Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 5): 127244, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37806416

RESUMO

Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.


Assuntos
Bromelaínas , Peptídeos , Hidrólise , Bromelaínas/química , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/química , Hidrolisados de Proteína/química
2.
Curr Pharm Biotechnol ; 24(14): 1715-1726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999703

RESUMO

Bromelain is a protein digestive enzyme obtained from the extract of pineapple (steam, fruit, and leaves). It is a cocktail of several thiol endopeptidases and other components like peroxidase, cellulase, phosphatase, and several protease inhibitors. It is a glycoprotein with an oligosaccharide in its molecular structure that contains xylose, fucose, mannose, and N-acetyl glucosamine. Many approaches have been used in the extraction and purification of bromelain like filtration, membrane filtration, INT filtration, precipitation, aqueous two-phase system, ion-exchange chromatography, etc. This enzyme is widely used in the food industry for meat tenderization, baking, cheese processing, seafood processing, etc. However, this enzyme also expands its applicability in the food industry. It is reported to have the potential for the treatment of bronchitis, surgical trauma, sinusitis, etc. The in vitro and in vivo studies showed that it possesses fibrinolytic, antiinflammatory, antithrombotic, anti-edematous activity, etc. The human body absorbed bromelain without any side effects or reduction in its activity. However, in some cases, it shows side effects in those patients who are allergic to pineapple. To minimize such adverse effects bromelain is immobilized inside the nanoparticles. This paper gives an overview of the production, purification, and application of this industrially important enzyme in the food and pharmaceutical industry. It also discusses the various immobilization strategies used to enhance its efficiency.


Assuntos
Bromelaínas , Proteínas , Humanos , Bromelaínas/uso terapêutico , Bromelaínas/química , Carne , Frutas , Indústria Farmacêutica
3.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144767

RESUMO

Bromelain is a unique enzyme-based bioactive complex containing a mixture of cysteine proteases specifically found in the stems and fruits of pineapple (Ananas comosus) with a wide range of applications. MD2 pineapple harbors a gene encoding a small bromelain cysteine protease with the size of about 19 kDa, which might possess unique properties compared to the other cysteine protease bromelain. This study aims to determine the expressibility and catalytic properties of small-sized (19 kDa) bromelain from MD2 pineapple (MD2-SBro). Accordingly, the gene encoding MD2-SBro was firstly optimized in its codon profile, synthesized, and inserted into the pGS-21a vector. The insolubly expressed MD2-SBro was then resolubilized and refolded using urea treatment, followed by purification by glutathione S-transferase (GST) affinity chromatography, yielding 14 mg of pure MD2-SBro from 1 L of culture. The specific activity and catalytic efficiency (kcat/Km) of MD2-SBro were 3.56 ± 0.08 U mg-1 and 4.75 ± 0.23 × 10-3 µM-1 s-1, respectively, where optimally active at 50 °C and pH 8.0, and modulated by divalent ions. The MD2-SBro also exhibited the ability to scavenge the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) with an IC50 of 0.022 mg mL-1. Altogether, this study provides the production feasibility of active and functional MD2-Bro as a bioactive compound.


Assuntos
Ananas , Cisteína Proteases , Ananas/química , Ananas/genética , Bromelaínas/química , Códon/genética , Glutationa Transferase/genética , Ureia
4.
Molecules ; 27(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35011492

RESUMO

Before entering the cell, the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) binds to the human angiotensin-converting enzyme 2 (hACE2) receptor. Hence, this RBD is a critical target for the development of antiviral agents. Recent studies have discovered that SARS-CoV-2 variants with mutations in the RBD have spread globally. The purpose of this in silico study was to determine the potential of a fruit bromelain-derived peptide. DYGAVNEVK. to inhibit the entry of various SARS-CoV-2 variants into human cells by targeting the hACE binding site within the RBD. Molecular docking analysis revealed that DYGAVNEVK interacts with several critical RBD binding residues responsible for the adhesion of the RBD to hACE2. Moreover, 100 ns MD simulations revealed stable interactions between DYGAVNEVK and RBD variants derived from the trajectory of root-mean-square deviation (RMSD), radius of gyration (Rg), and root-mean-square fluctuation (RMSF) analysis, as well as free binding energy calculations. Overall, our computational results indicate that DYGAVNEVK warrants further investigation as a candidate for preventing SARS-CoV-2 due to its interaction with the RBD of SARS-CoV-2 variants.


Assuntos
Enzima de Conversão de Angiotensina 2 , Bromelaínas , Simulação por Computador , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Antivirais/farmacologia , Bromelaínas/química , Bromelaínas/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Tratamento Farmacológico da COVID-19
5.
Nutrients ; 13(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959865

RESUMO

Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticoagulantes/uso terapêutico , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Bromelaínas/uso terapêutico , Tratamento Farmacológico da COVID-19 , Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Neoplasias/tratamento farmacológico , Proteínas de Plantas/uso terapêutico , SARS-CoV-2 , Ananas/enzimologia , Anti-Inflamatórios/química , Anticoagulantes/química , Bromelaínas/química , Cardiotônicos/química , Fibrinólise/efeitos dos fármacos , Humanos , Proteínas de Plantas/química
6.
Curr Issues Mol Biol ; 43(1): 93-106, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067064

RESUMO

Bromelain is a mixture of proteolytic enzymes derived from pineapple (Ananas comosus) fruit and stem possessing several beneficial properties, particularly anti-inflammatory activity. However, the molecular mechanisms underlying the anti-inflammatory effects of bromelain are unclear. This study investigated the anti-inflammatory effects and inhibitory molecular mechanisms of crude and purified rhizome bromelains on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. RAW264.7 cells were pre-treated with various concentrations of crude bromelain (CB) or purified bromelain (PB), and then treated with LPS. The production levels of pro-inflammatory cytokines and mediators, including nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α were determined by Griess and ELISA assays. The expressions of inducible nitric oxide synthetase (iNOS), cyclooxygenase (COX)-2, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs)-signaling pathway-related proteins were examined by western blot analysis. The pre-treatment of bromelain dose-dependently reduced LPS-induced pro-inflammatory cytokines and mediators, which correlated with downregulation of iNOS and COX-2 expressions. The inhibitory potency of PB was stronger than that of CB. PB also suppressed phosphorylated NF-κB (p65), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha, extracellular signal-regulated kinases, c-Jun amino-terminal kinases, and p38 proteins in LPS-treated cells. PB then exhibited potent anti-inflammatory effects on LPS-induced inflammatory responses in RAW264.7 cells by inhibiting the NF-κB and MAPKs-signaling pathways.


Assuntos
Ananas/química , Bromelaínas/farmacologia , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Rizoma/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Bromelaínas/química , Regulação para Baixo , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Transdução de Sinais
7.
Sci Rep ; 11(1): 10195, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986357

RESUMO

For centuries, bromelain has been used to treat a range of ailments, even though its mechanism of action is not fully understood. Its therapeutic benefits include enzymatic debridement of the necrotic tissues of ulcers and burn wounds, besides anti-inflammatory, anti-tumor, and antioxidant properties. However, the protease is unstable and susceptible to self-hydrolysis over time. To overcome the stability issues of bromelain, a previous study formulated chitosan-bromelain nanoparticles (C-B-NP). We evaluated the optimized nanoformulation for in vitro antioxidant, cell antiproliferative activities and cell migration/proliferation in the scratch assay, comparing it with free bromelain. The antioxidant activity of free bromelain was concentration and time-dependent; after encapsulation, the activity level dropped, probably due to the slow release of protein from the nanoparticles. In vitro antiproliferative activity was observed in six tumor cell lines for free protein after 48 h of treatment (glioma, breast, ovarian, prostate, colon adenocarcinoma and chronic myeloid leukemia), but not for keratinocyte cells, enabling its use as an active topical treatment. In turn, C-B-NP only inhibited one cell line (chronic myeloid leukemia) and required higher concentrations for inhibition. After 144 h treatment of glioma cells with C-B-NP, growth inhibition was equivalent to that promoted by the free protein. This last result confirmed the delayed-release kinetics of the optimized formulation and bromelain integrity. Finally, a scratch assay with keratinocyte cells showed that C-B-NP achieved more than 90% wound retraction after 24 h, compared to no retraction with the free bromelain. Therefore, nanoencapsulation of bromelain with chitosan conferred physical protection, delayed release, and wound retraction activity to the formulation, properties that favor topical formulations with a modified release. In addition, the promising results with the glioma cell line point to further studies of C-B-NP for anti-tumor treatments.


Assuntos
Bromelaínas/química , Bromelaínas/metabolismo , Bromelaínas/farmacologia , Antioxidantes , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química , Cicatrização/efeitos dos fármacos
8.
Protein J ; 40(3): 406-418, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713245

RESUMO

Bromelain, a member of cysteine proteases, is found abundantly in pineapple (Ananas comosus), and it has a myriad of versatile applications. However, attempts to produce recombinant bromelain for commercialization purposes are challenging due to its expressibility and solubility. This study aims to express recombinant fruit bromelain from MD2 pineapple (MD2Bro; accession no: OAY85858.1) in soluble and active forms using Escherichia coli host cell. The gene encoding MD2Bro was codon-optimized, synthesized, and subsequently ligated into pET-32b( +) for further transformation into Escherichia coli BL21-CodonPlus(DE3). Under this strategy, the expressed MD2Bro was in a fusion form with thioredoxin (Trx) tag at its N-terminal (Trx-MD2Bro). The result showed that Trx-MD2Bro was successfully expressed in fully soluble form. The protein was successfully purified using single-step Ni2+-NTA chromatography and confirmed to be in proper folds based on the circular dichroism spectroscopy analysis. The purified Trx-MD2Bro was confirmed to be catalytically active against N-carbobenzoxyglycine p-nitrophenyl ester (N-CBZ-Gly-pNP) with a specific activity of 6.13 ± 0.01 U mg-1 and inhibited by a cysteine protease inhibitor, E-64 (IC50 of 74.38 ± 1.65 nM). Furthermore, the catalytic efficiency (kcat/KM) Trx-MD2Bro was calculated to be at 5.64 ± 0.02 × 10-2 µM-1 s-1 while the optimum temperature and pH were at 50 °C and pH 6.0, respectively. Furthermore, the catalytic activity of Trx-MD2Bro was also affected by ethylenediaminetetraacetic acid (EDTA) or metal ions. Altogether it is proposed that the combination of codon optimization and the use of an appropriate vector are important in the production of a soluble and actively stable recombinant bromelain.


Assuntos
Ananas/genética , Bromelaínas , Expressão Gênica , Proteínas de Plantas , Ananas/enzimologia , Bromelaínas/biossíntese , Bromelaínas/química , Bromelaínas/genética , Bromelaínas/isolamento & purificação , Catálise , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
9.
Int J Biol Macromol ; 180: 161-176, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676977

RESUMO

Bromelain, papain, and ficin are studied the most for meat tenderization, but have limited application due to their short lifetime. The aim of this work is to identify the adsorption mechanisms of these cysteine proteases on chitosan to improve the enzymes' stability. It is known that immobilization can lead to a significant loss of enzyme activity, which we observed during the sorption of bromelain (protease activity compared to soluble enzyme is 49% for medium and 64% for high molecular weight chitosan), papain (34 and 28% respectively) and ficin (69 and 70% respectively). Immobilization on the chitosan matrix leads to a partial destruction of protein helical structure (from 5 to 19%). Using computer modelling, we have shown that the sorption of cysteine proteases on chitosan is carried out by molecule regions located on the border of domains L and R, including active cites of the enzymes, which explains the decrease in their catalytic activity upon immobilization. The immobilization on chitosan does not shift the optimal range of pH (7.5) and temperature values (60 °C for bromelain and papain, 37-60 °C for ficin), but significantly increases the stability of biocatalysts (from 5.8 times for bromelain to 7.6 times for papain).


Assuntos
Bromelaínas/química , Bromelaínas/metabolismo , Quitosana/metabolismo , Composição de Medicamentos/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Ficina/química , Ficina/metabolismo , Papaína/química , Papaína/metabolismo , Adsorção , Ananas/enzimologia , Biocatálise , Biotecnologia/métodos , Carica/enzimologia , Domínio Catalítico , Estabilidade Enzimática , Ficus/enzimologia , Concentração de Íons de Hidrogênio , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Estrutura Secundária de Proteína , Temperatura
10.
Appl Biochem Biotechnol ; 193(6): 1873-1897, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33735410

RESUMO

Cancer is a complicated long-term disease due to computable key molecular players involved in aggravating the disease. Among various kinds of cancer, hepatocellular carcinoma (HCC) is the ninth leading cause of cancer. Recently, plant-based products are gaining a lot of attention in the field of research because of their anti-tumor properties. In our previous study, we reported based on in-silico method that bromelain, a cysteine protease extracted from the stem of the pineapple, has high binding affinity with the transcription factors p53 and ß-catenin proteins which are key players in controlling the progression of hepatocellular carcinoma. Bromelain, isolated mainly from the stem of Pineapple (Ananas comosus), belongs to the family Bromeliaceae. The present study deals with preclinical analysis of bromelain as an anti-cancer agent and its intracellular effect on the expression of p53 and ß-catenin protein. Our study reports cytotoxic activity, cell proliferation, migration, invasion, arrest in the S-phase, and G2/M phase in cell cycle analysis by treating with bromelain in HepG2 cell lines. We also report up-regulation of p53 protein by drug-induced impediment leading to apoptotic process in HepG2 cells and down-regulation of ß-catenin protein in HepG2 cells which interferes in ß-catenin/TCF-DNA interaction further, down-regulating Wnt genes and suppressing the canonical pathway. Finally, we conclude that bromelain inhibits tumorigenic potential in HepG2 cell lines.


Assuntos
Ananas/química , Antineoplásicos Fitogênicos/farmacologia , Bromelaínas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Citotoxinas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Antineoplásicos Fitogênicos/química , Bromelaínas/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Citotoxinas/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo
11.
Sci Rep ; 10(1): 19570, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177555

RESUMO

The Ananas comosus stem extract is a complex mixture containing various cysteine ​​proteases of the C1A subfamily, such as bromelain and ananain. This mixture used for centuries in Chinese medicine, has several potential therapeutic applications as anti-cancer, anti-inflammatory and ecchymosis degradation agent. In the present work we determined the structures of bromelain and ananain, both in their free forms and in complex with the inhibitors E64 and TLCK. These structures combined with protease-substrate complexes modeling clearly identified the Glu68 as responsible for the high discrimination of bromelain in favor of substrates with positively charged residues at P2, and unveil the reasons for its weak inhibition by cystatins and E64. Our results with purified and fully active bromelain, ananain and papain show a strong reduction of cell proliferation with MDA-MB231 and A2058 cancer cell lines at a concentration of about 1 µM, control experiments clearly emphasizing the need for proteolytic activity. In contrast, while bromelain and ananain had a strong effect on the proliferation of the OCI-LY19 and HL-60 non-adherent cell lines, papain, the archetypal member of the C1A subfamily, had none. This indicates that, in this case, sequence/structure identity beyond the active site of bromelain and ananain is more important than substrate specificity.


Assuntos
Ananas/química , Bromelaínas/química , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Bromelaínas/antagonistas & inibidores , Bromelaínas/metabolismo , Bromelaínas/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Cisteína/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Inibidores de Cisteína Proteinase/metabolismo , Dissulfetos/química , Humanos , Leucina/análogos & derivados , Leucina/química , Leucina/metabolismo , Modelos Moleculares , Caules de Planta/química , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Tosilina Clorometil Cetona/química , Tosilina Clorometil Cetona/metabolismo
12.
J Trace Elem Med Biol ; 62: 126631, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32763766

RESUMO

BACKGROUND: Aluminum (Al) has been reported to induce testicular injury via oxidative stress. Ananas comosus stem extract is an inexpensive byproduct waste rich in bromelain which is a group of sulfur-containing enzymes known for its biological activities and medicinal applications. So, the current investigation aims to evaluate the efficacy of bromelain in counteracting oxidative injury and testicular dysfunction stimulated by aluminum in rats. METHODS: Male adult Wistar rats were divided into four groups. The first group used as control, however, the second and third groups were received bromelain (250 mg/kg) and AlCl3 (34 mg/Kg, 1/25 LD50), and the fourth group supplemented with bromelain one hour before AlCl3 intoxication, respectively. Bromelain was administered daily while AlCl3 was given every other day by oral gavages for one month. RESULTS: Al intoxicated animals revealed an elevation in lipid peroxidation (TBARS and H2O2) level and lactate dehydrogenase (LDH) activity. However, reduced glutathione (GSH) and protein contents, antioxidant enzymes (SOD, CAT, GPx, GR, GST), phosphatases (ALP, AcP) and aminotransferases (AST, ALT) activities were significantly reduced. Additionally, considerable amendments in hormonal levels (testosterone, luteinizing and follicle-stimulating hormone) and sperm characteristics were spotted. Further, histological variations in the testes section were detected and this supports the biochemical observations. Otherwise, rats supplemented with bromelain alone diminished TBARS and H2O2 and augmented mostly other parameters. Furthermore, supplementation with bromelain before Al intoxication in rats exhibited worthy betterment in oxidative stress markers, hormones, and sperm quality compared to Al treated group. CONCLUSION: In conclusion, bromelain had a powerful protective role against Al-induced testicular dysfunction so, it represents a novel approach in metal toxicity processing.


Assuntos
Ananas/química , Bromelaínas/química , Bromelaínas/farmacologia , Cloreto de Alumínio/química , Animais , Antioxidantes/química , Glutationa/química , Hormônios/metabolismo , Peróxido de Hidrogênio/química , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
13.
Mater Sci Eng C Mater Biol Appl ; 113: 111004, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487411

RESUMO

Dense extracellular matrix (ECM) is a primary obstacle that restrains the permeation of therapeutic drugs in tumor tissues. Degrading ECM with bromelain (Br) to increase drug penetration is an attractive strategy to enhance antitumor effects. However, the poor stability in circulation and potential immunogenicity severely limit their applications. In this work, a novel pH-sensitive nanocarrier was prepared by crosslinking Br with an ortho ester-based crosslink agent, and Br still retained a certain ability to degrade ECM after crosslinking. The nanoparticles showed higher DOX release rate than non-sensitive nanoparticles, and DOX release amount reached to 86% at pH 5.5 within 120 h. In vivo experiments revealed that the pH-sensitive nanoparticles could be degraded in mildly acidic condition, and the released Br further promoted nanoparticles penetration in tumor parenchyma via in situ hydrolysis of ECM. Furthermore, Br itself could inhibit the proliferation of tumor cells at high concentration, and produce synergistic antitumor effects with DOX. Finally, tumor growth inhibition of these nanoparticles reached to 62.5%. Overall, the bromelain-based pH-sensitive nanoparticles can be potential drug carriers for efficient drug delivery and tumor treatment.


Assuntos
Antibióticos Antineoplásicos/química , Bromelaínas/química , Doxorrubicina/química , Nanopartículas/química , Animais , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ésteres/química , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Distribuição Tecidual , Transplante Heterólogo
14.
Protein Pept Lett ; 27(11): 1159-1170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484078

RESUMO

BACKGROUND: Antiplatelet, anticoagulant and fibrinolytic activities of stem bromelain (EC 3.4.22.4) are well described, but more studies are still required to clearly define its usefulness as an antithrombotic agent. Besides, although some effects of bromelain are linked to its proteolytic activity, few studies were performed taking into account this relationship. OBJECTIVE: We aimed at comparing the effects of stem bromelain total extract (ET) and of its major proteolytic compounds on fibrinogen, fibrin, and blood coagulation considering the proteolytic activity. METHODS: Proteolytic fractions chromatographically separated from ET (acidic bromelains, basic bromelains, and ananains) and their irreversibly inhibited counterparts were assayed. Effects on fibrinogen were electrophoretically and spectrophotometrically evaluated. Fibrinolytic activity was measured by the fibrin plate assay. The effect on blood coagulation was evaluated by the prothrombin time (PT) and activated partial thromboplastin time (APTT) tests. Effects were compared with those of thrombin and plasmin. RESULTS: Acidic bromelains and ananains showed thrombin-type activity and low fibrinolytic activity, with acidic bromelains being the least effective as anticoagulants and fibrinolytics; while basic bromelains, without thrombin-like activity, were the best anticoagulant and fibrinolytic proteases present in ET. Procoagulant action was detected for ET and its proteolytic compounds by the APTT test at low concentrations. The measured effects were dependent on proteolytic activity. CONCLUSION: Two sub-populations of cysteine proteases exhibiting different effects on fibrin (ogen) and blood coagulation are present in ET. Using well characterized stem bromelain regarding its proteolytic system is a prerequisite for a better understanding of the mechanisms underlying the bromelain action.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Bromelaínas , Fibrina , Fibrinogênio , Proteólise/efeitos dos fármacos , Bromelaínas/química , Bromelaínas/farmacologia , Fibrina/química , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Humanos
15.
J Mol Model ; 26(6): 142, 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32417971

RESUMO

Fruit bromelain is a cysteine protease accumulated in pineapple fruits. This proteolytic enzyme has received high demand for industrial and therapeutic applications. In this study, fruit bromelain sequences QIM61759, QIM61760 and QIM61761 were retrieved from the National Center for Biotechnology Information (NCBI) Genbank Database. The tertiary structure of fruit bromelain QIM61759, QIM61760 and QIM61761 was generated by using MODELLER. The result revealed that the local stereochemical quality of the generated models was improved by using multiple templates during modelling process. Moreover, by comparing with the available papain model, structural analysis provides an insight on how pro-peptide functions as a scaffold in fruit bromelain folding and contributing to inactivation of mature protein. The structural analysis also disclosed the similarities and differences between these models. Lastly, thermal stability of fruit bromelain was studied. Molecular dynamics simulation of fruit bromelain structures at several selected temperatures demonstrated how fruit bromelain responds to elevation of temperature.


Assuntos
Ananas/enzimologia , Bromelaínas/metabolismo , Simulação de Dinâmica Molecular , Bromelaínas/química , Estabilidade Enzimática , Temperatura Alta , Conformação Proteica
16.
Food Res Int ; 131: 108991, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32247462

RESUMO

Jumbo squid (Dosidicus gigas) muscle is rather hard and tough, which directly affects consumer acceptance. In this study, the tenderization effect of bromelain and papain on squid muscle during enzymolysis is examined and compared with an untreated control and water-treated sample. Squid mantle were incubated with different solutions (water, bromelain, and papain solution) for 40 min in a 30 °C water bath. Then, the mantle samples were subjected to water holding capacity (WHC) analysis, texture evaluation, biochemical determination, and histological observations. The results revealed that bromelain and papain disadvantageously decrease the water holding capacity when compared to the control and water-treated samples. Furthermore, following tenderization with bromelain or papain, muscle hardness, shear force, myofibrillar protein content, and Ca2+ ATPase activity were all significantly decreased. Additionally, some essential amino acids were released following tenderization. When examining the myofibrillar fragmentation index (MFI), bromelain and papain were shown to cause high levels of hydrolysis in myofibrillar and sarcoplasmic proteins. Moreover, microstructural imaging indicated that the tenderization treatments disrupted myofibrils and generated a larger number of small fragments in the muscle tissues, subsequently decreasing microstructure stability and integrity. SDS-PAGE analysis confirmed that bromelain and papain have a high proteolytic activity, with some small peptides and/or short fragments detected post-tenderization. The results presented herein demonstrated that bromelain and papain improved squid muscle tenderness and can be utilized to ensure a more desirable squid product.


Assuntos
Bromelaínas/química , Carne/análise , Papaína/química , Animais , Decapodiformes , Manipulação de Alimentos , Proteínas Musculares/química , Proteólise/efeitos dos fármacos , Resistência ao Cisalhamento , Água
17.
J Food Sci ; 85(3): 707-717, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32043604

RESUMO

This study evaluated the biological properties of peptides from brown rice protein hydrolyzed by bromelain (eb-RPH) in relation to flavor characteristic. The fractionation into peptides < 1 kDa was observed to improve the DPPH, ABTS, and hydroxyl radical-scavenging activities (0.19, 2.28, and 24.64 mM Trolox, respectively), angiotensin-converting enzyme (ACE)-inhibitory activity (IC50 value of 0.20 ± 0.011 mg protein/mL), as well as bitter and umami tastes. The < 1 kDa fraction was further analyzed by liquid chromatography-electrospray ionization/mass spectrometry to identify amino acid sequence associated with biological activities and flavor characteristics. Eight peptides were identified. Most of the identified peptides contained features of previously reported ACE inhibitory and antioxidant peptides, especially peptide FGGSGGPGG and FGGGGAGAGG. Evaluation of flavor characteristics using BIOPEP database demonstrated that they had high occurrence frequencies of umami peptides (ESDVVSDL, GSGVGGAK, and SSVGGGSAG) and low Q-value (938.75 to 282.22), suggesting that these peptides may be used as a fortifying health ingredient with good taste. PRACTICAL APPLICATION: The fractionated brown rice protein hydrolysate (< 1 kDa) has the potential to serve as a functional food ingredient in nutraceutical food and beverage products that can provide health benefits with good taste. Information on amino acid composition and spatial conformation of peptide may aid us to better understand the molecular mechanisms involved in bioactivities and flavor of brown rice peptide for industrial applications.


Assuntos
Bromelaínas/química , Aromatizantes/química , Oryza/química , Peptídeos/química , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/química , Cromatografia Líquida , Hidrólise , Proteínas de Plantas/química , Hidrolisados de Proteína/química , Espectrometria de Massas por Ionização por Electrospray
18.
J Pharm Biomed Anal ; 181: 113075, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31951942

RESUMO

The phytotherapeutic bromelain is a heterogeneous protein mixture, extracted from pineapple stem, with high proteolytic activity based on cysteine proteases. Its global protein chemical composition was analyzed qualitatively and quantitatively by SDS-PAGE and RP-HPLC. A SDS-PAGE method with elaborate sample pretreatment was developed, to cope with the bromelain's self-digestion properties and the hypothetical disulfide scrambling during electrophoresis. Both can produce misleading results, if not considered. RP-HPLC was applied for its high separation power for bromelain proteinaceous compounds. A peak identification and assignment to different protein classes in bromelain was done by enzyme kinetics and MS. The method was successfully applied for the quantitative determination of the molar ratio between inhibitor and enzyme and resulted to be approximately 3:2. Bromelain contains, from a molar point of view, inhibitor molecules as major component, which thus might be considered as a natural pharmaceutical excipient in Bromelain, because it protects the enzymes against autolysis. We described two methods to separate the inhibitor fraction from the enzyme fraction, RP-HPLC and size exclusion chromatography. A pineapple derived Jacalin-like-lectin, herein called 'Anlec', was identified and quantified by RP-HPLC-MS in bromelain and its content was determined to be 5%, related to all proteins in bromelain. Anlec binds specifically to mannose-containing glycans and is discussed in literature to possess anti-HIV medical potential. Bromelain could therefore be a possible and economic source for the production of Anlec. An isolation strategy of Anlec from bromelain, in high purity, is shown in this work. The presented RP-HPLC results are comprehensive in chemical information, and the method is expedient to provide appropriate bromelain protein isolations but also to accomplish quality control, covering all relevant protein components. It is furthermore shown, that proteins in bromelain may react with reducing sugars in a Maillard reaction to form glycated proteins. Maillard reaction products in bromelain are detected and characterized and could be responsible for the limited stability and storage times at room temperature of bromelain. Even the active center thiol group could be potentially glycated.


Assuntos
Bromelaínas/isolamento & purificação , Produtos Finais de Glicação Avançada/isolamento & purificação , Lectinas de Plantas/isolamento & purificação , Bromelaínas/química , Química Farmacêutica , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Produtos Finais de Glicação Avançada/química , Reação de Maillard , Lectinas de Plantas/química
19.
J Agric Food Chem ; 68(4): 1136-1146, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31820954

RESUMO

This work investigated the influence of enzymatic tenderization on digestibility changes of beef semimembranosus proteins using peptidomics methods. Hydrolysis by proteinase K and bromelain elevated the average bitterness index of identified peptides by generating high-Q values peptides (1714-1790 Cal/mol), including KDLFDPIIQ, LIDDHFLFDKPVSPL, and QLIDDHFLFDKPVSPLLL. Proteolysis during enzymatic tenderization acted as a "pre-digestion" step and significantly elevated the degree of hydrolysis of beef protein (by 4.5-17.3%) in subsequent simulated gastrointestinal digestion. Peptidomics analysis of digests revealed large variations in the peptide composition, which was positively correlated with the degree of proteolysis during enzymatic tenderization. Enzymatic tenderization with proteinase K- (for 0.5 h) or bromelain-treated samples largely increased the survival rate (by 65.5 or 82.8%) of peptides during simulated digestion, possibly because of the "secondary enzyme-substrate interaction" effect. This work could provide a new sight into the possible influence of enzymatic tenderization on meat nutrition.


Assuntos
Bromelaínas/química , Endopeptidase K/química , Papaína/química , Peptídeos/química , Proteínas/química , Carne Vermelha/análise , Animais , Biocatálise , Bovinos , Digestão , Combinação de Medicamentos , Manipulação de Alimentos , Humanos , Espectrometria de Massas , Músculos/química , Músculos/metabolismo , Sódio na Dieta
20.
J Photochem Photobiol B ; 201: 111681, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31704638

RESUMO

Our research has shown that the degree of photosensitivity of the cysteine proteases can be arranged in the following order: bromelain → ficin → papain. After the UV irradiation with 151 J·m-2 intensity of a bromelain solution, the enzyme activity has increased. No decrease in the catalytic capacity and the change in the size of the molecule was recorded in the 151-6040 J·m-2 range of irradiation intensities. A decrease in the catalytic capacity of ficin and the increase of its globule size occurred after exposure to a radiation of 3020 J·m-2 intensity. The decrease in papain activity was observed at the UV irradiation intensity of 453 J·m-2, and an increase of the papain globule size was detected at 755 J·m-2. Immobilization on chitosan matrix leads to the increase in the stability of heterogeneous biocatalysts with respect to UV irradiation in comparison with free enzymes. The changes in IR spectra of immobilized cysteine proteases practically do not affect the bands due to the protein component of the system: amide I, amide II, amide III. Therefore, it can be postulated that the chitosan matrix acts as photoprotector for immobilized ficin, bromelain and papain. The obtained results can be helpful for development of drugs based on chitosan and cysteine proteases in combination with phototherapy, as well as for choosing their sterilization conditions.


Assuntos
Bromelaínas/metabolismo , Ficina/metabolismo , Papaína/metabolismo , Raios Ultravioleta , Biocatálise/efeitos da radiação , Bromelaínas/química , Quitosana/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Ficina/química , Cinética , Papaína/química , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA