most remarkable effect on the contents of total anthocyanins, glucoraphanin, total aliphatic glucosinolates, and total glucosinolates; here, significant interactions between Se and UVA were observed. This study provides valuable insights into the combinational selenium and UVA for improving the phytochemicals of microgreens grown in an artificial lighting plant factory.


Assuntos
Brassica/crescimento & desenvolvimento , Produção Agrícola , Compostos Fitoquímicos/biossíntese , Selênio/farmacologia , Ácido Ascórbico/metabolismo , Brassica/efeitos dos fármacos , Brassica/efeitos da radiação , Flavonoides/metabolismo , Flavonoides/efeitos da radiação , Ferro/metabolismo , Fenol/metabolismo , Fenol/efeitos da radiação , Compostos Fitoquímicos/efeitos da radiação , Açúcares/metabolismo , Açúcares/efeitos da radiação , Raios Ultravioleta
6.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915910

RESUMO

Nutraceuticals and functional foods are gaining more attention amongst consumers interested in nutritious food. The consumption of foodstuffs with a high content of phytochemicals has been proven to provide various health benefits. The application of biostimulants is a potential strategy to fortify cultivated plants with beneficial bioactive compounds. Nevertheless, it has not yet been established whether the proposed higher plants (St. John's wort, giant goldenrod, common dandelion, red clover, nettle, and valerian) are appropriate for the production of potential bio-products enhancing the nutritional value of white cabbage. Therefore, this research examines the impact of botanical extracts on the growth and nutritional quality of cabbage grown under field conditions. Two extraction methods were used for the production of water-based bio-products, namely: ultrasound-assisted extraction and mechanical homogenisation. Bio-products were applied as foliar sprays to evaluate their impact on total yield, dry weight, photosynthetic pigments, polyphenols, antioxidant activity, vitamin C, nitrates, micro- and macroelements, volatile compounds, fatty acids, sterols, and sugars. Botanical extracts showed different effects on the examined parameters. The best results in terms of physiological and biochemical properties of cabbage were obtained for extracts from common dandelion, valerian, nettle, and giant goldenrod. When enriched with nutrients, vegetables can constitute a valuable component of functional food.


Assuntos
Brassica/química , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Nutrientes/química , Valor Nutritivo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Cromatografia Líquida , Suplementos Nutricionais/análise , Qualidade dos Alimentos , Alimento Funcional , Cromatografia Gasosa-Espectrometria de Massas , Fotossíntese , Compostos Fitoquímicos/química , Extratos Vegetais/química , Plantas Comestíveis , Característica Quantitativa Herdável
7.
Food Chem ; 356: 129704, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831827

RESUMO

The postharvest senescence accompanied by yellowing limited the shelf-life of broccoli. In this study, we developed a novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil and applied it to broccoli for preservation. Results showed that double emulsion prepared by whey protein concentrate-high methoxyl pectin (1:3) exhibited best storage stability with largest particle size (581.30 nm), lowest PDI (0.23) and zeta potential (-40.31 mV). This double emulsion also exhibited highest encapsulation efficiency of brassinolide (92%) and cinnamon essential oil (88%). The broccoli coated with double emulsion maintained higher chlorophyll contents and activities of chlorophyllase and magnesium-dechelatase were reduced by 9% and 24%, respectively. The energy metabolic enzymes (SDH, CCO, H+-ATPase, Ca2+-ATPase) were also activated, inducing higher level of ATP and energy charge. These results demonstrated W/O/W double emulsion co-delivering brassinolide and cinnamon essential delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism.


Assuntos
Brassica/metabolismo , Brassinosteroides/química , Clorofila/metabolismo , Emulsões/química , Metabolismo Energético , Óleos Voláteis/química , Esteroides Heterocíclicos/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Brassica/efeitos dos fármacos , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/metabolismo , Cinnamomum zeylanicum/metabolismo , Emulsões/metabolismo , Metabolismo Energético/efeitos dos fármacos , Enzimas/química , Armazenamento de Alimentos/métodos , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Tamanho da Partícula , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacologia , Viscosidade
8.
Food Chem ; 355: 129626, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33780792

RESUMO

The yellowing of florets limits the economic and nutritional value of broccoli during postharvest. We investigated mechanisms of action of 150 nM phytosulfokine α (PSKα) for delaying florets yellowing in broccoli during cold storage. Our results showed that SUMO E3 ligase (SIZ1) gene expression was higher in florets treated with PSKα, which may prevent endogenous H2O2 accumulation, resulting from the higher activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Besides, higher expression of methionine sulfoxide reductase and cysteine peroxiredoxin genes, concomitant with higher expression of heat shock proteins 70/90 genes, may arise from higherexpression of SIZ1 gene. Lower expression and activity of phospholipase D and lipoxygenase may be liable for membrane integrity protection featured by lower malondialdehyde accumulation in florets treated with PSKα. Additionally,florets treated with PSKα exhibited higher endogenous cytokinin accumulation which may arise from higher expression of isopentenyl transferase gene, concomitant with lower expression of cytokinin oxidase gene.


Assuntos
Brassica/química , Brassica/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacocinética , Ascorbato Peroxidases/metabolismo , Cor , Flores/química , Flores/efeitos dos fármacos , Flores/metabolismo , Malondialdeído/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
9.
Ecotoxicol Environ Saf ; 208: 111758, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396081

RESUMO

The cultivation of leafy vegetables on metal contaminated soil embodies a serious threat to yield and quality. In the present study, the potential role of exogenous jasmonic acid (JA; 0, 5, 10, and 20 µM) on mitigating chromium toxicity (Cr; 0, 150, and 300 µM) was investigated in choysum (Brassica parachinensis L.). With exposure to increasing Cr stress levels, a dose-dependent decline in growth, photosynthesis, and physio-biochemical attributes of choysum plants was observed. An increase in Cr levels also resulted in oxidative stress closely associated with higher lipoxygenase activity (LOX), hydrogen peroxide (H2O2) generation, lipid peroxidation (MDA), and methylglyoxal (MG) levels. Exogenous application of JA alleviated the Cr-induced phytotoxic effects on photosynthetic pigments, gas exchange parameters, and restored growth of choysum plants. While exposed to Cr stress, JA supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool, and the glyoxalase system enzymes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative and carbonyl stress at both Cr stress levels. More importantly, JA restored the mineral nutrient contents, restricted Cr uptake, and accumulation in roots and shoots of choysum plants when compared to the only Cr-stressed plants. Overall, the application of JA2 treatment (10 µM JA) was more effective and counteracted the detrimental effects of 150 µM Cr stress by restoring the growth and physio-biochemical attributes to the level of control plants, while partially mitigated the detrimental effects of 300 µM Cr stress. Hence, JA application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in choysum plants grown on contaminated soils.


Assuntos
Antioxidantes/farmacologia , Brassica/fisiologia , Cromo/toxicidade , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Brassica/efeitos dos fármacos , Brassica/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo
10.
Ecotoxicol Environ Saf ; 208: 111616, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396136

RESUMO

Our previous studies showed that exogenous glutathione (GSH) decreased cadmium (Cd) concentration in shoots and alleviated the growth inhibition in pakchoi (Brassica chinensis L.) under Cd stress. Nevertheless, it is largely unknown how GSH decreases Cd accumulation in edible parts of pakchoi. This experiment mainly explored the mechanisms of GSH-induced reduction of Cd accumulation in shoot of pakchoi. The results showed that compared with sole Cd treatment, Cd + GSH treatment remarkably increased the expression of BcIRT1 and BcIRT2, and further enhanced the concentrations of Cd and Fe in root. By contrast, GSH application declined the concentration of Cd in the xylem sap. However, these results were not caused by xylem loading process because the expression of BcHMA2 and BcHMA4 had not significant difference between sole Cd treatment and Cd + GSH treatment. In addition, exogenous GSH significantly enhanced the expression of BcPCS1 and promoted the synthesis of PC2, PC3 and PC4 under Cd stress. At the same time, exogenous GSH also significantly improved the expression of BcABCC1 and BcABCC2 in the roots of seedling under Cd stress, suggesting that more PCs-Cd complexes may be sequestrated into vacuoles by ABCC1 and ABCC2 transporters. The results showed that exogenous GSH could up-regulate the expression of BcIRT1/2 to increase the Cd accumulation in root, and the improvement of PCs contents and the expression of BcABCC1/2 enhanced the compartmentalization of Cd in root vacuole of pakchoi under Cd stress. To sum up, exogenous GSH reduce the concentration of free Cd2+ in the cytoplast of root cells and then dropped the loading of Cd into the xylem, which eventually given rise to the reduction of Cd accumulation in edible portion of pakchoi.


Assuntos
Brassica/metabolismo , Cádmio/metabolismo , Glutationa/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Poluentes do Solo/metabolismo , Vacúolos/metabolismo , Transporte Biológico , Brassica/efeitos dos fármacos , Brassica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Plântula/efeitos dos fármacos
11.
Food Chem ; 338: 128055, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32950008

RESUMO

This study examined the ability of l-arginine, l-cysteine and l-methionine, to inhibit postharvest senescence of broccoli. Florets were dipped in aqueous solutions of the amino acids at concentrations from 1.0 to 100 mM and stored at 10 °C. A 5 mM dip was found to be optimal in delaying senescence as measured by retention of green colour, vitamin C and antioxidant activity, and a lower level of ethylene production, respiration, weight loss, phenylalanine ammonia lyase (PAL) activity and ion leakage with the benefits being similar for all three amino acids. Arginine, cysteine and methionine have Generally Recognised As Safe (GRAS) status and should have few impediments in obtaining regulatory approval for commercial use if similar effects were found for other leafy vegetables.


Assuntos
Arginina/farmacologia , Brassica/efeitos dos fármacos , Cisteína/farmacologia , Metionina/farmacologia , Proteínas de Plantas/metabolismo , Amônia-Liases/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Brassica/metabolismo , Etilenos/metabolismo , Fatores de Tempo
12.
Food Chem ; 339: 128092, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152880

RESUMO

The production of low potassium vegetables arose out of the dietary needs of patients with renal dysfunction. Attempts have been made to reduce potassium content in vegetables and fruits; however, induced potassium deficiency has often resulted in decreased yields. Here, we investigated a new method of producing low potassium kale and present the characteristics of the resulting produce. By substituting potassium nitrate with calcium nitrate in the nutrient solution 2 weeks before harvesting, the potassium content of kale was reduced by 70% without a deterioration in yield and semblance qualities. Despite no relationships being detected between potassium deficiency and anti-oxidative properties, the total glucosinolate content, an indicator of the anti-cancer effect of cruciferous vegetables, was significantly increased by potassium deficiency in kale. This study demonstrates a novel method of producing low potassium kale for patients with renal failure, without a reduction in yield but with beneficial increase in glucosinolates.


Assuntos
Agricultura/métodos , Brassica/metabolismo , Dieta , Glucosinolatos/metabolismo , Potássio/metabolismo , Insuficiência Renal/dietoterapia , Insuficiência Renal/fisiopatologia , Brassica/efeitos dos fármacos , Glucosinolatos/farmacologia , Humanos
13.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086545

RESUMO

Selenium (Se) supplement was combined with different LED light qualities to investigate mutual effects on the growth, nutritional quality, contents of glucosinolates and mineral elements in broccoli sprouts. There were five treatments: CK:1R1B1G, 1R1B1G+Se (100 µmol L-1 Na2SeO3), 1R1B+Se, 1R2B+Se, 2R1B+Se, 60 µmol m-2 s-1 PPFD, 12 h/12 h (light/dark). Sprouts under a combination of selenium and LED light quality treatment exhibited no remarkable change fresh weight, but had a shorter hypocotyl length, lower moisture content and heavier dry weight, especially with 1R2B+Se treatment. The contents of carotenoid, soluble protein, soluble sugar, vitamin C, total flavonoids, total polyphenol and contents of total glucosinolates and organic Se were dramatically improved through the combination of Se and LED light quality. Moreover, heat map and principal component analysis showed that broccoli sprouts under 1R2B+Se treatment had higher nutritional quality and health-promoting compound contents than other treatments. This suggests that the Se supplement under suitable LED lights might be beneficial to selenium-biofortified broccoli sprout production.


Assuntos
Brassica/crescimento & desenvolvimento , Proteínas/metabolismo , Plântula/crescimento & desenvolvimento , Selênio/farmacologia , Ácido Ascórbico/biossíntese , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/efeitos da radiação , Carotenoides/metabolismo , Flavonoides/biossíntese , Glucosinolatos/biossíntese , Humanos , Luz , Polifenóis/biossíntese , Plântula/efeitos dos fármacos , Plântula/efeitos da radiação , Selênio/metabolismo , Açúcares/metabolismo
14.
Chemosphere ; 261: 127728, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32731022

RESUMO

Current study was performed to explore the effect of butanolide (KAR1) in mitigation of cadmium (Cd) induced toxicity in Brussels sprout (Brassica oleracea L.). Brussels sprout seeds, treated with 10-5 M, 10-7 M and 10-10 M solution of KAR1 were allowed to grow in Cd-contaminated (5 mg L-1) regimes for 25 d. Cadmium toxicity decreased seed germination and growth in B. oleracea seedlings. Elevated intensity of electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) were observed in Cd-stressed seedlings. Additionally, reduced level of stomatal conductivity, transpiration rate, photosynthesis rate, intercellular carbon dioxide concentration, and leaf relative water content (LRWC) was also observed in Cd-stressed seedlings. Nevertheless, KAR1 improved seed germination, seedling growth and biomass production in Cd stressed plants. KAR1 application showed elevated LRWC, osmotic potential, and higher membranous stability index (MSI) in seedlings under Cd regime. Furthermore, seedlings developed by KAR1 treatment exhibited higher stomatal conductivity, and intercellular carbon dioxide concentration together with improved rate of transpiration and photosynthetic rate in B. oleracea under Cd stress. These findings elucidate that the reduced level of MDA, EL and H2O2, as well as improvement in antioxidative machinery increased growth and alleviated Cd toxicity in KAR1 treated seedlings under Cd stress.


Assuntos
Antioxidantes/metabolismo , Brassica/efeitos dos fármacos , Cádmio/toxicidade , Furanos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Piranos/farmacologia , Poluentes do Solo/toxicidade , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
15.
Plant Physiol ; 183(3): 1331-1344, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32366640

RESUMO

Hydrogen gas (H2) has a possible signaling role in many developmental and adaptive plant responses, including mitigating the harmful effects of cadmium (Cd) uptake from soil. We used electrophysiological and molecular approaches to understand how H2 ameliorates Cd toxicity in pak choi (Brassica campestris ssp. chinensis). Exposure of pak choi roots to Cd resulted in a rapid increase in the intracellular H2 production. Exogenous application of hydrogen-rich water (HRW) resulted in a Cd-tolerant phenotype, with reduced net Cd uptake and accumulation. We showed that this is dependent upon the transport of calcium ions (Ca2+) across the plasma membrane and apoplastic generation of hydrogen peroxide (H2O2) by respiratory burst oxidase homolog (BcRbohD). The reduction in root Cd uptake was associated with the application of exogenous HRW or H2O2 This reduction was abolished in the iron-regulated transporter1 (Atirt1) mutant of Arabidopsis (Arabidopsis thaliana), and pak choi pretreated with HRW showed decreased BcIRT1 transcript levels. Roots exposed to HRW had rapid Ca2+ influx, and Cd-induced Ca2+ leakage was alleviated. Two Ca2+ channel blockers, gadolinium ion (Gd3+) and lanthanum ion (La3+), eliminated the HRW-induced increase in BcRbohD expression, H2O2 production, and Cd2+ influx inhibition. Collectively, our results suggest that the Cd-protective effect of H2 in plants may be explained by its control of the plasma membrane-based NADPH oxidase encoded by RbohD, which operates upstream of IRT1 and regulates root Cd uptake at both the transcriptional and functional levels. These findings provide a mechanistic explanation for the alleviatory role of H2 in Cd accumulation and toxicity in plants.


Assuntos
Brassica/metabolismo , Cádmio/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/toxicidade , Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Brassica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , NADPH Oxidases/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
16.
Ecotoxicol Environ Saf ; 200: 110760, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32454265

RESUMO

An optimal uptake of mineral elements is crucial to ensure both crop yield and quality. The use of biostimulants is taking relevance to improve the nutrition of crops. Sulphur (S) is one of the elements with great potential within biostimulants. Furthermore, soil contamination by heavy metals such as cadmium (Cd) has become a serious environmental problem. Different studies have suggested the use of thiosulphate (TS) as a biostimulant and to increase the phytoremediation capacity of plants. Therefore, in the present study, we use a crop plant with high S requirements such as Brassica oleracea, to test whether TS serves as a biostimulant and whether affects Cd accumulation and tolerance. B. oleracea plants were grown with two different TS doses (2 mM and 4 mM), under Cd toxicity, and with the combination of Cd toxicity and both TS doses. Parameters of biomass, mineral elements accumulation, and stress tolerance were analyzed. The results showed that TS reduced biomass of B. oleracea plants. The application of 2 mM TS increased Cd accumulation whereas the 4 mM dose reduced it. On the other hand, TS incremented micronutrient accumulation on plants subjected to Cd toxicity and increased Zn contents. Besides, the application of 2 mM to Cd-stressed plants enhanced photosynthesis performance and reduced oxidative stress. Finally, TS increased the antioxidant capacity of B. oleracea plants. Briefly, although TS can not be used as a biostimulant it could be used for Cd phytoremediation purposes and to enhance Zn accumulation in B. oleracea plants.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Bioacumulação , Brassica/efeitos dos fármacos , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Tiossulfatos/farmacologia , Antioxidantes/metabolismo , Biodegradação Ambiental , Biomassa , Brassica/metabolismo , Cádmio/metabolismo , Produtos Agrícolas , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/metabolismo
17.
Ecotoxicol Environ Saf ; 198: 110660, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361492

RESUMO

In situ immobilization of heavy metal cations in contaminated soil using natural minerals is an attractive remediation technique. However, little research has focused on the remediation of arsenic (As) and cadmium (Cd) co-contaminated. In this work, three different crystal structures and chemical compositions minerals, zeolite; bentonite; and dolomite, were applied to simultaneously reduce the uptake of As and Cd in Brassica chinensis L., and the mechanism on reducing As and Cd bioavailability in soil were also investigated. The results showed that the three minerals decreased the bioavailability of As and Cd and restrained their uptake by Brassica chinensis L. with the order followed bentonite > zeolite > dolomite. Particularly, bentonite decreased the exchangeable As and Cd by 4.05% and 32.5% and the concentrations of As and Cd in shoots of Brassica chinensis L. by 36.2% and 64.6%, as compared with the controls. Moreover, with the addition of minerals increased, the dry biomass of Brassica chinensis L. and the rhizosphere microbial functional diversity increased significantly, and the highest biomass increased by 289% at 4.0% addition of bentonite. Correlation analysis indicated that the uptake of As and Cd was positive with the available Cd and As in soil, and was negative with soil pH and available N. Furthermore, the Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Fourier Transform Infrared Spectroscopy analysis illustrated the interaction between minerals and Cd mainly involved ion-exchange and adsorption, while As was mainly immobilized by calcium and magnesium through forming precipitation. In conclusion, this present study implied that the bentonite can be recommended as the more effective amendment to immobilize metal (loid)s in soil and thereby reduce the exposure risk of metal (loid)s associated with grains consumption.


Assuntos
Arsênio/análise , Bioacumulação , Brassica/efeitos dos fármacos , Cádmio/análise , Poluentes do Solo/análise , Agricultura , Arsênio/metabolismo , Bentonita/química , Disponibilidade Biológica , Biomassa , Brassica/metabolismo , Cádmio/metabolismo , Carbonato de Cálcio/química , Magnésio/química , Rizosfera , Solo/química , Poluentes do Solo/metabolismo , Zeolitas/química
18.
Food Chem ; 319: 126498, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32169761

RESUMO

Effect of melatonin treatment on visual quality and contents of health-promoting compounds of broccoli florets under room temperature was investigated in the present study. Broccoli florets were treated with 1 µM melatonin and then stored at room temperature. Results showed that melatonin treatment could delay the post-harvest senescence of broccoli, and performed well in maintaining higher levels of antioxidants, such as carotenoids, vitamin C and total phenols, as well as higher antioxidant capacity than the control. Besides, 1 µM melatonin treatment sustained higher content of glucosinolates, and also resulted in increased percentage of the most potent anticarcinogenic profile, glucoraphanin. Further analysis revealed that 1 µM melatonin strongly induced the expression of glucosinolate biosynthesis-related genes BoMYB28, BoMYB34, BoCYP79F1, and BoCYP79B2, as well as BoTGG1, a gene involved in glucosinolate hydrolysis. In conclusion, post-harvest treatment with 1 µM melatonin is potential in maintaining visual quality and health-promoting properties of broccoli florets.


Assuntos
Brassica/efeitos dos fármacos , Melatonina/farmacologia , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Brassica/metabolismo , Carotenoides/metabolismo , Glucosinolatos/metabolismo , Imidoésteres/metabolismo , Oximas , Fenóis/metabolismo , Sulfóxidos , Temperatura
19.
Ecotoxicol Environ Saf ; 194: 110402, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151867

RESUMO

Sulfur (S) application in pakchoi (Brassica chinensis L.) cultivation is vital for reducing cadmium (Cd) accumulation in the plants. However, the mechanism of S application on Cd uptake and translocation in pakchoi is unclear. In this study, a hydroponic experiment was performed to investigate the effects of S application on Cd accumulation in pakchoi at one Cd concentration (50 µM, in comparison to the control condition, 0 µM) and three S levels (0, 2, 4 mM). The results showed that excessive S application (4 mM) reduced Cd accumulation and alleviated pakchoi growth inhibition caused by Cd stress in shoots and roots. With increased S application, the proportion of Cd in the vacuolar fraction and the proportion of NaCl-extractable Cd increased in roots. Additionally, S application increased the content of glutathione (GSH) and phytochelatins (PCs). The reduced Cd uptake and accumulation in pakchoi shoots could have been due to increased Cd chelation and vacuolar sequestration in roots. In addition, sufficient S application (2 mM) increased the expression of γ-glutamylcysteine synthetase (GSH1) and nicotinamide synthase (NAS) in roots, and excessive S application upregulated the expression of ATP sulfurylase (ATPS) and phytochelatin synthase (PCs). This study provides evidence for the mechanism of mitigating Cd toxicity in pakchoi and will be helpful for developing strategies to reduce Cd accumulation in the edible parts of pakchoi through S fertilizer application.


Assuntos
Brassica/efeitos dos fármacos , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Sulfatos/farmacologia , Aminoaciltransferases/metabolismo , Transporte Biológico , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Cádmio/toxicidade , Fertilizantes/análise , Glutationa/metabolismo , Hidroponia , Modelos Teóricos , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poluentes do Solo/toxicidade , Sulfato Adenililtransferase/metabolismo , Sulfatos/metabolismo
20.
J Hazard Mater ; 388: 122041, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954298

RESUMO

Municipal solid waste incineration (MSWI) fly ash produced in waste-to-energy plants possesses a serious threat to human health. Although the traditional methods including toxicity characteristic leaching procedure and sequential extraction approach can partially evaluate the reduction of heavy metals leaching from thermally treated MSWI fly ash, the potential threat towards organisms is frequently ignored in previous literature. Considering this, herein we systematically assess the cytotoxicity of heat-treated samples using multiple cells from different biological tissues/organs for the first time. The results indicate that the leachability and transferability of heavy metals are declined after treatment. The biological assays demonstrate that the leachates from the treated residues induce lower phytotoxicity and cytotoxicity compared with the original samples. Moreover, according to the cellular responses of multiple cells to the leachates, normal cells (MC3T3-E1, HUVEC, and L929) are more tolerant to the leachates than cancerous cells (4T1, MG63), and the skin fibroblasts (L929), which often interact with the external circumstance, have the best cellular tolerance. This work provides a novel platform to determine the potential biosecurity of MSWI fly ash-derived products towards organisms, when they are served as secondary building materials in the constructional industry that may be contact with animals and human beings.


Assuntos
Cinza de Carvão/toxicidade , Materiais de Construção , Poluentes Ambientais/toxicidade , Incineração , Metais Pesados/toxicidade , Resíduos Sólidos , Animais , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA